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Key Points

• Serum-enhanced labile
plasma iron in patients
undergoing allogeneic
HSCT is critical for
Aspergillus fumigatus
growth in vitro.

• Transferrin iron in se-
rum is inaccessible for
A fumigatus, and up-
take of iron in the form
of eLPI involves fungal
siderophores.

Introduction

Apart from relapse and graft-versus-host disease, prevention of life-threatening infections remains
the most important challenge in clinical care of patients undergoing hematopoietic stem cell
transplantation (HSCT). Despite improved antifungal prophylaxis regimens, invasive aspergillosis (IA)
still poses a major threat, with mortality rates up to 80% among infected HSCT patients.1 Thus, novel
biomarkers to identify patients at risk and a better understanding of underlying pathomechanisms are
needed.

In healthy individuals, plasma iron accessible for cells is bound to transferrin (Tf). However, under
pathologic conditions, once Tf’s binding capacity is exceeded, enhanced labile plasma iron (eLPI)
develops.2 Indeed, iron-overloaded patients with myelodysplastic syndrome or acute myeloid
leukemia undergoing HSCT are at risk of developing eLPI as a result of chemotherapy-induced shut-
down of erythropoiesis and tissue damage causing iron release from apoptotic cells, as well as
frequent red blood cell transfusion therapy for anemia.3-6 Recently, the Allogeneic Iron Investigators
(ALLIVE) trial demonstrated a causative link between the occurrence of eLPI and an increased
incidence of infection-associated nonrelapse mortality in patients undergoing allogeneic HSCT.3 In
particular, eLPI’s promoting role for the dissemination of selected bacteria has been determined.7,8

Referring to IA, studies have proposed iron overload as a risk factor for the occurrence of IA after
transplantation.9,10 Furthermore, iron is known to be essential for Aspergillus fumigatus (AFU)
growth and virulence.11 However, the relevance of eLPI for AFU as an iron source is unknown. Here
we specifically investigated the role of eLPI for AFU outgrowth, using serum samples of patients
with acute myeloid leukemia and myelodysplastic syndrome who underwent HSCT within the
ALLIVE trial.

Methods

Study design

Serum samples of a selected cohort of patients who participated in the ALLIVE trial have been analyzed.
All patients gave written informed consent to participate in the trial, which was approved by the ethics
committee of the Technical University Dresden (registration number EK338102012). This trial was
registered at www.clinicaltrials.gov as #NCT01746147.

Fungal in vitro assay and procedures

The scheme of fungal growth assay is shown in supplemental Figure 1. All further details are given in the
supplemental Data.
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Statistics

Statistical analysis was performed using R. Data were analyzed
using generalized linear models with a logit link function. P , .05
is considered significant. All further details are given in the
supplemental Data.

Results and discussion

To study the relationship between AFU infection and iron
parameters in HSCT patients, we developed an in vitro assay to
investigate the development of fungal outgrowth in sera after
inoculation with AFU (supplemental Figure 1A-B). Longitudinally
collected serum samples during the consecutive phases of HSCT
of 29 representative ALLIVE participants were screened (details
given in supplemental Table 2).3 Of importance, eLPI develop-
ment of our cohort resembled the one seen in the whole ALLIVE
cohort: Mean eLPI concentration and percentage of patients
showing measurable eLPI levels increased during conditioning,
being highest on day 7 (C7; 1.1 6 0.7; 100%), at transplantation
(0; 0.9 6 0.8; 75.9%), and 7 days after transplantation (7; 0.8 6
0.6; 79.3%; supplemental Figure 2A-B).

Strikingly, we found that AFU outgrowth was almost exclusively
observed when eLPI was present (Figures 1A-B). Therefore,
the probability of fungal outgrowth was dependent on the
presence of eLPI per se (defined as eLPI $ 0.2 arbitrary units;
odds ratio [OR], 2235; 95% confidence interval [CI], [337-
28 638; P5 4310212), rather than on the absolute eLPI amount
(OR, 285; 95%CI, 66-1707; P5 7310212; Figure 1C). Importantly,
when considering other clinical confounders including sex, disease
type, liver iron content, and transfusion burden, eLPI positivity
remained a highly significant predictor for fungal outgrowth
(OR, 778; 95% CI, 197-4676; P 5 6.2310217; supplemental
Figure 2C).

