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Abstract

elucidate their origin, evolution, and dispersal patterns.

constraints to eliminate deleterious mutations.

Background: The evolution of male pregnancy is the most distinctive characteristic of syngnathids, and their
specialized life history traits make syngnathid species excellent model species for many issues in biological
evolution. However, the origin of syngnathids and the evolutionary divergence time of different syngnathid species
remain poorly resolved. Comprehensive phylogenetic studies of the Syngnathidae will provide critical evidence to

Results: We sequenced the mitochondrial genomes of eight syngnathid species in this study, and the estimated
divergence times suggested that syngnathids diverged from other teleosts approximately 48.8 Mya during the
Eocene period. Selection analysis showed that many mitochondrial genes of syngnathids exhibited significantly
lower Ka/Ks values than those of other teleosts. The two most frequently used codons in syngnathid fishes were
different from those in other teleosts, and a greater proportion of the mitochondrial simple sequence repeats (SSRs)
were distributed in non-coding sequences in syngnathids compared with other teleosts.

Conclusions: Our study indicated that syngnathid fishes experienced an adaptive radiation process during the early
explosion of species. Syngnathid mitochondrial OXPHOS genes appear to exhibit depressed Ka/Ks ratios compared
with those of other teleosts, and this may suggest that their mitogenomes have experienced strong selective

Keywords: Syngnathidae, Seahorse, Pipefish, Evolution, Purifying selection, Mitogenome

Background

Members of the teleost family Syngnathidae (seahorses,
pipefishes, pipehorses, and seadragons), comprising ap-
proximately 300 species, are unique among vertebrates
in that they exhibit ‘male pregnancy, where males incu-
bate developing embryos in a brood pouch until hatch-
ing and parturition [1-3]. The specialized brood pouch

* Correspondence: lingiangzsu@163.com

Xin Wang and Yanhong Zhang contributed equally to this work.

'CAS Key Laboratory of Tropical Marine Bio-Resources and Fcology, South
China Sea Institute of Oceanology, Institution of South China Sea Ecology
and Environmental Engineering, Chinese Academy of Sciences, Guangzhou
510301, People’s Republic of China

?Laboratory for Marine Fisheries Science and Food Production Processes,
Pilot National Laboratory for Marine Science and Technology (Qingdao),
Qingdao 266237, People’s Republic of China

Full list of author information is available at the end of the article

K BMC

provides protection and carries out gas exchange, osmo-
regulation, and limited nutrient provisioning for the de-
veloping embryos [4, 5]. In addition, members of the
family Syngnathidae exhibit other unique features such
as an extended body covered with an armor of bony
plates instead of scales, elongated snout, and fused jaws.
The unique body morphology and specialized life history
traits make syngnathid species excellent flagship species
for many issues in marine conservation and biological
evolution [4, 6].

There has been considerable research on the phyl-
ogeny, life history and biological characteristics of syng-
nathid fishes [4, 7-12]. However, the biological origin
and divergence history of syngnathids still unclear. The
family Syngnathidae is a large and diverse clade of bony
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fishes, and male brood-pouch morphology was a major
focus of previous evolutionary research. The brooding
structures vary greatly between genera, from the simplest
incubating area typical of the Nerophinae to much more
complex structures, such as the sealed pouch of the Hippo-
campinae [13]. Previous studies hypothesized that syng-
nathids can be divided into five major subfamilies based on
brood pouch morphology, and subsequent studies divided
syngnathids into two large clades based on the position of
the male brood pouch [3, 12-15]. These phylogenetic divi-
sions have been supported in molecular phylogenetic ana-
lyses based on partial mitochondrial sequences [13, 15, 16].
However, the reliability of the hypothesis has not yet been
confirmed using more representative data. To date, few
studies have investigated the divergence times of the differ-
ent syngnathid lineages, and this information will provide
critical evidence to elucidate the origin, evolution, and dis-
persal patterns of the family Syngnathidae.

