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Summary

The statistical complexity of heredity has long been evident, but its molecular origins remain 

elusive. To investigate, we charted 90 comprehensive genotype-to-phenotype maps in a large 

population of wild diploid yeast. In contrast to longstanding assumptions, all types of genetic 

variation contributed similarly to phenotype. Causal synonymous and regulatory variants exhibited 

distinct molecular signatures, as did nonlinearities in heterozygote fitness that likely contribute to 

hybrid vigor. Highly pleiotropic variants altered disordered sequences within signaling hubs, and 

their effects correlated across environments – even when antagonistic – suggesting that large 

fitness gains bring concomitant costs. Natural genetic networks defined by the causal loci differed 

from those determined by precise gene deletions or protein-protein interactions. Finally, we found 

that traits that would appear omnigenic in less powered studies do in fact have finite genetic 

determinants. Integrating these molecular principles will be crucial as genome reading and writing 

become routine in research, industry, and medicine.

eTOC Blurb

The heritability of quantitative traits is intrinsically complex, but identifying its molecular origins 

is crucial for understanding how phenotypes emerge from genomes. Using a powerful genetic 

mapping approach, we discovered the molecular signatures of natural genetic variants that are 

important for phenotype. Many variants impact multiple traits, and their effects often switch 

between environments. Although they can be extremely complex, quantitative traits have finite 

linear contributors that can be comprehensively charted.
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Graphical Abstract

INTRODUCTION

The intrinsic complexity of heritable traits has long been appreciated. Following the 

rediscovery of the work of Mendel more than a century ago, geneticists developed theories 

of heredity encompassing polygenicity, heterosis, and pleiotropy even before the molecular 

nature of the gene was understood (Fisher, 1919). Despite the evident statistical impact of 

these phenomena, we still lack a detailed molecular understanding of their origins. The idea 

that quantitative traits are driven by very large numbers of underlying loci has returned to 

prominence since the advent of practical whole-genome sequencing, but this ‘omnigenic’ 

model remains largely untested (Boyle et al., 2017; Wray et al., 2018).

The budding yeast Saccharomyces cerevisiae has been a workhorse for establishing the 

architecture of heredity (Bloom et al., 2013; Costanzo et al., 2010) because targeted 

deletions and mapping studies using inbred crosses have much greater power to detect small 

effects and second- and third-order interactions than genome-wide association studies in 

humans (Wu et al., 2017). However, studies in yeast and other models have been limited in 

important respects. First, the effect of natural genetic variation (e.g. missense variants) is 

seldom as dramatic as the deletion of an entire open reading frame (Roy et al., 2018). 

Second, the haplotype blocks identified as causal often encompass many candidate variants. 

Lastly, most large-scale genetic mapping and deletion screening studies in yeast have been 
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conducted in haploid strains, precluding the exploration of hybrid vigor and other diploid-

specific phenomena.

To investigate the complexity of natural genotype-to-phenotype maps, we constructed a 

panel of 18,126 fully genotyped F6 diploid S. cerevisiae segregants derived from wild yeast 

isolates. The scale of our experiments provided statistical power to discover quantitative trait 

loci (QTLs) of small effect and the high meiotic crossover density in the segregants allowed 

us to resolve a substantial fraction of these QTLs to single causal nucleotides (quantitative 

trait nucleotides or QTNs). In contrast to deletion studies, our approach is highly sensitive to 

the wide range of effects on phenotype caused by the natural genetic variants. In all, we 

discovered 18,007 QTLs and 3,394 QTNs for 90 quantitative traits, implicating 1,644 of the 

6,604 protein-coding genes in S. cerevisiae. This high-resolution atlas of heredity allowed us 

to define molecular mechanisms of polygenicity, heterosis, pleiotropy, and gene × 

environment interactions and to estimate the distribution of fitness effects of extant genetic 

variants.

RESULTS

A powerful, high-resolution genetic mapping panel

Typical genetic mapping panels in model organisms contain many more segregating markers 

than genotyped individuals (Bloom et al., 2013), with few exceptions (Ehrenreich et al., 

2010); the same is true of genome-wide association studies (GWAS) of humans (Visscher et 

al., 2017). Moreover, marker variants are usually in strong linkage disequilibrium with other 

nearby variants, and when microarrays are used for genotyping these haplotype blocks may 

also contain additional, unidentified polymorphisms (Schaid et al., 2018). Furthermore, 

causal variants may be rare, reducing their statistical effect on the mapping population as a 

whole (Gibson, 2012).

To address these shortcomings, we generated a panel of 18,126 fully genotyped F6 diploid 

progeny of a cross between a pathogenic S. cerevisiae isolate, YJM975, from an 

immunocompromised patient in Italy (McCullough et al., 1998), and a Zinfandel grape 

isolate, RM11–1a, from a California vineyard (Török et al., 1996) [Fig. 1A]. In contrast to 

most previous mapping panels in model organisms, our population contains more genotyped 

individuals than segregating genetic variants [Fig. 1B]. The use of inbred S. cerevisiae 
strains also results in highly uniform minor allele frequencies, allowing equivalent 

sensitivity to the effects of all segregating polymorphisms (Li et al., 2017) [Fig. 1C]. 

Importantly, the segregating variants are in very low linkage disequilibrium, allowing in 
silico allele swaps to identify causal variants with single-nucleotide resolution (She and 

Jarosz, 2018). We first mapped the linear contributions of homozygous loci, and then 

considered nonlinearities attributable to partial or overdominance by allowing heterozygous 

loci to adopt coefficients that deviated from the homozygous midpoints [Fig. 1D].

To characterize the performance of our mapping panel and analysis procedure, we 

performed rigorous simulations using 50 highly complex ground-truth genetic architectures. 

Each hypothetical trait comprised N = 275 underlying causal loci of random effect and sign, 

with realistic levels of Gaussian noise based on the broad-sense heritability of the traits we 
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mapped. Comparison of in silico mapping of the simulated phenotypes to the known 

architectures revealed that our regression approach recalled 94 ± 2.8% of true underlying 

QTL and identified true underlying QTN with 92 ± 7.1% precision (N = 50 hypothetical 

traits; mean ± S.D.) [Fig. S1A]. Moreover, our mapping procedure accurately captured the 

effect size of the true causal loci for a range of underlying effect sizes (Pearson’s r = 0.93 

± 0.03 for N = 50 traits; mean ± S.D.) [Fig. S1A, e.g. Fig. 1E]. These comprehensive tests 

confirmed that our panel was powered to dissect highly complex traits into their constituent 

loci, accurately identify effect sizes, and identify the genes or causal variants associated with 

each QTL. We were able to not only identify nearly all linear contributors to phenotype, but 

also to resolve them to single genes, and, in many cases, single nucleotides.

Diverse contributors to complex traits

We next phenotyped the segregant panel in fifteen environmental conditions (including 

various carbon sources and toxins, an FDA-approved drug, and other stresses) across six 

time points [e.g. Fig. 1F]. We considered each time point in each environment as a separate 

quantitative trait, and the ~ 1,600,000 growth measurements allowed us to identify 18,007 

QTLs at an empirical false discovery rate of 1.5 ± 2.1% (by permutation test; mean ± S.D.), 

with 200 ± 52.2 QTLs identified per trait (mean ± S.D.) [Fig. S1B]. Our model explained 

72.8 ± 18.5% of the broad sense heritability across the 90 traits examined (mean ± S.D.) 

[Fig. S1C] and we readily discovered loci explaining as little as 0.01% of phenotypic 

variance [Fig. S1DE]. The remaining ‘missing heritability’ is likely due to second- or 

higher-order genetic interactions (Bloom et al., 2015a; Poelwijk et al., 2017). Most 

phenotypic variance was explained by linear homozygous contributions (N = 3165), but 

numerous heterozygous contributions (of N = 229 total) had effect sizes comparable to 

homozygous terms [Fig. 1H].

