
ORIGINAL PAPER

Development of visual predictive checks accounting for multimodal
parameter distributions in mixture models

Usman Arshad1,2 • Estelle Chasseloup1 • Rikard Nordgren1 • Mats O. Karlsson1

Received: 12 September 2018 / Accepted: 29 March 2019 / Published online: 9 April 2019
� The Author(s) 2019

Abstract
The assumption of interindividual variability being unimodally distributed in nonlinear mixed effects models does not hold

when the population under study displays multimodal parameter distributions. Mixture models allow the identification of

parameters characteristic to a subpopulation by describing these multimodalities. Visual predictive check (VPC) is a

standard simulation based diagnostic tool, but not yet adapted to account for multimodal parameter distributions. Mixture

model analysis provides the probability for an individual to belong to a subpopulation (IPmix) and the most likely

subpopulation for an individual to belong to (MIXEST). Using simulated data examples, two implementation strategies

were followed to split the data into subpopulations for the development of mixture model specific VPCs. The first strategy

splits the observed and simulated data according to the MIXEST assignment. A shortcoming of the MIXEST-based

allocation strategy was a biased allocation towards the dominating subpopulation. This shortcoming was avoided by

splitting observed and simulated data according to the IPmix assignment. For illustration purpose, the approaches were also

applied to an irinotecan mixture model demonstrating 36% lower clearance of irinotecan metabolite (SN-38) in individuals

with UGT1A1 homo/heterozygote versus wild-type genotype. VPCs with segregated subpopulations were helpful in

identifying model misspecifications which were not evident with standard VPCs. The new tool provides an enhanced

power of evaluation of mixture models.

Keywords Visual predictive checks � Mixture models � Multimodal parameter distributions � Pharmacokinetics �
Pharmacodynamics

Introduction

Evaluation of the applicability of a model for a specific pur-

pose is amajor considerationduringpharmacometric analysis.

Diagnostic tools have been developed and used extensively

for evaluation of pharmacokinetic (PK)/pharmacodynamics

(PD) models [1]. The simulation based diagnostic tool known

as visual predictive check (VPC) has gathered much focus

because of the (i) advantage to retain the original data profile,

(ii) ability to describe the central trend and dispersion in the

data, and (iii) simplicity for interpretations [2–5]. A VPC is a

graphical and statistical comparisonof observed and predicted

data by deriving the distribution of observations and predic-

tions against the independent variable such as time [3].

Depending on the underlying data, the objective of the study

and the intended use of the model, different VPCs such as

stratified VPCs (predictive performance across stratification

variable such as a covariate), prediction corrected VPCs (to

identify random effect misspecification by removing the

variability coming from independent variables such as doses)

and covariateVPCs (to evaluate the predictive performance of

the model across the covariate range) may be used [3, 4].

The nonlinear mixed effect modeling approach quantifies

the intrinsic variability associated with pharmacokinetic/

pharmacodynamic profiles across the studied population [6].
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The underlying assumption of interindividual variability

(IIV) being unimodally distributed is not true when the

studied population exhibits heterogeneity leading to multi-

modal parameter distributions [7]. Heterogeneous pharma-

cological behavior may result in clinically significant

differences in drug exposure/toxicity. A classic example

involves acetylation polymorphism in case of isoniazid

where clearance (CL) was observed to be bimodally dis-

tributed and a higher prevalence of peripheral neuropathy

and hepatotoxicity was observed in slowmetabolizers due to

elevated plasma concentrations [8]. Situations may arise

where a polymorphism is associated with the exposure/re-

sponse to a drug, but the covariate capable of describing such

behavior is not available. The mixture modeling (also

referred as clustering) approach is a useful tool under such

circumstances [9]. A number of studies have been reported to

utilizemixturemodeling.Amajor proportion of these studies

aimed to describe the bimodal distribution of CL as reported

in case of serotonin receptor antagonist repinotan, antiangi-

nal drug perhexiline and beta-lactam antibiotic ceftizoxime

[10–12]. A bivariate absorption describing the subpopula-

tions with and without absorption lag was presented by

Piotrovsky et al. [13]. An analysis was performed to segre-

gate the patients with and without adverse effects with the

help of adverse event data by Kowalski et al. [14]. Mixture

modelingwas also applied tomodel the probability of cure in

cancer survival analysis where the proportion of fatal and

cured cases was estimated [15–17]. Similarly, a mixture

model classifying the mammary tumors in rats as benign or

malignant was published by Spilker et al. [18].