Mitochondrial genomes have been widely used for
diverse evolutionary studies of animals, including popu-
lation genetics, phylogenetics, and species identification
[13, 17-20]. The circular mitogenome of teleosts is
structurally conserved and contains 13 protein-coding
genes, 2 rRNA genes, 22 tRNA genes, and one displace-
ment loop (D-loop) region [21, 22], that can provide a
large amount of basic data for population genetics, phy-
logenetics, and adaptive evolution research [13, 23].
More than one thousand complete mitochondrial DNA
sequences have been determined in teleostean fishes
[24], but systematic research on mitogenome structure
and molecular evolution characteristics in syngnathids is
still scarce. Previous studies observed gene reorganization
in fish mitogenomes [24-26], and recent studies have
shown that the accumulation of mutations in mitogen-
omes is influenced by life history, effective population size,
and cellular energy requirements [27-30]. Given the
specialized biological characteristics and extraordinary
evolutionary status of syngnathid fishes, we suspected that
the structure and molecular evolution characteristics of
their mitochondrial genomes may exhibit significant dif-
ferences compared with those in other teleosts.

In this study, the mitogenomes of eight syngnathid
species were assembled to investigate the phylogenetic
relationships and divergence times of syngnathid line-
ages. We also obtained the mitochondrial genome se-
quences of a further 88 teleost species for comparison of
the structure and molecular evolution characteristics be-
tween syngnathids and other teleosts.

Results

Mitochondrial genomes in the Syngnathidae

The complete mitochondrial genomes of the syngnathid
species ranged in size from 16,462 bp to 16,961 bp, with the
newly determined T. serratus, S. hardwickii, S. biaculeatus,

Page 2 of 11

D. boaja, D. dactyliophorus, M. manadensis, H. kelloggi,
and H. mohnikei mitochondrial genomes exhibiting lengths
of 16,956 bp, 16,519bp, 16,479 bp, 16,547 bp, 16,661 bp,
16,527 bp, 16,536 bp, and 16,518 bp, respectively (Fig. 1,
Table 1). The differences in genome length were largely due
to variations in tandem repeats in the control regions.
An approximately 200 bp non-coding insertion between
16S-rRNA and tRNA-Leu was found in 7. serratus and
C. flavofasciatus (Fig. 2). All the genomes shared 13
protein-coding genes, 22 tRNA genes, 2 rRNAs, and a
control region, and exhibited the same gene order (Fig. 2).
The AT content of the mitogenome ranged from 55.31 to
62.07% for the eight newly sequenced species, with a slight
AT bias.

In silico analysis of simple sequence repeats (SSRs) in
mitochondrial genomes

A total of 64 SSRs of different nucleotide combinations
were detected in 44 species. An equal number of SSRs
were detected in the syngnathids and the other teleosts:
32 SSRs were found in 18 of the 22 syngnathids, and 32
SSRs were found in 19 of the 22 other teleosts (Add-
itional file 1). However, the distribution patterns of the
SSRs were very different between the syngnathids and
the other teleosts. In the syngnathids, 35.5% of the SSRs
were detected in coding sequences and 64.5% in
non-coding sequences. In contrast, 87.5% of the SSRs
were found in coding sequences in the other teleosts,
and only 12.5% of the SSRs were distributed across
non-coding sequences (Fig. 3). Overall, a greater propor-
tion of the mitochondrial SSRs were distributed in
non-coding sequences in syngnathids compared with
other teleosts.

Nucleotide diversity and codon usage

Sliding window analysis of sequences from 22 syng-
nathids and 22 other teleosts was employed to evaluate
the nucleotide diversity of the mitogenomes. The nu-
cleotide diversity exhibited similar patterns in the two
groups, with Pi values ranging from 0.043 to 0.335 in
syngnathids and 0.037 to 0.412 in other teleosts (Fig. 4).
The ND2, ND6, and ATPS8 regions showed relatively high
sequence variability, while genes with relatively low
sequence variability included COI, COIl, COIlI, and Cyt
b (Fig. 4).