Of the QTLs identified, we unambiguously mapped 3,394 with single-nucleotide resolution, 

corresponding to 1,608 unique causal variants. An additional 1,166 QTLs could be resolved 

to a single quantitative trait gene (QTG) [Fig. 1G]. Strikingly, fully 24.9% of the 6,604 

protein-coding genes (and 13.3% of the individual segregating polymorphisms) were 

implicated in determining growth across this comparatively small number of environments. 

Thus, it is possible that most segregating variants have the potential to significantly 

contribute to phenotype in the highly complex, varied environments faced by S. cerevisiae in 

nature (Jakobson et al., 2019).

Molecular mechanisms of coding, non-coding, and extragenic causal variants

The large number of QTNs we identified allowed us to examine diverse molecular 

contributions to heredity [Fig. 2AB]. Missense variants exhibited the greatest variance 

explained, followed closely by synonymous and extragenic variants [Fig. 2C]. These same 

trends were reflected in the regression coefficients, which better represent the impact of the 

alleles in each segregant [Fig. 2D; Fig. S1F]. Many different amino acid substitutions were 

represented in the pool of causal missense variants [Fig. 2E], and their effect sizes correlated 

with molecular expectation: substitutions with lower BLOSUM62 scores (i.e. more 

perturbative amino acid substitutions) were of larger effect (Pearson’s r = −0.201, p < 0.04) 

[Fig. 2F]. Despite this, the effect of each variant remained context-dependent, and 
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BLOSUM62 scores were only modestly predictive of the effect sizes, underscoring the 

importance of explicitly assessing the effects of coding variants (Diss and Lehner, 2018; 

Fowler and Fields, 2014). A recently developed method based on deep learning of saturating 

mutagenesis data (Gray et al., 2018) was less predictive than BLOSUM62, perhaps because 

natural missense variants are conservative relative to the broad spectrum of variants explored 

in saturation mutagenesis studies [Fig. 2G].

Although missense variants had the largest effect on phenotype (p < 0.001 by two-sample 

Kolmogorov-Smirnov test), the effect-size distributions of all variant classes overlapped 

[Fig. 2C]. Synonymous natural variants, often regarded as unlikely to significantly affect 

phenotype (Kumar et al., 2009), had median effect sizes that were comparable to those of 

missense variants and larger than those of extragenic variants (p < 10−6 by two-sample 

Kolmogorov-Smirnov test). To probe the molecular origin of this relationship, we assessed 

the relative positions of causal synonymous variants within a genome-wide meta-open 

reading frame (ORF) relative to all synonymous variants segregating in the cross [Fig. 2H]. 

Causal variants were strongly enriched at the 5’ end of the meta-ORF relative to all 

synonymous variants (p < 0.0003 by two-sample Kolmogorov-Smirnov test). Moreover, 

synonymous causal variants at the 5’ end of the meta-ORF exhibited larger changes in codon 

adaptation index compared to all segregating synonymous variants (CAI; p < 0.01 by two-

sample Kolmogorov-Smirnov test) [Fig. 2IJ] (Drummond et al., 2006). There was no 

correlation between the sign of the change in CAI and the sign of the effect on phenotype, 

likely because both increased and decreased translation could improve growth, depending on 

the gene product. Our data are consistent with a model in which effects due to synonymous 

codons are most pronounced in the early stages of translation and folding, possibly as part of 

an adaptive ‘translation ramp’ that favors slow translation at the beginning of genes (Tuller 

et al., 2010).

Next, we examined causal variants lying outside annotated ORFs. The positions of these 

causal variants were not distinct from all segregating extragenic variants relative to the 

positions of annotated transcriptional start (TSS) and end (TES) sites [Fig. S2AB]. However, 

when we examined predicted transcription-factor occupancy (Pachkov et al., 2007), we 

found that extragenic causal variants were enriched at sites of both high and low 

transcription-factor binding [Fig. S2C]. That is, these variants may act either by changing 

transcription-factor affinity or by influencing genome structure and accessibility independent 

of transcription factor binding sites. The former could directly precipitate changes in 

transcriptional regulation, consistent with the observation of abundant cis-eQTLs in S. 
cerevisiae (Kita et al., 2017). The latter may be attributable to perturbations in poly(dA:dT) 

tracts that are involved in nucleosome organization (Segal and Widom, 2009). Indeed, our 

analysis of the local sequence context (± 5 nt) of these causal variants revealed striking 

clusters of polyA and polyT motifs [Fig. 3A]. More than 77% of extragenic causal variants 

were in contexts with greater than 50% A/T content, and 23.6% were in contexts with 

greater than 75% A/T content.

Reasoning that biophysical perturbations to the genome might impact chromatin structure 

and thus transcriptional regulation, we next examined the histone marks near extragenic 

causal variants (Weiner et al., 2015). We found enrichments for many histone marks 
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associated with open, active chromatin in the vicinity of causal variants, including H3K14ac, 

H3K18ac, H3K4me3, and H3K9ac [Fig. 3B], and the prevalence of many of these marks 

near causal variants was significantly correlated with effect size [Fig. S2D]. Together, these 

data indicated that extragenic variants in open chromatin adjacent to actively transcribed 

genes were more likely to impact phenotype.

To test this hypothesis, we measured genome-wide mRNA levels by RNA-seq in the diploid 

parental strains (RM11a/α and YJM975a/α) during exponential-phase growth in several 

conditions (2% glucose, 2% glycerol, and 2% ethanol; Supplementary File 2). The mean 

expression (averaged across both parental genetic backgrounds) was significantly higher for 

genes adjacent to identified extragenic QTNs in that environment as compared to all genes 

(p < 0.006; p < 10−6; p < 0.005 respectively by two-sample Kolmogorov-Smirnov test) [Fig. 

3C]. Extragenic QTNs were also adjacent to genes with higher variability in expression, 

although this effect was driven primarily by the correlation between mean expression and 

expression variability [Fig. S2E]. In contrast, no enrichment for increased expression was 

observed for genes containing missense QTNs [Fig. S2F], indicating that extragenic QTNs 

were indeed playing a preferential role in controlling the expression of actively transcribed 

genes. The fold change in expression of a gene between the homozygotes was not predictive 

of QTG status, perhaps because the expression levels in the parents represent a complex 

integration of both cis and trans regulation (Wittkopp et al., 2004).

Many causal variants arose in the 5’ and 3’ UTRs of ORFs. Causal variants in the 5’ UTRs 

exhibited no significant spatial enrichment [Fig. 3D], whereas those in 3’ UTRs were 

markedly enriched at the 5’ (ORF-proximal) end of the 3’ UTR and depleted near the end of 

the transcript relative to all segregating 3’ UTR variants, suggesting a role for these variants 

in translation termination (p < 0.007 by two-sample Kolmogorov-Smirnov test) [Fig. 3E]. 

The nucleotides immediately following the STOP codon are known to impact the efficiency 

of translation termination (Namy et al., 2001), and other 3’ UTR variants may impact the 

stability of the mRNA transcript as a whole (Shalgi et al., 2005).

Finally, we used a sign test (Fraser et al., 2010) to search for a signature of lineage-specific 

selection across the many linear contributors to phenotype that we observed. All of the 

causal variants we identified likely have a selection coefficient greater than ~1/Ne, the 

threshold for the action of selection (which is very small, ~10−5–10−6, for organisms such as 

fungi). Therefore, one would expect to observe a coherent signature of adaptation as 

evidenced by spatial clusters of variants from one parent with the same effect on phenotype, 

as was recently observed in S. cerevisiae for other causal variants (Sharon et al., 2018). 