Despite the utility of mixture models to describe data

arising from a population with underlying heterogeneity,

there are limitations in assessing mixture models since the

common simulation based assessment tools do not account

for the multimodality in parameter distributions. Attempts

have been made to develop posterior predictive checks [19]

for mixture models [8]. However, VPCs are not yet adapted

to mixture models and may fail to adequately evaluate the

predictive performance of a mixture model. The aim of the

current project was to design VPCs accounting for multi-

modal parameter distributions and thereby allow (i) the

diagnosis of the mixture component aspects of the model,

and (ii) more powerful assessment of other model aspects by

reducing between-subpopulation variability from the graphs.

Methods

Theoretical overview of parameter estimation
using mixture models

The underlying assumption behind the mixture modeling

approach is to partition the population into subpopulations

according to a probability model [8]. With the implemen-

tation of mixture models using the $MIXTURE subroutine

in NONMEM, pharmacokinetic parameters characteristic

to a subpopulation can be obtained [20].

CL1 ¼ h1 � eg1 . . .clearance for subpopulation 1

CL2 ¼ h2 � eg2 . . .clearance for subpopulation 2

Whereas, the corresponding subpopulation probabilities

are estimated as,

Pmix1 ¼ h3 . . .probability for subpopulation 1

Pmix2 ¼ 1� h3 . . .probability for subpopulation 2

A Pmix1 estimate of 0.6 corresponds to a 60/40% mixture

proportion. The individual likelihood to belong to a sub-

population 1 (ILmix1) can be derived from the individual

objective function value (IOFV). The individual probabil-

ity for belonging to a subpopulation (IPmix) is then com-

puted from the individual likelihood (ILmix) and population

probability estimates [7].

ILmix1 ¼ eðIOFV=2Þ

IPmix1 ¼
ILmix1 � Pmix1

ILmix1 � Pmix1 þ ILmix2 � Pmix2

where ILmix2 is the corresponding likelihood estimate for

the individual to belong to subpopulation 2. The empirical

subpopulation assignment that the subject’s data is

described by the corresponding submodel is given the

name MIXEST within NONMEM.

Mixture model output

Analysis with mixture models provided two individual-

level metrics of subpopulation association (i) the most

likely subpopulation for an individual to belong to, and (ii)

the probability for an individual to belong to each sub-

population [7]. The former metric (MIXEST) is discrete in

nature and can be retrieved from output table files. The

latter metric termed IPmix can be retrieved from the *.phm

file which is a standard output of models with mixture

components. IPmix is considered to be more informative

than the MIXEST variable because of its continuous

nature.

Mixture specific VPCs

Two strategies were adapted for allocation of subjects to

the subpopulations in order to develop mixture model

specific VPCs with separate panels for each allocated

subpopulation. The first strategy utilized the MIXEST

information to stratify the observed and simulated data.

Thus, the original and simulated individuals were separated

according to their most likely subpopulation. A tendency
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for subjects to be allocated to the dominating subpopula-

tion (similar to the shrinkage phenomenon in individual,

empirical Bayes, parameter estimation) is expected with

the MIXEST-based allocation strategy. This shortcoming

was avoided through the second strategy to randomly

partition the observed and simulated data according to the

IPmix value. Partitioning with the former approach was

called MIXEST mixture while the latter was termed ran-

domized mixture. In order to retrieve the IPmix information

for the original and simulated data, an evaluation step is

required. This was accomplished by directing NONMEM

to perform an evaluation step given the final model

parameters by setting MAXEVAL = 0 for each simulated

data set. Naturally, MIXEST can also be computed from

the IPmix value, therefore further processing to derive VPC

statistics for graphical display was facilitated by the use of

single output file (*.phm). A discrepancy in the individual

subpopulation allocation frequency between original and

simulated data would be indicative of model misspecifi-

cation and hence provide an additional evaluation aspect

specific for mixture models. Therefore, percentage of

individuals in each subpopulation for both the original

(ORIGID) and the simulated data (SIMID) and the popu-

lation estimate for the mixture probability (PMIX) are

displayed in the VPC plots.

Implementation of mixture VPCs

A PsN functionality was developed to direct NONMEM

runs and post-processing NONMEM output according to

the two strategies (MIXEST and randomized) in order to

generate the mixture model VPCs. VPCs were imple-

mented using a ggplot2 based package in R [21–23].

Linear PK data

Data was simulated from a one-compartment PK model

(ka = 1 h-1, CL = 20/80 L/h, Vd = 100 L; interindividual

variances = 0.09; proportional residual variance = 0.04). A

total of 1000 virtual subjects were simulated with 70/30%

mixture proportions. Six samples were taken at time points

0.5, 1, 2, 4, 8 and 12 h following a virtual dose of 100 mg.