A significant bias towards A/T was observed in the
codon usage of the mitochondrial genomes of the
syngnathids Hippocampus mohnikei and Doryichthys bojia,
and the other teleost Takifugu flavidus (Fig. 5,
Additional file 2), and G was the least common third pos-
ition nucleotide in all the codon families. The most fre-
quently used codons in H. mohnikei and D. bojia were
UUA (Leu) and AUU (Ile), while the most frequently used
codons in T. flavidus were UUC (Phe) and CUA (Leu)
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Fig. 1 Map of sampling locations for syngnathid fishes

(Additional file 3). The most frequently used codons all
consisted of A and T, and this may have contributed to the
high A + T content in the mitogenome. There was an obvi-
ous difference between the two syngnathid fishes and T.
flavidus in relative synonymous codon usage (RSCU), espe-
cially in Cys, His, Leu, and Phe. Among the 62 available co-
dons (excluding TAA and TAG), AGA (Arg) was missing
in H. mohnikei, D. bojia, and T. flavidus, while AGG (Arg)

was missing in H. mohnikei and D. bojia (Fig. 5,
Additional file 4).

Phylogenetic reconstruction and divergence time
estimation

The phylogenetic relationships between syngnathids and
other teleosts were determined using 13 mitochondrial
gene sequences. The best substitution model for the data

Table 1 Genome information of the newly sequenced mitochondrial genomes of 8 syngnathid fishes

Species Accession Numbers Size (bp) Nucleotide composition (%) A+T (%) AT skewness GC skewness
Trachyrhamphus serratus KJ184528 16,956 A 2961 C2835G 16.34T 2570 5531 0.071 —-0.269
Solegnathus hardwickii KJ194524 16,519 A 2972 C2839G 15.16T 26.73 56.45 0.053 -0.304
Syngnathoides biaculeatus KJ184525 16,479 A 2969 C2656G 15.38T 2837 58.06 0.023 -0.267
Doryichthys boaja KJ184527 16,547 A31.12C2410G 143773041 6153 0.012 —-0.253
Dunckerocampus dactyliophorus  KP301502 16,661 A 3005C2789G 16.04T 2602  56.07 0.072 —-0.270
Microphis manadensis KP301501 16,527 A 3028 C26.15G 15.20T 2837 58.65 0.033 —-0.265
Hippocampus kelloggi KF703755 16,536 A 3219 C2369G 1481 T 2931 61.50 0.047 -0.231
Hippocampus mohnikei KF557651 16,518 A 3210 C2292G 1501T 29.97 62.07 0.034 -0.209
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Fig. 2 Linear comparison of mitochondrial genome organization in syngnathid fishes and other teleosts. Hm, Hippocampus mohnikei; Hk,
Hippocampus kelloggi; Ts, Trachyrhampus serratus; Cf, Corythoichthys flavofasciatus; Sh, Solegnathus hardwickii; Sb, Syngnathoides biaculeatus; Pv,

Pegasus volitans; Ss, Salmo salar; Tf, Takifugu flavidus
A\

matrix was GTR + G + I, and maximum-likelihood (ML)
analyses yielded a well-resolved phylogeny for the fishes:
most of the internal branches were supported by high
(>90%) bootstrap probabilities (BPs; Fig. 6). The Syng-
nathidae family is a unique clade of bony fishes that ex-
hibit special male brooding structures and our
phylogenetic analysis recovered the syngnathids as a
monophyletic group, with a high level of confidence
(99% BP). The divergence times of syngnathids and
other teleosts estimated using the MCMC tree suggest
that syngnathids diverged from the other teleosts ap-
proximately 48.8 Mya (95% CI 48.4—49.0 Mya), during
the Eocene period. Eleven Hippocampus species formed
a monophyletic clade which constituted the largest
genus (BP=100%) that appeared 18.8 Mya (95% CI
13.7-24.0 Mya, Additional file 3), during the Miocene
period. Phylogenetic reconstruction suggested that Cor-
ythoichthys flavofasciatus is the closest living relative of
Trachyrhamphus serratus and a sister clade to Hippo-
campus. Pegasidae and Syngnathidae were the closest
sister groups (BP=100%). Indostomidae clustered

with Monopterus albus (Synbranchiformes). However,
Gasterosteoidei did not cluster with Syngnathoidei.
The gasterosteoids Aulorhynchus flavidus, Gasteros-
teus aculeatus, and Hypoptychus dybowskii formed a
group in the ML tree parallel to Epinephelus coioides
(Perciformes).