Indeed, we observed that nearby pairs of variants from the same parent were significantly 

more likely than would be expected by chance to have the same effect on phenotype [Fig. 

S2G], even over long genomic distances. This observation suggests that selection has acted 

coherently on variants of widely varying effect size (Jakobson et al., 2019), perhaps as a 

consequence of the recent adaptation of RM11 and YJM975 to their fermentation and 

human host-associated niches, respectively.
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Dominance loci disrupt regulation

Heterosis, also called hybrid vigor, is the tendency for hybrids to outperform their parents. 

The phenomenon is widespread in organisms from yeast to agricultural crops, yet our 

understanding of its molecular origins is limited to a few individual cases (Chen, 2013). In 

addition to diverse linear contributors to phenotype, we identified extensive nonlinearities in 

the behavior of heterozygotes [Fig. 3F]. We refer to these loci collectively as dominance 

QTNs, encompassing partial, under-, and over-dominance. The dominance QTNs we 

discovered (N = 229) were strongly enriched for extragenic (presumably regulatory) variants 

relative to all causal variants we identified (p < 10−16; Fisher’s exact test) [Fig. 3G]. 

Moreover, dominance QTNs were enriched in regions of high transcription-factor occupancy 

relative to all segregating extragenic variants (p < 10−8 by two-sample Kolmogorov-Smirnov 

test) [Fig. 3H]. Lastly, the coefficients for dominance loci were predominantly positive, i.e., 
heterozygotes typically exhibited greater growth than would be expected from a linear 

model (178 positive coefficients of 290 total; 61.4%; p < 10−3 by Fisher’s exact test) [Fig. 

3I]. Theory predicts that this skew in heterozygote fitness should naturally result from 

adaptation in diploid populations (Sellis et al., 2011). Together, these observations suggest a 

molecular model of dominance in which changes in regulatory interactions disrupt processes 

that would ordinarily limit growth under stress (Bar-Zvi et al., 2017), driving hybrid vigor.

Heterozygotes of the Rds1 transcription factor (RDS1Gln695/Lys695), for instance, exhibited 

improved growth in 2% galactose relative to the expectation based on a linear model. The 

polymorphic residue in this protein, Gln695, is located near the C-terminus, distal to the N-

terminal DNA-binding region. A neighboring homozygous variant, Rds1Ser352Asn, affected 

growth in 2% ethanol, 2% glycerol, 2% raffinose, 2% maltose, and at 37 °C, suggesting that 

the Rds1 regulatory hub may play a role in adaptation to many environments despite the low 

copy number of the Rds1 protein when cells are grown in rich medium (Kulak et al., 2014). 

Indeed, genes observed to be upregulated by Rds1 form a highly connected network 

(protein-protein interaction p < 10−16; STRING database) that is enriched for genes involved 

in ‘starch and sucrose metabolism’ (p < 0.001, STRING database). The reported targets 

include YGP1, SPI1, and GLK1, all of which are differentially regulated in response to 

stress- and metabolism-related reprogramming (Stanley et al., 2010).

Two other non-coding variants exhibiting dominance also seemed likely to affect gene 

regulation: a TTTTTT deletion at position 134,112 of chromosome X, lying between INO1 
and VPS35, and a T insertion at position 409,806 of chromosome VII, lying between 

TIF463 (eIF4G) and RPT6. Both variants are in poly(dA:dT) tracts, which are associated 

with transcriptional regulation and, as noted above, are enriched for extragenic causal 

variants (Yagil, 2006). These observations are consistent with a model of heterosis in which 

a single copy of a polymorphism, whether in a diffusible factor or a regulatory region, can be 

sufficient to meaningfully alter a gene control program.

Natural causal variants form coherent biological networks distinct from those defined by 
whole-gene deletions

In yeast, most previous efforts to identify causal genes and the interactions between them 

have focused on precise ORF deletions (Costanzo et al., 2010, 2016; Giaever et al., 2002). 
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We tested whether the topology of the variant-to-phenotype mapping we discovered was 

similar to those determined previously. We first compared the effect size of each identified 

QTG to the number of total genetic and physical interactors with that gene in the STRING 

database (derived from known and predicted protein-protein and genetic interactions) [Fig. 

4A] (Szklarczyk et al., 2017). We also compared the effect size of each QTG to the number 

of significant genetic interactors of the gene in the Cell Map database (derived from genetic 

interaction scores in precise double-deletion backgrounds) [Fig. 4B] (Costanzo et al., 2016). 

The connectivity of the gene was not predictive of effect size in either case. Finally, because 

these databases are based primarily on data collected in rich medium, and to control for 

growth assay format, we phenotyped the S. cerevisiae deletion and DAmP (hypomorphic 

allele) collections (Breslow et al., 2008; Giaever et al., 2002) in 2% ethanol under the same 

growth conditions used in our mapping experiment. Even in this case, the effect size of 

QTGs in 2% ethanol was not significantly correlated with the strength of its corresponding 

deletion or DAmP allele phenotype [Fig. 4C]. Although we and others have previously 

found that some genes are identified as important in both deletion and mapping studies (She 

and Jarosz, 2018), our observations suggest that the genotype-to-phenotype map for natural 

genetic variation is fundamentally topologically distinct from that derived from gene 

deletions.

One method to define the ‘core’ genes important for a trait in yeast is to measure the 

phenotype of all precise ORF deletions. We defined core genes for growth on 2% ethanol 

using a sliding window based on the effect size we measured for the precise gene deletions 

[Supplementary File 3]. At no effect size threshold were core genes defined in this manner 

enriched for QTGs relative to randomly selected sets of genes [Fig. 4D], although the 

networks of QTGs we identified were in some cases enriched for protein-protein interactions 

[Fig. 4EF]. Notably, however, causal variants that impacted large numbers of quantitative 

traits (highlighted and discussed in more detail below) were not central to these networks, 

again suggesting that the network of phenotypic connectivity between genetic variants [Fig. 

4G] is distinct from the molecular networks defined by genetic or physical interactions. 

Together, these results suggest that gene hits from deletion screens should not be the only 

loci at which to search for consequential natural genetic variation.

Abundant synergy and antagonism in pleiotropy and gene × environment interactions

Pleiotropy and gene × environment interactions impact the topology of an organism’s fitness 

landscape by embedding synergies and tradeoffs in the effects of genetic changes on fitness 

(Wagner and Zhang, 2011). Many detrimental alleles in humans are thought to have been 

maintained due to antagonistic pleiotropy (Corbett et al., 2018) and theory predicts that the 

fate of newly arising variants is strongly influenced by their varying effects across 

environments (Pavličev and Cheverud, 2015). Yet these effects have remained difficult to 

assess because mapping intervals typically contain multiple candidate causal variants 

(Solovieff et al., 2013). Our discovery of large numbers of unambiguous causal variants for 

numerous quantitative traits allowed us to systematically assess the prevalence of synergistic 

and antagonistic interactions in the genotype-to-phenotype map of our segregant panel [Fig. 

5A].
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The growth of a segregant was generally correlated across traits, and this growth correlation 

(in terms of Pearson’s r) was itself correlated with the extent of QTN overlap (a proxy for 

pleiotropy and gene × environment interactions) [Fig. S3AB]. This suggested that such 

interactions were common and predominantly synergistic, resulting in macroscopic 

phenotypic correlation. This was indeed the case at the molecular level: 39.5% of QTNs 

influenced more than one of the quantitative traits we examined [Fig. 5B]. Moreover, 34% of 

QTNs influenced growth in more than one distinct environment [Fig. 5C].