As mentioned earlier, Tf-saturation (Tf-Sat) and eLPI are mutually
interconnected parameters. In our cohort, eLPI and fungal
outgrowth were clearly associated with Tf-Sat exceeding 75%
(supplemental Figure 2D). Comparing receiver-operator curves,
eLPI with an optimal threshold of 0.2 arbitrary units and Tf-Sat
with an optimal cutoff of 75% revealed excellent sensitivity and
specificity for prediction of in vitro fungal outgrowth (area under
the curve [AUC]eLPI, 0.94; AUCTf-Sat, 0.96; supplemental
Figure 2E). Overall, Tf-Sat only marginally influenced outgrowth
probability (OR, 1.2; 95% CI, 1.2-1.3; P5 23 10210). However,
Tf-Sat higher than 75% dramatically increased outgrowth risk
(OR, 4021; 95% CI, 403-150 999, P 5 8 3 1029; Figure 1C).

To see whether AFU has evolved mechanisms to overcome the
growth dependence related to eLPI, we analyzed 9 different AFU
isolates in ferric iron-spiked human plasma samples (supple-
mental Figure 3A-C). Outgrowth again only occurred in the
presence of eLPI, thus making it very likely that eLPI serves as
the relevant iron source for AFU in general (supplemental
Figure 3D).

Published evidence indicates that AFU can acquire iron from
holo-Tf via its siderophore system, being the most important iron
acquisition pathway for AFU.11,12 According to our results, only
eLPI or highly saturated Tf are able to support outgrowth. To
clarify, which is more critical, we scavenged labile iron in eLPI-
positive samples on addition of apo-Tf, which abrogated fungal

outgrowth. Correspondingly, the addition of holo-Tf to eLPI-negative
specimens could not promote AFU outgrowth (Figure 2A). In
agreement, monitoring of apo- and holo-Tf in culture super-
natants via absorbance measurements at 280 and 460 nm
and urea–polyacrylamide gel electrophoresis did not illustrate
conversion of holo- to apo-Tf, suggesting that holo-Tf is not
a natural iron source for AFU (Figure 2B-C).13 Interestingly, it has
recently been published that serum levels of N,N9,N0-triacetylfu-
sarinine C, being AFU’s main extracellular siderophore, in patients
suffering from IA are less than 10 ng/mL. Thus, it seems probable that
N,N9,N0-triacetylfusarinine C concentrations are too low to efficiently
retrieve iron from Tf.12,14

Next, we tried to elucidate the mechanism by which AFU accesses
eLPI. Notably, deficiency in extracellular siderophores (DsidF
mutant) led to an impaired outgrowth in the presence of eLPI,
whereas lack of extra- and intracellular siderophores (DsidAmutant)
blocked even spore germination, independent of the presence of
eLPI (Figure 2D). Together, these results indicate that iron in the
form of eLPI can promote AFU outgrowth without extracellular
siderophores, albeit at a considerably slower rate, unless the
intracellular iron stores (represented by intracellular siderophores)
are depleted. These results are in accordance with DsidF displaying
attenuated virulence and DsidA being avirulent in murine aspergil-
losis models.11,15

Considering that IA still represents a major hindrance to a favor-
able outcome in patients undergoing HSCT, and wide use of
antifungal regimes elicit resistant strains, new therapeutic targets
are warranted. Although apo-Tf has already been effectively tested
in conditions with eLPI presence, its medical use is limited.16

Moreover, eLPI can be targeted by iron chelators. Yet, application
of these drugs in the setting of HSCT is still controversial.17-19

In agreement with previous reports, deferoxamine served as
xenosiderophore for AFU, thus promoting fungal outgrowth even
in samples, which were negative for eLPI.20 In contrast, outgrowth
was absent in cultures containing deferasirox, proposing that iron
chelated by deferasirox does not serve as a xenosiderophore, at
least for AFU (Figure 2E). Deferasirox application has previously
been shown to have an activity against AFU in vitro and in vivo
models.18,21 Notably, application of deferasirox for mucormycosis
in mice and humans yielded inconsistent outcomes, so that further
work up is warranted and data must be interpreted with caution.22

Moreover, pharmacologic increase of hepcidin levels, being the
master regulator of systemic iron homeostasis, may also turn out
to be a possible treatment option for the prevention of eLPI.23