The schematic diagram of the phylogenetic relation-
ships of syngnathid groups shows that the pipefish can
be divided into two genetic lineages; one clustered
with seahorses, and the other clustered independently
of other syngnathids (Fig. 7a). Additionally, the phylo-
genetic analysis revealed that the pipehorses were
paraphyletic with respect to seadragons (Fig. 7a).
Phylogenetic analysis of the syngnathids with various
brooding structures revealed asynchronous evolution
of the brood pouch. The seahorses with a sealed pouch
formed a monophyletic group, and this clustered with
one lineage of bilateral-pouch syngnathids, while the
other lineage of bilateral-pouch syngnathids clustered
with syngnathids that have no pouch structure but
egg-compartments on the abdomen (Fig. 7b).

SSRs in syngnathid fishes

M Coding sequence
B Non-coding sequence

Fig. 3 Distribution of SSRs in the mitogenome of syngnathid fishes and other teleosts
A\

87.5%

SSRs in other teleosts
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Male-pregnant syngnathids are under strong purifying
selection

Differences in the Ka/Ks ratios of fishes with
different reproductive strategies were quantified by
separate analyses of two groups: the male-pregnant
syngnathid fishes and other teleostean fishes. The
mean Ka/Ks ratio of all mitochondrial genes was
slightly lower in the male-pregnant syngnathids (Ka/
Ks= 0.0392) than in the other teleostean fishes (Ka/
Ks = 0.0445; Fig. 8, Additional file 4). Investigation

of the general pattern of Ka/Ks in the 13 mitochon-
drial protein-coding genes showed that five genes
(COI, Cyt b, ND1, ND4, and ND6) exhibited signifi-
cantly lower Ka/Ks values in the syngnathid fishes
than in the other teleosts (P < 0.01; Fig. 8).

Discussion

Molecular characteristics of syngnathid mitogenomes

The mitochondrial genome organization of syngnathid
fishes was quite conserved, as identified for other bony
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Fig. 5 Relative synonymous codon usage (RSCU) of the mitochondrial genomes. Left, Hippocampus mohnikei; middle, Doryichthys bojia; right,
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fishes [22, 31-33]. The differences in length among the
Syngnathidae mitochondrial genome sequences are
mainly due to length variation of the control region and
random insertions in the intergenic regions. It is widely
accepted that the mitochondrial DNA control region
evolves faster than protein-coding genes [34, 35], and
the pressure of purifying selection in the non-coding re-
gions tends to be substantially weaker than that in cod-
ing regions [36]. Therefore, length variation would be
more readily accumulated in the control region than in

coding regions of the mitochondrial genome. In

addition, random insertions of non-coding sequences be-
tween the mitochondrial genes were found in T. serratus
and C. flavofasciatus, and these can be used as a basis
for species identification. The insertion of non-coding
sequences in the mitochondrial genome was also found
in Culicoides species [37].

The mitochondrial nucleotide diversity of syngnathid
fishes exhibited a similar pattern to that in other bony
fishes, and the differences in sequence variability among
mitochondrial genes will provide insight into their suit-
ability for phylogenetic studies at various taxonomic
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levels [38, 39]. The codon usage bias was a textbook ex-
ample of a weak selective pressure operating at the mo-
lecular level, and other evolutionary forces might explain
its variation across different biological groups [40-42].
The two most frequently used codons in syngnathid
fishes were different from those in other teleosts, and
this may reflect a different evolutionary process for the
mitochondrial genes of syngnathids compared to those of
other teleosts. A significant bias towards A/T was observed
in the codon usage of the mitochondrial genomes of syng-
nathids and other teleosts that may have contributed to the
high A + T content in the mitogenome. However, codons in
fish nuclear DNA sequences end predominantly in G or C,
even though the coding sequences are not enriched in these
nucleotides [43]. We found that G was the least common

third position nucleotide in all the codon families in the
mitochondrial sequences. We note that the abovemen-
tioned features are very similar to those observed in other
vertebrates [44, 45].