The vast majority (97.7%) of pleiotropic interactions within a given environmental condition 

were synergistic across time points, suggesting that pronounced tradeoffs between growth in 

the lag and exponential growth phases, for instance, were uncommon [Fig. 5DJ]. Since the 

genetic architectures of traits measured at successive time points are not independent, we 

separately assessed gene × environment interactions occurring between traits measured 

independently. In this case, by contrast, a substantial fraction (12.8%) of gene × environment 

interactions were antagonistic [Fig. 5FJ]. These antagonistic interactions imply significant 

intrinsic phenotypic tradeoffs, even amongst the relatively small array of conditions we 

tested. The instances we identified involved diverse biological processes, including 

glycosylation and ergosterol biosynthesis, and diverse types of variation, including missense, 

regulatory, and synonymous variants [Fig. S4ABC].

It is challenging to assign ‘true’ pleiotropy on the basis of mapping studies that lack 

nucleotide resolution because it remains formally possible that distinct causal variants within 

the mapping window result in spurious apparent pleiotropy (Solovieff et al., 2013). 

Moreover, other variants within a gene could have opposing effects on a different phenotype, 

convoluting interpretation of the gene product’s biological role. Our results suggest that 

these concerns are well founded: many QTLs mapping to the same gene had distinct (often 

opposing) effects [Fig. 5K].

Although variants often exhibited opposing effects across environments, the effect sizes of 

common QTNs across traits were significantly correlated, even for antagonistic gene × 

environment interactions [Fig. 5EGHI]. This implicates certain variants as key nodes in the 

mapping of genotype to phenotype, regardless of whether the allele is beneficial or 

detrimental in a given condition, and suggests that large fitness gains may be intrinsically 

tied to substantial fitness losses in other environments.

Highly pleiotropic variants alter disordered regions of signaling hubs

The three most synergistically pleiotropic variants we identified were associated with key 

hubs in cellular information flow and exhibited coherent effects on phenotype. The most 

pleiotropic causal variant was a missense mutation (Glu345Gly) in the inner nuclear 

membrane protein Src1 [Fig. S4D]; the effect on growth was in the same direction across all 

38 traits for which the locus affected phenotype. Src1 binds chromosomes at the telomere 

and sub-telomere and mediates transcription of sub-telomeric genes, including many 

associated with alternative carbon source and phosphate metabolism (Grund et al., 2008). 

Residue 345 of the protein is nuclear-facing in both splice variants of Src1, implicating 

SRC1Glu345Gly in telomere and sub-telomere binding and thus the transcriptional regulation 

of a wide array of genes.
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Two other highly pleiotropic variants employed a common mechanism: contractions in 

disordered protein regions. The first, CRZ1ΔLeu123, removed Leu123 from a poly-Q tract in 

the disordered N-terminal transcriptional activation domain of the transcription factor Crz1, 

an archetypal calcineurin target (from the same family as human NFAT) that mediates the 

transcriptional response to a broad range of insults (Matheos et al., 1997; Stathopoulos and 

Cyert, 1997). The CRZ1ΔLeu123 deletion exhibited a coherent phenotypic effect, with the 

same effect direction in all 32 traits [Fig. 6A]. We confirmed the widespread phenotypic 

importance of the CRZ1 gene product by measuring the growth of a strain with a targeted 

deletion of the gene in the same battery of growth conditions used for mapping: the absence 

of CRZ1 exerted a significant effect in 11 of the 15 environments tested (p < 0.05; Student’s 

two-tailed T test) [Fig. S4]. The CRZ1ΔLeu123 QTN was associated with substantial 

phenotypic changes in many traits [e.g. Fig. 6C] but was in very close proximity to another 

segregating variant (CRZ1381G>A) [Fig. 6D]. To confirm that the statistically identified QTN 

was responsible for changes in calcineurin-dependent signaling, we measured the activity of 

a 4xCDRE::LACZ reporter (Stathopoulos and Cyert, 1997) in representative haploid F6 

progeny of each ditype of these two loci. Signaling was impaired in segregants bearing the 

CRZ1ΔLeu123 QTN and not the neighboring synonymous variant [Fig. 7E].

The other highly pleiotropic variant, SIS2Δ541−544, removed four Asp residues from a long, 

unstructured acidic tract at the protein’s C-terminus. Sis2 is a bifunctional protein that plays 

an enzymatic role in Coenzyme A biosynthesis, conferred by its N-terminal and central 

domains, and engages in a regulatory interaction with protein phosphatase 1 (PP1), 

conferred by the disordered C-terminal domain in which the causal amino acid contraction 

was located (Nadal et al., 1998). This case is emblematic of the power of our mapping 

approach: resolving the causal variant to the C-terminal domain clarified the function of the 

variant and the mechanism of pleiotropy. Once again, the phenotypic effects of the variant 

were uniform, exhibiting a coherent effect in all 30 traits [Fig. 6B]. PP1 inhibition modulates 

the phosphorylation of Crz1, in turn controlling its nuclear localization and transcriptional 

activity (Ruiz et al., 2003). Indeed, deletion of SIS2 was even more pleiotropic than the loss 

of CRZ1: a strain lacking SIS2 exhibited a phenotype in all 15 mapped environments (p < 
0.05; Student’s two-tailed T test) [Fig. S4E]. Our data suggest that the SIS2Δ541−544 variant 

impacts stress-responsive transcription by altering PP1 inhibition and in turn altered Crz1 

activity. Full transcriptional activation of a 4xCDRE::LACZ reporter of Crz1 activity 

(Stathopoulos and Cyert, 1997) required SIS2, further supporting this model [Fig. S4F].

The mechanistic convergence between these highly pleiotropic variants was two-fold, and 

suggestive of general principles for pleiotropic molecular variation. First, both 

polymorphisms occurred in disordered regions [Fig. 6FG]; these regions are increasingly 

recognized as key facilitators of regulatory interactions in cells (Uversky, 2014). Strong 

positive selection has recently been identified in disordered regions in H. sapiens 
(Afanasyeva et al., 2018), suggesting that this kind of variant may be of broad importance. 

Second, both variants were in proteins related to a key regulatory process: signaling through 

the calcineurin and PP1 hubs, transduced by the transcription factor Crz1 (Ruiz et al., 2003; 

Thewes, 2014). Interestingly, both the polyglutamine tract of Crz1 and the acidic tract of 

Sis2, in which the two causal variants occurred, are highly polymorphic across S. cerevisiae 
strains and among related budding yeast species [Fig. 6HI] (Bergström et al., 2014). This, 
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combined with the observation of extensive synergistic pleiotropy, suggests that these loci 

may be important sites for the generation of phenotypic heterogeneity.

Distribution of fitness effects of extant genetic variation

The distributions of fitness effects (DFEs) of new and existing mutations are key in 

understanding the process, history, and potential of natural selection and evolution (Loewe 

and Hill, 2010; Orr, 2010). Diverse experimental approaches have measured the DFE of new 

mutations in bacteria and eukarya (Frenkel et al., 2014; Koufopanou et al., 2015; Robert et 

al., 2018). These experiments can be expected to sample, on average, mutations of larger 

effect than exist in the wild, since the distributions at hand have not been subject to 

substantial purifying selection (other than to avoid lethality). Conversely, computational 

sequence-based approaches are subject to the limitation that we cannot accurately predict the 

effects of variants from sequence alone. Our mapping approach bridges this divide by 

combining direct measurement of the fitness effects of causal variants with uniform 

sampling of a real, naturally occurring distribution of fitness effects.

The DFE for a monogenic trait would have very few causal variants; at the other extreme of 

complexity, a trait that was truly infinitesimal (in Fisher’s sense of the limit of all 

segregating Mendelian factors (Barton et al., 2017)) would present as many causal variants 

as there are extant variants, likely with a modal effect approaching zero [Fig. 7A]. 