Preclinical studies have shown the potential of minihepcidin
therapy in reversing bacterial infections.7

In summary, our study provides evidence on the putative role
of eLPI for promoting IA, being the most common invasive
fungal infection in patients undergoing allogeneic HSCT. To
further validate the value of eLPI as a biomarker for IA, eLPI
measurements in patients undergoing HSCT suffering from IA vs
noninfected patients are warranted, maybe including quantitative
measurements instead of semiquantitative, as used in this study
and in the ALLIVE trail. Our studies recommend eLPI measure-
ment as a predictor for the risk for IA and will potentially pave the
way for therapeutic interventional trials aiming at scavenging
eLPI, and thereby improving the outcome of HSCT patients
at risk.
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Figure 1.
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Figure 1. Presence of enhanced labile plasma iron in sera of patients undergoing allogeneic hematopoietic stem cell transplantation determines AFU

outgrowth. Human serum samples of 29 representative ALLIVE participants, which were collected during the consecutive phases of allogeneic hematopoietic stem cell

transplantation (HSCT) were screened for AFU outgrowth. AFU spores (5 3 104/mL) were seeded in RPMI containing 10% complement-depleted patient serum. Outgrowth

was determined after 48 hours by microscopic examination. (A) Microscopy images showing fungal cultures of a representative patient (DD-15) with eLPI serum concentrations

as indicated (original magnification 320; bars represent 30 mm). (B) Heat map representation of fungal outgrowth (upper left), eLPI presence (lower), and their overlay (right)

of patients analyzed here at all times (green, fungal outgrowth; red, eLPI present; yellow, both fungal outgrowth and eLPI present; gray, fungal growth and eLPI absent; white,

sample not available). (C) Relative probability of AFU outgrowth in sera of patients depending on iron-related parameters (eLPI concentration, eLPI presence, Tf-Sat, and

Tf-Sat . 75%. The graph depicts ORs 6 95% CIs for probability of fungal outgrowth. Statistical significance was assessed using a multiparameter logistic regression

model for the outgrowth response variable (no fungal growth vs fungal outgrowth). 0, day of transplantation; 7-100, days 7-100 after transplantation; BL, baseline; C1-7,

conditioning days 1-7.
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Figure 2. AFU cannot retrieve iron from holo-

transferrin, and enhanced labile plasma iron uptake

depends on fungal siderophores. (A) Role of holo-Tf as

an iron source for AFU growth. Representative microscopy

images of AFU cultures taken 48 hours after inoculation

(5 3 104 spores/mL) of RPMI containing 10% ferric iron-

spiked human plasma (0-50 mM Fe31) supplemented with

2,5 mg/mL apo-Tf or holo-Tf, respectively (original magnifi-

cation 320; bars represent 30 mm). (B-C) Removal of iron

from holo-Tf by AFU was studied. AFU spores (5 3 104/mL)

were inoculated into RPMI containing 5mM Fe31 and

2 mg/mL apo- or holo-Tf in 6-well plates. Holo-Tf:apo-Tf

conversion in culture supernatant was monitored by absor-

bance measurements at 280 nm (A280corr) and 460 nm

(A460corr) (B) and urea–polyacrylamide gel electrophoresis

(C) at indicated times. Uninoculated RPMI media with apo-

and holo-Tf were used as controls in both assays. (D) eLPI

use by AFU mutant strains with defects in iron acquisition

systems. Representative microscopy images showing the

growth pattern of wild-type (Wt), DsidF, and DsidA conidia

in RPMI containing 10% ferric iron-spiked human plasma

after 48-hour culture (original magnification 320; bars

represent 30 mm). (E) Influence of clinically applicable iron

chelators on AFU outgrowth in eLPI-deficient and eLPI-

positive serum cultures. AFU spores (5 3 104/mL) were

cultured in RPMI containing 10% ferric iron-spiked human

plasma supplemented with 100 mM deferoxamine (DFO) or

200 mM deferasirox (DFX). Control cultures were DMSO

treated. Photographs were taken 48 hours after inoculation.

Representative images of fungal cultures are shown (original

magnification 320; bars represent 30 mm). Experiments

shown in panels A, D, and E were performed at least in

6 replicates, all showing consistent results.
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