Phylogeny of syngnathid fishes

Syngnathids are perhaps the most unusual and special-
ized group of fishes considering their male reproductive
mode [13]. The variation in pouch structure is one of
the most important phenomena to have occurred
throughout the evolutionary divergence of syngnathids
[14]. The estimates of divergence times obtained in this
study provide new information on the evolutionary his-
tory of syngnathids that can improve our understanding
of the biological adaptability of pouch structure variation.
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Fig. 8 Comparison of Ka/Ks ratios for 13 individual genes and 13 gene sets between syngnathids and other fishes. “All" indicates the combined
sequences of the 13 mitochondrial genes. The asterisks indicate the significance of the likelihood ratio test results from the free-ratio and one-
ratio models (¥, 0.01 < P < 0.05; **, 0.001 < P < 0.01; ***, P < 0.001)
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Molecular clocks are vital for reconstructing detailed
timescales in the tree of life that can explain how evolu-
tionary events have been influenced by Earth’s history
[46]. Molecular dating analyses indicated that the Syng-
nathidae most likely evolved 48.8 Mya, and this is con-
cordant with the oldest known syngnathid fossil (48—50
Mya) [16, 47]. Our results suggested that the divergence
of Syngnathidae likely resulted from global climate
change during the late Paleocene and early Eocene.
The Paleocene-Eocene thermal maximum was a short
interval of maximum temperatures lasting approximately
100,000 years during the late Paleocene and early Eocene
epochs (roughly 55 Mya) [48, 49]. Sea surface and contin-
ental air temperatures increased by more than 5 °C at that
time, and this may have had a large impact on marine
fishes, especially syngnathids, considering their distinct
life-history characteristics and breeding strategies. Thus,
we suspect that syngnathids experienced an adaptive radi-
ation process during their early explosion of species.
Hippocampus reidi and H. ingens diverged 3.7 Mya; the
calibration point that we used in this study was based on
evidence from a seahorse phylogeny that indicated that
the closure of the Central American Seaway during the
Late Pliocene resulted in the divergence of H. reidi
(West Atlantic) and H. ingens (East Pacific) from a
common ancestor (3.1-3.7 Mya) [50]. The results esti-
mated using molecular clock approaches are consistent
with the divergence events in the seahorse phylogeny.
The genus Hippocampus has evolved the most com-
plex and advanced fully enclosed brood pouches for the
delivery of nutrients and oxygen to the developing em-
bryos [4, 12]. The molecular phylogeny obtained in this
study shows that the development of brood pouch was
an important evolutionary innovation of the Syngnathi-
dae and the diversification of pouch types from simple
ventral gluing areas to the completely enclosed pouches
emphasizes the importance of the brood pouch structure
variation in the radiation of syngnathids [15, 51, 52].

Selection patterns within syngnathid mitogenomes

Nonsynonymous substitutions are generally harmful be-
cause they can cause defects in the respiratory electron
transport chain and other metabolic processes [53, 54].
The conserved mitochondrial protein-coding sequences
of syngnathid fishes might have undergone strong puri-
fying selection to eliminate deleterious mutations. Syng-
nathid fishes appear to exhibit depressed Ka/Ks ratios
for their mitochondrial OXPHOS genes compared with
other teleostean fishes; this suggests that syngnathid
fishes experience stronger selective constraints. Differen-
tial selection was also found in similar analyses per-
formed in other fishes, birds, and mammals [27, 28, 30].
A study on mitogenome selection pressure in birds
showed that stronger selective constraints act on highly
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locomotive birds and mammals with differing locomo-
tive speeds exhibit a similar pattern [28]. Among fish
species, the mitochondrial protein-coding genes of mi-
gratory fishes exhibit significantly lower Ka/Ks values
than those of nonmigratory fishes [30]. The OXPHOS
genes may have undergone stronger purifying selection
because they play more important roles in energy me-
tabolism than other mitochondrial genes. Moreover, the
low number of SSRs in the mitochondrial coding regions
of syngnathid fishes may indicate that their mitochon-
drial genomes are under strong purifying selection.

Conclusions

The mitochondrial genome of eight syngnathid fishes
were sequenced in this study, and molecular dating ana-
lyses indicated that the Syngnathidae most likely evolved
48.8 Mya, which is concordant with the oldest known
syngnathid fossil. Syngnathid mitochondrial genes ap-
pear to exhibit depressed Ka/Ks ratios compared with
those of other teleosts, and this may suggest that their
mitogenomes have experienced strong selective con-
straints to eliminate deleterious mutations.