Alternatively, a polygenic trait might instead exhibit a bimodal distribution with two distinct 

classes of variants: ‘causal’ variants with a measurable effect on phenotype and ‘nearly 

neutral’ variants whose effects are essentially negligible [Fig. 7B]. The shape of the DFE 

and the number of distinct classes of variants it contains have been the subject of much 

theoretical and experimental attention (Boucher et al., 2016; Orr, 2003; Rice et al., 2015).

We estimated the sensitivity of our mapping panel to causal loci of varying effect by 

performing in silico mapping of simulated hypothetical traits with underlying causal variants 

of known effect size [Fig. 7C]. We subsequently estimated the true underlying distribution of 

fitness effects across the real quantitative traits we examined [Fig. 7D]. The apparent 

distribution we detected suggested that the true underlying distribution of fitness effects was 

bimodal: a discrete set of variants impacted each quantitative trait in a manner categorically 

distinct from the other, nearly neutral polymorphisms.

The shape of this inferred underlying distribution was similar for missense, synonymous, 

and extragenic variants [Fig. 7E]. It was also robust to the underlying distribution of effect 

sizes used to estimate sensitivity: we could accurately recover the distribution for normal, 

uniform, and monotonically decreasing effect-size distributions [Fig. S5A–I]. We observed 

no evidence of the Beavis effect, wherein genetic mapping can overestimate the effect of 

discovered QTLs due to closely linked causal variants (Beavis et al., 1991; King and Long, 

2017); in fact, the coefficients were mildly deflated rather than overestimated. Our estimates 

of sensitivity were also robust to very large numbers of causal variants underlying the 

hypothetical traits used for calibration, ranging from 250 to 1000 causal loci (of 12,054 

segregating polymorphisms) per trait [Fig. S5J–M].
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The omnigenic model as recently articulated by Pritchard and colleagues is distinct from the 

limit of Fisher’s model (Boyle et al., 2017; Liu et al., 2018). It does not posit that all variants 

are causal per se, but rather that sufficiently many ‘peripheral’ genes contribute to phenotype 

that the majority of (or perhaps all) polymorphisms are in linkage disequilibrium with a 

causal variant. This results in apparent universal causality from the perspective of GWAS, as 

nearly all genomic regions make a meaningful predictive contribution. Our observations are 

broadly consistent with this model: 30.0% of segregating polymorphisms in our mapping 

panel are within 1 kb of a QTL marker for growth in 2% galactose, for example, [Fig. 7F] 

and 91.6% of segregating variants are within 1 kb of a QTL marker for at least one 

quantitative trait. The genome-wide distribution of QTLs we observe thus reconciles the 

statistical and theoretical architecture of the omnigenic model (Boyle et al., 2017; Liu et al., 

2018) with our observation that not all segregating variants impact every quantitative trait.

DISCUSSION

Resolving large numbers of QTLs to individual causal variants allowed us to quantitatively 

address long-standing questions regarding the architecture of complex traits. Although 

coding variants had on average the greatest effect on phenotype, non-coding variants, 

including synonymous codons, had remarkably similar effect sizes. Indeed, the importance 

of such genetic variation has been noted in organisms from Salmonella to humans 

(Kristofich et al., 2018; Supek et al., 2014). These observations suggest that the conventional 

wisdom regarding the prioritization of putative causal variants demands revision, as does the 

bioinformatic practice of assuming the neutrality, or near-neutrality, of ‘silent’ variants 

relative to missense mutations. The importance of codon choice is evident from empirical 

studies in both bacteria and eukarya (Frumkin et al., 2018; Goodman et al., 2013; Tuller et 

al., 2010). Although the effects we observe can in principle be explained by many 

mechanisms, the pronounced biases in position and codon optimality suggest that the effects 

of changes in codon choice are primarily manifested early in translation. Nature, it seems, 

uses synonymous codons as a means to tune translation rate, and presumably protein level, 

in a manner orthogonal to amino acid identity.

Variants outside of ORFs exhibited two likely modes of action that are not mutually 

exclusive, impacting the binding of transcription factors directly and changing the local 

structural genomic context by altering the biophysical properties of the surrounding DNA. 

This idea was reinforced by our observation that causal variants were associated with open 

chromatin, in concordance with a privileged role for polymorphisms in transcriptionally 

active regions of the genome in determining phenotype (Roytman et al., 2018; Schaub et al., 

2012; Trynka et al., 2013). Our results provide rigorous evidence in favor of the pragmatic 

assumptions underlying the integration of tissue-specific epigenomic and expression data 

with lower-resolution genetic mapping results (GTEx Consortium, 2017).

Antagonistic pleiotropy and antagonistic gene × environment interactions, phenomena of 

fundamental importance in understanding the patterns of emergence and fixation of novel 

molecular variation (Qian et al., 2012) as well as in designing safe and effective 

interventions for genetic medicine (Carter and Nguyen, 2011; Rodríguez et al., 2017), were 

strikingly common. Indeed, our observations likely represent a lower bound on the true 
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extent of pleiotropy and gene × environment interactions, as unresolved QTLs for one trait 

may be attributable to mapped QTNs for another. Two of the three most pleiotropic variants 

were coding variants in disordered regions of important cell-signaling proteins, Crz1 and 

Sis2, suggesting that the alteration of the interactions (Babu et al., 2011) mediated by 

disordered regions, long regarded as inert linkers, may be a general mechanism for the 

generation of phenotypic heterogeneity by minimal genetic change (Jakobson and Jarosz, 

2018). Our findings offer fertile ground for the future study of specific examples of 

pleiotropy in a variety of genes, pathways, and environments and describe convolutions to 

the genotype-to-phenotype relationship that likely abound in the wild (Manuck and 

McCaffery, 2014; Via and Lande, 1987). It will also be fruitful in future to examine other 

phenotypes; the predominance of synergistic interactions observed here may not extend to 

traits beyond growth and proliferation.

Our results help to reconcile a vigorous debate (Cox, 2017; Liu, 2017; McMahon, 2017) 

regarding the omnigenic model: while seemingly equivalent to Fisher’s ‘infinitesimal’ model 

(which assumes infinitely many segregating causal alleles), an apparently omnigenic 

relationship between genotype and phenotype can often arise under realistic linkage 

disequilibrium without all segregating variants impacting a trait. We find that most 

quantitative traits likely comprise sufficiently many underlying causal loci as to appear 

omnigenic from the perspective of a typically (under)powered GWAS; nonetheless, 

enumerating these many contributors may be feasible.

Substantial opportunities remain for improvement in the construction of inbred mapping 

populations. Most notably, although our mapping panel has advantages in the detection and 

resolution of causal variants, it is not currently feasible to detect all epistatic interactions. 

Indeed, once cis- and trans-effects are considered, there exist in principle nearly one billion 

possible second-order terms, a problem of underdetermination exacerbated by our use of 

diploids. These higher-order interactions are known to be significant in many molecular 

contexts (Heck et al., 2006; Olson et al., 2014; Poelwijk et al., 2017) and in complex traits 

(Bloom et al., 2015b; Forsberg et al., 2017), and are therefore important for a full 

understanding of heredity. The residual unexplained broad-sense heritability in our 

experiments was likely due primarily to these second- and higher-order effects. Much larger 

mapping panels will be required to address these questions while maintaining sufficiently 

low linkage disequilibrium to enable in silico fine-mapping.