A bivariate covariate resulting in a fourfold difference in

CL between subgroups was modeled by the inclusion of a

mixture component. In order to compare the mixture model

with a model without any mixture component stochastic

simulation and estimation (SSE) was performed with PsN

version 4.8.0 [24]. The simulated data were analyzed by

fitting a covariate-free non-mixture model, a covariate

model and a mixture model using NONMEM version 7.4.2

[20]. VPCs were constructed for the mixture model using

both the MIXEST and the randomized allocation. Perfor-

mance of the allocation strategies was evaluated by

decreasing the difference in drug CL (20/60 L/h) and

increasing size of the dominant subpopulation (85/15%

mixture proportions).

Parallel linear and nonlinear PK data

Pharmacokinetic data and NONMEM code were extracted

from a publically available illustrative PK model example

[25]. Thirty-six subjects were part of the analysis with a

rich sampling over a period of 672 h (22 observations per

individual). Individuals received 4 doses of 50 mg at 0,

168, 336 and 504 h. The pharmacokinetic profile was

described by a two-compartment model with two distinct

physiological elimination pathways (linear and nonlinear).

The pharmacokinetic parameters included Vmax = 1.2 mg/

h, Km = 10 mg/L, CLlinear = 0.03/0.12 L/h, V1 = 3 L,

V2 = 2 L and Q = 0.075 L/h. The parameters for drug

disposition (CLlinear, Vmax, V1 and V2) were scaled with the

body weight of each individual. A bivariate covariate

describing a fourfolds difference in the linear CL pathway

with a 40/60% mixture proportions was introduced before

simulation. SSE was performed to simulate the data given

the model parameters followed by estimation with a mix-

ture model. Mixture specific VPCs were developed to

assess the predictive performance of the model.

Irinotecan PK data

Irinotecan PK profile was described by a combined model

from previously published studies [26, 27]. Data comprised

of 109 patients with various malignant solid tumors who

received an intravenous infusion of 100–350 mg/m2 for a

period of 0.75–2.25 h. A total number of 1930 plasma

concentration measurements of active metabolite SN-38

were available for the analysis. The model (Fig. 5) com-

prised of a three-compartment model for the parent drug, a

two-compartment model for the active metabolite (SN-38)

and a two-compartment model for the inactive glucuronide

conjugate of SN-38 (SN-38G). The drug was characterized

by linear PK properties and the disposition parameters

were scaled with body surface area. IIV was associated

with all the parameters and the residual unexplained vari-

ability was modeled by an additive model. Based on the

established influence of genetic polymorphism upon SN-38

CL, a mixture model was developed as the patient geno-

type information was unavailable. Traditional and mixture

specific VPCs were developed for the irinotecan mixture

model for comparative evaluation of the recently devel-

oped methodology.
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Results

Allocation of individuals to subpopulations according to

MIXEST and IPmix information is elaborated in Fig. 1.

VPCs for linear PK data

SSE results showed that the mixture model with a Pmix

estimate of 72.2% provided an improved goodness-of-fit

(OFV = - 664) over the covariate free, non-mixture

model (OFV = - 642). The inclusion of covariate infor-

mation provided the best fit (OFV = - 774), as expected.

Figure 2 presents the mixture specific VPCs for the simu-

lated PK data with linear kinetics. Both the MIXEST and

the randomized mixtures were adequate to evaluate the

predictive performance of the model. However, for a

population with a comparatively lower difference in drug

CL (20/60 L/h) and a greater proportion of dominant

subpopulation (Pmix estimate of 85.8%) an allocation bias

towards the dominant subpopulation was observed with the

MIXEST based method (Fig. 3).

VPCs for parallel linear and nonlinear PK data

Mixture VPCs for a mixture model describing parallel

linear and nonlinear CL pathways are presented in Fig. 4.

Pmix was estimated to 61.4%. No allocation bias was

observed in this case as the fourfolds difference in CL for

the linear pathway was sufficient to separate the subpop-

ulations with 40/60% proportions.

VPCs for irinotecan PK data

The irinotecan mixture model (Fig. 5) provided a Pmix

estimate of 70.3% and an approximately 36% lower CL of

SN-38 in patients with UGT1A1 hetero/homozygote (*1/

*28, *28/*28) versus wild-type (*1/*1) genotype. The

traditional VPC (Fig. 6) did not show any model mis-

specification implying that the model was adequate to

describe the pharmacokinetics of the population under

study. However, a model misspecification was captured

with the implementation of recent approaches. It was evi-

dent from mixture VPCs (Fig. 7) that the mixture model

was under-predictive for slow metabolizers while over-

predictive for fast metabolizers.