Methods
Source of data and primary treatment
The complete mitochondrial genome sequences of 88
teleost fishes available in September 2018 were down-
loaded from GenBank (Additional file 5). Additionally, the
mitochondrial genomes of eight syngnathid fishes were
newly sequenced for this study (Trachyrhamphus serratus,
KJ184528; Solegnathus hardwickii, KJ184524; Syngnathoides
biaculeatus, KJ184525; Doryichthys boaja, KJ184527; Doryr-
hamphus dactyliophorus, KP301502; Microphis manadensis,
KP301501; Hippocampus kelloggi, KF703755; and Hippo-
campus mohnikei, KF557651). For the species to be newly
sequenced, adults were collected from coastal areas of China
in 2014-2017 (Fig. 1). A small amount of dorsal fin was
sampled from every fish, which has no effect on the swim-
ming and health, and then they were returned alive to the
water. All samples used in this study were treated in accord-
ance with relevant national and international guidelines.
Total genomic DNA was extracted from samples using
the TIANGEN marine animal DNA kit (TIANGEN,
Beijing, China) according to the manufacturer’s instruc-
tions. Degenerate primers for fragment amplification
were designed based on conserved nucleotide sequences
from the mitochondrial genomes of Hippocampus kuda
(AP005985) and Microphis brachyurus (AP005986) using
DNAssist 2.2 and Primer Premier 5.0 software [55]. The
PCR amplifications, sequence assemble, and genome an-
notation were performed according to a slightly modi-
fied method described by Wang et al. [31].
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Phylogenetic analyses and molecular dating
All protein-coding genes were aligned using MAFFT version
7 [56]. The best-fitting nucleotide substitution model was
selected using ModelTest 3.06 [57]. Maximum-likelihood
(ML) analyses were implemented in PhyML 3.0 [58].
Molecular dating was performed using BEAST 1.4.6
[59]. A total of 26 calibration points was used in this
analysis (Additional file 6). In each case, a normal prior
was used, and its mean and standard deviation were set
so that the 95% confidence intervals corresponded to the
upper and lower bounds of each calibration point. Thus,
uncertainty concerning the exact dates of the calibration
points could be accounted for.

Selection analyses

Comparison of the rates of nonsynonymous (Ka) and syn-
onymous (Ks) substitutions can provide information on
the type of selection that has acted on a given set of
protein-coding sequences. The ratio of the rates of nonsy-
nonymous to synonymous substitutions, @ (Ka/Ks), pro-
vides an indication of changes in selective pressure: Ka/Ks
values > 1 indicate positive selection; Ka/Ks =1 indicates
neutral selection; and Ka/Ks < 1 indicates negative or puri-
fying selection. The Ka/Ks ratios of all individual datasets
were estimated for each branch of the phylogenetic tree
using the CodeML algorithm from the PAML package
[60]. The branch model was employed under two alterna-
tive assumptions: a one-ratio model, where one o value
was assumed for the entire tree, and a free-ratio model,
where o values were allowed to vary on every branch. We
constructed a likelihood ratio test (LRT) to verify that the
best models fitted the data. The level of significance for
these LRTs was calculated using a x> approximation,
where twice the difference in log likelihood between the
models would follow a x* distribution, with the number of
degrees of freedom corresponding to the difference in the
number of parameters between the models.

Comparative analysis of the mitochondrial genomes
MISA was used to analyze SSRs in the mitochondrial ge-
nomes [61]. SSRs were detected in the mitogenome
sequences of 22 syngnathids and 22 other teleosts. The
nucleotide diversity of the mitochondrial protein-coding
gene sequences was evaluated using sliding window ana-
lysis based on the dataset used for SSR detection (window
size =200 bp, step size=10bp) in DnaSP version 5.10
[62]. The base composition was calculated using BioEdit
version 7.1.3.0, and the AT-skew and GC-skew were cal-
culated according to the formulae: AT-skew = (A - T%)/
(A + T%) and GC-skew = (G - C%)/(G + C%). Relative syn-
onymous codon usage (RSCU) of all protein-coding genes
was analyzed using MEGA version 6.06 [63].
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