Despite astounding advances in our ability to edit genes and even synthesize genomes, a 

conundrum persists: if one were to design an entire genome from scratch, what sequence 

should be chosen? Gene-level information is insufficient to answer this question if the goal 

is to optimize one or more quantitative traits. Despite the evident complexity of the problem, 

our results indicate that it will be possible to elucidate not only linear and dominant 

contributions to the genotype-to-phenotype relationship at the molecular level, as we have 

done, but also to thoroughly define higher-order contributions at nucleotide resolution. The 

use of appropriate experimental and statistical approaches in model organisms such as 

budding yeast will be critical in advancing our fundamental understanding of the highly 

complex relationships between genotypes and expressed traits. Indeed, fully defining such 

relationships in sufficient detail may well prove intractable in humans and other metazoans 
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without establishing their underlying architecture in models amenable to maximum-

resolution quantitative genetics. Understanding the nature of quantitative traits will, in turn, 

become crucial as genome reading and writing become routine elements of not only 

scientific research, but also medicine and industry.

STAR Methods

Contact for Reagent and Resource Sharing

Address requests to Daniel F. Jarosz (jarosz@stanford.edu).

Experimental Model and Subject Details

The founding parental strains of the inbred cross are RM11a (MATa ho::kanMX ura3Δ0 
leu2Δ0) and YJM975α (MATα ho::hygMX uraΔ3::KanMX his3Δ::NatMX), both part of the 

Saccharomyces Genome Resequencing project and available from the NCYC. Also used 

were BY4741a (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0), BY4741a ΔCRZ1 (MATa his3Δ1 
leu2Δ0 met15Δ0 ura3Δ0 crz1Δ::kanMX), BY4741a ΔSIS2 (MATa his3Δ1 leu2Δ0 met15Δ0 
ura3Δ0 sis2Δ::kanMX), and the complete BY4741a gene deletion and DAmP allele 

collection (Dharmacon/Thermo). The derivation and genotypes of the F6 haploid progeny 

are described in detail elsewhere (She and Jarosz, 2018). The phased genotypes of the F6 

diploid progeny used here for genetic mapping are available at github.com/cjakobson/

mapping.

Method Details

Yeast propagation and phenotyping—Cells were revived from frozen stocks by 

pinning first to appropriate selective liquid medium (SD-Leu; SD+Hyg; SD-Leu+Hyg) using 

a Singer ROTOR robotic pinning instrument and thence to selective solid medium. Cells 

were transferred to various solid media (synthetic medium with yeast nitrogen base without 

amino acids, complete supplement mixture, and carbon source and drug/stressor as 

indicated; carbon source is 2% glucose if not indicated otherwise; see Table S2) for 

phenotyping using the same instrument and propagated for 144 hours. Growth was measured 

every 24 hours in 384-spot format by scanning the plates; colony size was quantified using 

the SGAtools suite (Wagih et al., 2013). Custom MATLAB code was used to normalize and 

Z-score colony sizes. Broad-sense heritability was estimated from biological replicates using 

a linear mixed-effects model with random effects (Bloom et al., 2013).

Cross construction—We previously genotyped 1,125 F6 haploid progeny of a cross 

between RM11–1a and YJM975 (She and Jarosz, 2018). Of these, we selected 384 Leu+Hyg
− and 104 Leu−Hyg+ F6 progeny (mixed Mat a/α) to generate the diploid panel used here. 

Each Leu−Hyg+ haploid was mated to all 384 Leu+Hyg− progeny on solid YPD medium for 

24 hours, then transferred to solid diploid-selective medium (SD-Leu+Hyg), grown for 48 

hours, then transferred to selective solid medium once more for 48 hours. The 384 Leu+Hyg
− progeny are approximately one-half MATa, so each mating yielded approximately 192 

diploid progeny. Complementary mating type plates were merged so that each final plate of 

the collection contains two combined collections of diploids, with each collection sharing 

one parent. This is important to avoid conflating plate-to-plate variability effects, which are 
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included in the regression model, with the effect of sharing a parent. Diploid selection plates 

were imaged before merging and positions that aberrantly contained cells in both source 

plates were excluded from the subsequent regression. The final collection contains 18,126 

unique F6 diploid strains stored in 52 384-well plates. Please contact jarosz@stanford.edu 

for information regarding obtaining the segregant panel.

Genetic mapping—Diploid genotypes were constructed based on the haploid genotypes 

determined previously (She and Jarosz, 2018); phasing information was retained (although 

not used here) and loss of heterozygosity was neglected, as the diploids were propagated 

minimally before phenotyping. Variants present in the haploids had been called previously 

using SnpEff (Cingolani et al., 2012), and the coordinates shown are with reference to the 

strain S288C. The .vcf file associated with the segregating variants is available along with 

the full genotype matrix and code for the mapping procedure at github.com/cjakobson/

mapping. 5’ and 3’ UTR variants were assigned on the basis of transcription start and end 

sites as reported in (Nagalakshmi et al., 2008). Extragenic QTNs were assigned to the 

nearest TSS.

The full 18,126-strain homozygous genotype matrix, comprising 12,054 markers, was 

regressed against normalized, Z-scored phenotype vectors for each quantitative trait using a 

forward stepwise selection routine. Strains lacking genotype or phenotype information were 

excluded from the regression. For the first iteration of the regression, only homozygous loci 

were included, with homozygous RM/RM loci taking a coefficient of +1 and homozygous 

YJM/YJM loci taking a coefficient of −1. Pseudogenotypes for plates and plate edges were 

included to account for positional effects. Markers were included in the model at a threshold 

of p < 10−3 by F-test and removed at a threshold of p < 10−2 by the same test. Following 

regression on the homozygous loci, the genotype matrix was expanded to 24,108 markers, 

with heterozygous loci taking coefficient +1 and homozygous loci taking coefficient 0 in the 

additional columns. Pseudogenotypes for plates and plate edges were again included. 

Forward stepwise selection was repeated using the same cutoffs with the final terms from the 

homozygous regression constituting the initial model.

Following marker selection by forward selection, causal variants with p < 10−5 were fine-

mapped by in silico allele swaps, as described previously (She and Jarosz, 2018). Briefly, all 

pairs of candidate loci within 10 markers of the putative marker from forward selection were 

compared by ANOVA, and a true causal variant (QTN) was declared when the null 

hypothesis that the marker in question was not causal could be rejected with respect to all 

other variants in the window. When multiple candidate QTNs could not be unambiguously 

distinguished but were all associated with a single gene, a QTG was declared instead. 

Otherwise, we recorded the marker as a QTL and did not include it in subsequent gene- or 

variant-specific analyses. Runtime for the entire mapping procedure (coarse and fine 

mapping) using MATLAB varied between 60 min and 120 min using hardware as described 

below, depending on the complexity of the trait. All mapped loci are annotated in 

Supplementary File 1.

False discovery was controlled first at the level of QTLs by forward selection of the true 

genotype matrix against randomly permuted real data. An inclusion criterion of p < 10−3 for 
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stepwise selection and a final p-value cutoff of 10−5 yielded acceptable false discovery rates 

as shown in Table S3. However, this approach does not give information on the accuracy of 

the fine-mapping procedure, nor on the recovery of the true underlying effect size of the 

causal variants. We therefore also conducted extensive simulations using 50 known ground-

truth genetic architectures with 250 underlying linear causal variants and 25 underlying 

dominant causal variants, each with random, normally distributed effects, and using the true 

genotype structure of the panel [Fig. S1A]. Simulations were conducted with broad-sense 

heritability H2 ~ 0.85, commensurate with that observed for the majority of traits we 

examined [Fig. S1C]. Our multivariate regression approach, followed by fine-mapping, 

performed favorably relative to a univariate method using Pearson’s r to independently 

correlate each marker with phenotype [Fig. S1G], which lacked the power to detect QTLs of 

small effect even in our very large mapping population. Hypothetical traits were used to tune 

the regression procedure, but the same training traits were not used to generate the validation 

results presented.