Discussion

A major objective during population analysis is to identify,

or otherwise manage, the sources of variability in order to

assist decision making. Sources for variability character-

ized in PK/PD models result in predictable differences in

exposure/responses between patient groups and provide a

tool to tailor the treatment individually. Identifying not

only the magnitude, but also the shape of the unexplained

variability can be important. Mixture models are suit-

able for appropriately characterizing multimodality asso-

ciated with parameter distributions. VPC is considered to

be one of the most informative tools, able to simultane-

ously diagnose the fixed and random effects [3, 4].

Therefore, mixture VPCs were designed to overcome the

Fig. 1 Illustration of proposed

methodology
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limitations of the classical VPCs for the evaluation of

mixture models.

Evaluation with the two VPC implementation strategies

for simulated data (Fig. 2) illustrates how mixture VPCs

can be useful to split the data into subpopulations thereby

enhancing the power of evaluation by decreasing the

remaining variability within a subpopulation. Both the

MIXEST and the IPmix based allocation strategies were

adequate to cluster the simulated data for a drug exhibiting

linear PK with sufficiently differentiable CL (20/80 L/h).

Apart from the visual evaluation, information provided in

the display is of significant importance. The population

probability estimate (Pmix) is representative of the agree-

ment of the model with prevalence of subpopulations in

existing literature. Uncertainty or bias associated with Pmix

can be reflective of model misspecification or insufficient

information available in the data. The number of individ-

uals allocated to the respective subgroups should be in

accordance with the Pmix estimate. Allocation bias in the

original and the simulated data can be evaluated from the

values assigned to ORIGID and SIMID. No discrepancy

between MIXEST and IPmix based allocation of individuals

in this illustrative example implies that the data was

informative enough to separate the individuals according to

their likelihood/probability estimates.

As multimodal parameter distributions stem from a

failure to incorporate a multimodally distributed covariate

in the model, it is good practice to consider existing

covariate data before the decision to proceed with mixture

models. Model comparison using SSE results confirm that

the covariate model provides a preference over the mixture

model, while a mixture model in turn is a better charac-

terization of the data compared to the standard, unimodal

distribution.

Under circumstances where the individual data is less

informative, the MIXEST estimate may exhibit shrinkage

towards the dominant subpopulation in contrast to IPmix.

Kaila et al. [28] used Monte Carlo simulations to examine

factors that might impact the ability to correctly classify a

subject in a bimodal group. Using a one-compartment
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Fig. 2 Mixture VPCs for linear PK data: upper panel displays

MIXEST based VPCs while lower panel displays IPmix based VPCs.

One-compartment mixture model with 70/30% mixture proportions

having fourfolds CL difference. (SUBPOP subpopulation number,

Pmix estimated population proportion, ORIGID, SIMID individuals

(%) allocated to respective subpopulations in original and simulated

data respectively)

Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:241–250 245

123



model with subjects assigned to one of two CL groups, the

authors found that misclassification of individuals was

dependent on (i) the magnitude of the difference between

the mean CL estimates for the subgroups, (ii) IIV in CL,

(iii) proportion of subjects in each subpopulation and (iv)

sample size. One should be careful to inspect multi-

modalities in all the parameter estimates and not only the

parameter of physiological interest. A probability parti-

tioning may exist across more than one parameter. There

may be a 30/70% partitioning for CL, but a 10/90% par-

titioning for the volume of distribution. Analysis of such

data with a model containing a single mixture component

may also lead to uncertainty in probability estimates

leading to misclassification or biased allocation. Figure 3

demonstrates a biased allocation where the fraction of the

dominant subpopulation was larger (85/15%) and the dif-

ference in CL was comparatively lower (20/60 L/h). An

allocation bias of 3.2% towards the larger subpopulation

can be observed with the MIXEST mixture. The less

informative individuals with IPmix estimate around 0.5 can

be identified with the help of a diagnostic plot displaying

the distribution of individuals in a mixture (Fig. 8). The

plot presents a less separated (left) and a clearly separated

(right) mixture population. We hereby demonstrate that a

randomized allocation based upon IPmix information takes

into account the uncertainty for an individual to belong to a

subpopulation where the data from an individual is less

informative.