The causal genes identified across all traits formed a densely connected protein-protein 

interaction network (enrichment p < 10−11 by STRING) and were enriched for 112 GO 

terms, including cellular metabolic process (FDR < 0.004), response to stress (FDR < 
0.006), ion binding (FDR < 0.003), and response to nutrient levels (FDR < 0.03).

Gene expression analysis—Samples of exponentially growing (OD600 ~ 0.5–1.0) 5 mL 

liquid cultures of homozygous diploid RM11a/α and YJM975a/α strains (in the media 

conditions indicated) were harvested in biological triplicate, snap-frozen, and stored at 

−80°C. RNA extraction, mRNA isolation by polyA enrichment, cDNA library preparation, 

and DNA sequencing were performed at the Beijing Genomics Institute, which returned 

~20M clean, trimmed reads per sample deposited as GSE123702 at the NIH GEO. Reads 

were mapped and transcript abundances estimated using Kallisto (Bray et al., 2016) on the 

basis of the Ensemble S. cerevisiae cDNA reference. Estimated transcripts per million 

abundances for each ORF can be found in Supplementary File 2.

Inference of distribution of fitness effects—In order to estimate the sensitivity of the 

mapping panel and regression procedure to QTL of varying effect size, we generated 

hypothetical traits with H2 ~ 0.85 and 250, 500, or 1000 underlying causal variants, with 

effect sizes drawn from normal, uniform, or quadratically decreasing distributions. The 

mapping procedure was conducted on N = 10 simulated traits for each underlying 

architecture using the true genotype structure of the panel, and sensitivity for each effect-

size bin was estimated as the number of detected QTLs with effect sizes within the given 

range divided by the number of true underlying variants with those effect sizes. The true 

underlying effect size distribution was estimated as the number of discovered QTLs within a 

given effect size range for all the actual traits we considered divided by the estimated 

sensitivity for that bin based on the simulations.

Phenotyping of the S. cerevisiae ORF deletion collection—Strains bearing precise 

ORF deletions or hypomorphic DAmP alleles (Thermo Sci.) were revived from frozen 

stocks in liquid YPD medium, spotted to YPD solid medium, and grown on solid medium in 

384-spot format (synthetic medium with yeast nitrogen base without amino acids, complete 
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supplement mixture, and 2% ethanol) in biological duplicate for 48 hours. After 48 hours, 

growth was quantified as described above. Effect size of each deletion or hypomorphic allele 

was estimated as the Z-score of the mean colony size for that strain. The 100 core genes with 

the largest effect sizes were enriched for protein-protein interactions (p < 0.03; STRING 

database) and enriched for logically connected annotations (organelle organization, p < 10−4; 

mitochondrial translation, p < 10−3; mitochondrial matrix, p < 0.05; STRING database).

Bioinformatic analyses—Chromosome and nucleotide positions of the extragenic 

variants were used to retrieve the surrounding nucleotide sequence of the S288C reference 

genome. Histone marks were averaged across all histones centered within 200 nt of the 

variant (Weiner et al., 2015). Similarly, TF occupancy from SwissRegulon was retrieved 

based on the chromosome and nucleotide positions of the extragenic variants relative to the 

S288C reference genome. Codon adaptation index was calculated as fcodon i/

max(fcodons for that residue) across the S288C reference genome, without adjustment for 

expression level. All statistical comparisons were conducted relative to all segregating 

variants of a given class within the mapping panel, not relative to simulated or uniform 

distributions.

Reporter of calcineurin-dependent signaling—Calcineurin-dependent transcriptional 

activation was measured using the 4xCDRE::lacZ reporter plasmid pAMS366 (Stathopoulos 

and Cyert, 1997). The LacZ enzyme activity assay was conducted using standard methods. 

Briefly, cells with genotypes as indicated and bearing the episomal reporter were 

subcultured to OD600 ~ 0.1 in SD-CSM liquid medium with or without 100 mM Ca2+, as 

indicated. After 4 hours of growth at ~21°C, cell density at 600 nm was recorded and the 

cells were lysed for 90 min at 37°C using 10 g/L SB3–14 detergent in Z buffer (Miller, 

1972). Following lysis, one-half of the reaction volume of 2 g/L chromogenic o-NPG 

substrate in prewarmed Z buffer was added and the mixture incubated at 37°C for 120 min. 

Samples were briefly centrifuged at ~2,000 × g to pellet insoluble cell debris and the 

supernatant transferred to a new plate. The LacZ hydrolysis product o-nitrophenol was 

monitored at 420 nm, and CDRE activity was calculated as A420/A600, adjusted for 

background scattering and nonspecific hydrolysis in lysate of cells lacking the reporter 

plasmid.

Computational methods and resources—Most computation was performed using 

MATLAB (MathWorks) on a MacBook Pro computer (2.7 GHz Intel Core i7; 16 GB RAM). 

Mapping was conducted using MATLAB on Sherlock nodes with 64 GB RAM. Also used 

were the SGATools (Wagih et al., 2013), clustalOmega (Sievers et al., 2011), D2P2 (Oates et 

al., 2013); Panther/GO (The Gene Ontology Consortium, 2017), SwissRegulon (Pachkov et 

al., 2007), Phyre2 (Kelley et al., 2015), SGRP (Bergström et al., 2014; Liti et al., 2009), and 

CellMap (Costanzo et al., 2016) webservers. The genotype and phenotype data are too large 

to include as supplementary files; all code required for mapping and validation, including 

segregant genotypes and all actual and simulated growth data, is deposited at github.com/

cjakobson/mapping. Code used to generate the figures is available upon request to Daniel F. 

Jarosz (jarosz@stanford.edu).
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Quantification and Statistical Analysis

Student’s two-tailed T-test, F-test, binomial test, two-sample Kolmogorov–Smirnov test, and 

Fisher’s exact test were performed in MATLAB. The Bonferroni correction was applied in 

the case of multiple testing. In mapping analyses, strains missing either genotype or 

phenotype information were excluded. Mean, median, standard deviation, and standard error 

of the mean are variously shown as indicated in the legends.

Data and Software Availability

All genetic mapping code is deposited at github.com/cjakobson/mapping. Other 

dependencies, including genotype and phenotype data too large to host on GitHub, can be 

downloaded from the link in the GitHub readme. mRNA-seq data are available at 

GSE123702 at the NIH GEO.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: An extremely large panel of fully genotyped diploid yeast to inventory complex heredity.
(A) Mating scheme used to construct the diploid segregant collection. (B) Number of 

segregating genetic variants and number of genotyped individuals in various mapping 

panels. (C) Relative frequencies of RM11 homozygotes (blue), YJM975 homozygotes 

(orange), and heterozygotes (magenta) across the 12,054 polymorphic loci in the panel. (D) 

Scheme illustrating the linear mixed model used to describe phenotype. β represents the 

homozygous locus effect and γ the heterozygous locus effect, if any. (E) Correlation 

(Pearson’s r) between effect size in the model and nearest true locus effect for an example 

simulated trait. (F) Growth of segregant panel on S-CSM + 2% ethanol solid medium. (G) 

Total number of QTLs, QTGs, and QTNs discovered with increasing number of quantitative 

traits examined. (H) Histogram of variance explained per QTL for linear (homozygous, 
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green) and nonlinear (heterozygous, magenta) contributions across all 90 quantitative traits. 

See also Figure S1.
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Fig. 2: Diverse molecular mechanisms underlie genetic complexity.
(A) Classes of molecular variation responsible for phenotoype. (B) Relative frequencies of 

all types of causal variants. (C) Variance explained by missense, synonymous, and 

extragenic causal variants. (D) Effect size of missense, synonymous, and extragenic causal 

variants. (E) Mean variance explained by missense variants (ordinate: reference residue; 

abscissa: alternate residue). (F) Mean variance explained as a function of BLOSUM62 score 

for missense variants. Correlation by Pearson’s r. (G) Mean variance explained as a function 

of Envision score for missense variants. Correlation by Pearson’s r. (H) Position of 

synonymous causal variants (blue) and all segregating synonymous variants (black) as a 

function of position within the meta-ORF (ATG: start codon; TAA: stop codon). P value by 

Kolmogorov-Smirnov test. (I) Schematic of large and small changes in codon optimality. (J) 

Mean absolute change in codon adaptation index (CAI) as a function of position within the 

meta-ORF. P value by Kolmogorov-Smirnov test. See also Figure S1.
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Fig. 3: Molecular signatures of causal regulatory variation.
(A) Spring-embedded network representation of local sequence context of extragenic causal 

variants, weighted by Hamming distance. Boxes indicate polyA- and polyT-enriched 

clusters. Nodes are sized by predicted transcription factor occupancy. (B) Mean MNase-

ChIP-seq signal for the indicated histone marks for nucleosomes within 200 nt of causal 

extragenic variants (blue) and all segregating extragenic variants (grey). Bonferroni-

corrected p values by Kolmogorov-Smirnov test. (C) Mean expression (TPM) across both 

parental diploids (N = 3 biological replicates per strain) for genes adjacent to extragenic 
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QTN and all genes, measured during growth in media containing 2% glucose, 2% glycerol, 

and 2% ethanol, as indicated. p values by Kolmogorov-Smirnov test. (D) Position of all 

causal variants in the 5’ UTR (blue) and all segregating variants in the 5’ UTR (black) as a 

function of position within the pseudo-UTR (TSS: transcription start site; ATG: start codon). 

p value by Kolmogorov-Smirnov test. (E) Position of all causal variants in the 3’ UTR (blue) 

and all segregating variants in the 3’ UTR (black) as a function of position within the 

pseudo-UTR (TAA: stop codon; TES: transcription end site). p value by Kolmogorov-

Smirnov test. (F) Impact of dominance in our linear mixed model of phenotype; shown is an 

example of partial dominance. (G) Variant types of all causal variants (grey) and dominant 

causal variants (magenta). p value by Fisher’s exact test. (H) Transcription factor occupancy 

at positions of all extragenic causal variants (grey) and dominant variants (magenta). p value 

by Kolmogorov-Smirnov test. (I) Number of dominant QTLs with a positive (magenta) or 

negative (grey) effect as compared to all QTLs. p value by Fisher’s exact test. See also 

Figure S2.
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Fig. 4: The variant-to-phenotype map is distinct from other maps of cellular connectivity.
(A) QTG effect size as a function of (A) connectivity in STRING database, (B) connectivity 

in the Cell Map, and (C) gene deletion or DAmP allele effect. Correlations by Pearson’s r. 
(D) Enrichment of QTGs in core gene sets as defined by a sliding window of absolute Z-

score of gene deletion or DAmP allele effect. Dashed lines show the same enrichment 

calculated for random gene sets of the same size. (E and F) Spring-embedded protein-

protein interaction maps from STRING database for QTG in (E) galactose and (F) 37°C 

with edges weighted by interaction strength. Nodes are sized by interaction degree. 
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Highlighted are key, highly pleiotropic genes. (G) Spring-embedded network representation 

of QTNs (nodes) connected by edges weighted by the number of traits in which the variants 

are jointly causal and colored by the type of molecular variation as indicated. Nodes sized by 

extent of pleiotropy of the QTN. Four key pleiotropic QTNs are highlighted in blue.
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Fig. 5: Abundant synergistic and antagonistic interactions resolved to single nucleotides.
(A) Schematic of the phenotypic effects of synergistic and antagonistically pleotropic 

variants. (B) Histogram of number of traits for which each QTN was identified as causal. (C) 

Histogram of number of environments for which each QTN was identified as causal. (D) 

Plot of discovered coefficients at each pair of time points for which a given QTN was 

identified as causal within a given environment. (E) Plot of variance explained at each pair 

of time points for which a given QTN was identified as causal within a given environment. 

(F) Plot of discovered coefficients in each pair of quantitative traits for which a given QTN 
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was identified as causal between environments. (G) Plot of variance explained in each pair 

of quantitative traits for which a given QTN was identified as causal between environments. 

Plot of variance explained in each pair of quantitative traits for which a given QTN was 

identified as (H) synergistically pleiotropic or (I) antagonistically pleiotropic between 

environments. (J) Number of pleiotropic interactions identified as synergistic or antagonistic 

(left) within an environment or (right) between environments. (K) Plot of discovered 

coefficients for each pair of quantitative traits in which a QTL could be attributed to a given 

QTG. Correlations by Pearson’s r. See also Figure S3.
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Fig. 6: Highly pleiotropic variants affect key cellular signaling hubs.
(A) Effect of the CRZ1ΔLeu123 QTN in the indicated conditions. (B) Effect of the 

SIS2Δ541−544 QTN in the indicated conditions. (C) Normalized colony sizes of F6 diploid 

progeny with the indicated genotypes after 96h of growth on media containing 2% glycerol. 

Error bars show s.e.m. (D) Diagram indicating the locations of the CRZ1ΔLeu123 QTN and 

the neighboring synonymous CRZ1381G>A variant in the CRZ1 gene. (E) Normalized 

4xCDRE::LACZ reporter activity for at least N = 3 F6 haploid segregants of the indicated 

genotypes measured in biological triplicate. Bars show mean across the genotype; error bars 
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show s.e.m. (F) Diagram of the Crz1 protein and predicted disorder from the Database of 

Disordered Protein Predictions (D2P2); the identified causal variant is indicated with a star. 

(G) Diagram of the Sis2 protein and predicted disorder from D2P2; the identified causal 

variant is indicated with a star. (H) Multiple sequence alignment of the Crz1111−145 region in 

the indicated S. cerevisiae strains and other yeast species. (I) Multiple sequence alignment of 

the Sis2516−555 region in the indicated S. cerevisiae strains and other yeast species. See also 

Figure S4.
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Fig. 7: Inference of the distribution of fitness effects of extant mutations.
Hypothetical true underlying fitness effect distributions under (A) infinitesimal and (B) 

bimodal models. (C) Sensitivity of the mapping procedure to QTLs as a function of the true 

effect size, for N = 10 simulations with 250 underlying causal variants. (D) Inferred true 

underlying fitness effect distribution (per trait). (E) Inferred average underlying fitness effect 

distributions based on discovered coefficients for missense (blue), synonymous (orange), 

and extragenic (green) variants. (F) Distance of each segregating polymorphism in the 

mapping panel to the nearest identified QTL for growth on 2% galactose. See also Figure 

S5.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

SB3–14 Sigma 40772–50G

o-NPG Bio Basic ND0382

Deposited Data

mRNA-seq data This paper GSE123702

F6 diploid genotype data This paper github.com/cjakobson/mapping

F6 diploid growth data This paper github.com/cjakobson/mapping

Experimental Models: Organisms/Strains

RM11 NCYC (Liti et al., 2009)

YJM975 NCYC (Liti et al., 2009)

F6 haploid progeny Jarosz Laboratory (She and Jarosz, 2018)

F6 diploid progeny This paper N/A

BY4741 gene deletion/DAmP collection Dharmacon/Thermo N/A

Recombinant DNA

4xCDRE::LACZ reporter (pAMS366) Cyert Laboratory (Stathopoulos and Cyert, 1997)

Software and Algorithms

Genetic mapping code This paper github.com/cjakobson/mapping

MATLAB R2016B MathWorks N/A

Kallisto Pachter Lab https://pachterlab.github.io/kallisto/download
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