Figure 4 displays VPCs for a population with mixed

elimination kinetics. The phenomenon is often observed for

therapeutic monoclonal antibodies. The linear CL pathway

is possibly mediated by antibody Fc-receptors interaction,

while the nonlinear CL pathway reflects binding to its

pharmacologic target. A higher allocation bias (16%) using

MIXEST method was observed with the evaluation of

irinotecan mixture model. Moreover, a clear model mis-

specification was observable from mixture VPCs (Fig. 7)

which was otherwise not evident from the classical VPC

(Fig. 6). Irinotecan mixture VPCs were supportive of the

argument that by reducing the between subpopulation

variability in the VPC an enhanced power of evaluation can

be achieved. Mixture VPCs were suggestive of further

−5.0

−2.5

0.0

2.5

0150
TIME

D
V

Pmix =85.8%  ORIGID=89.0%  SIMID=[88.2%, 91.4%] ( 5
th , 95th  percentiles)

MIXEST Mixture (SUBPOP=1)

−5.0

−2.5

0.0

2.5

0150
TIME

D
V

Pmix =85.8%  ORIGID=85.6%  SIMID=[85.9%, 89.4%] ( 5
th , 95th  percentiles)

Randomized Mixture (SUBPOP=1)

2

3

4

0150
TIME

D
V

Pmix =14.2%  ORIGID=11.0%  SIMID=[8.6%, 11.8%] ( 5
th , 95th  percentiles)

MIXEST Mixture (SUBPOP=2)

0

1

2

3

4

0150
TIME

D
V

Pmix =14.2%  ORIGID=14.4%  SIMID=[10.6%, 14.1%] ( 5
th , 95th  percentiles)

Randomized Mixture (SUBPOP=2)

Fig. 3 Mixture VPCs for parallel linear and nonlinear PK data: one-compartment mixture model with 85/15% mixture proportions having

threefolds CL difference
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structural model modifications to adequately describe the

subpopulation profiles but the respective analysis was

beyond the scope of current project.

VPCs like other simulation-based diagnostics test a

model’s ability to generate data that mimics the observed

data. Systematic differences between simulated and real

data indicate the deficiency of the model to predict the

observed data. An important aspect regarding such

procedures is that post-processing of both the observed and

simulated data is done in similar way, regardless of whe-

ther the post-processing occurs through model-based or

model-independent methods. Indeed, model-based post-

processing can be advantageous to learn about the model

misspecifications [29, 30]. Capturing misspecification in a

feature of the model does not necessarily mean that the

model is inadequate for its purpose. Such decisions are
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Fig. 4 Mixture VPCs for irinotecan PK data: two-compartment model with mixed elimination kinetics having a mixture proportion of 60/40%

with fourfolds CL difference (mixture component on linear CL model)
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contextual in nature. Although, a considerable number of

cases can be seen where mixture modeling approach was

used to report results [31–40], but the class of mixture

models did not gather much attention to develop diagnos-

tics. Recommended diagnostics for the assessment of non-

linear mixed effects models such as VPC, conditional

weighted residuals (CWRES), normalized prediction dis-

tribution errors (NPDE) are relatively new [1] and less

applicable to mixture models. A recent procedure was

presented by Lavielle et al. [41] but does not address

mixture models either. Implementation of recent method-

ology would assist both model developers and users to

better assess the mixture aspects than what is being prac-

ticed currently.

The proposed methodologies are implemented in PsN

and VPCs can be generated with the addition of the option

-mix to the vpc command. For comparative evaluation

0
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V

Fig. 6 Traditional VPC for irinotecan mixture model
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Fig. 7 Mixture VPCs for irinotecan mixture model; left panel: VPCs for slow metabolizers; right panel: VPCs for fast metabolizers
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purpose, a traditional VPC plot was also included in the

PsN output.

Conclusions

A graphical and statistical comparison of observations and

predictions derived from the multimodal distributions in

mixture models is presented. Partitioning of observed and

predicted data between subpopulations can be done in two

ways depending on the underlying information (MIXEST

or IPmix). Randomized allocation based upon individual

IPmix information provides a preference over MIXEST

based discrete allocation as a lower allocation bias is

associated with the former case. Mixture VPCs can be a

useful diagnostic tool for the development and evaluation

of mixture models in the future.
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cocinética de irinotecán, SN-38 y SN-38G. Farm Hosp

37:111–127

28. Kaila N, Straka RJ, Brundage RC (2006) Mixture models and

subpopulation classification: a pharmacokinetic simulation study

and application to metoprolol CYP2D6 phenotype. J Pharma-

cokinet Pharmacodyn 34:141–156

29. Brendel K, Comets E, Laffont C, Laveille C, Mentré F (2006)
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