Table 1.
Algorithm | Antibody combination | Acc | Sens | Spec | PPV | NPV | LR+ | LR− | |
---|---|---|---|---|---|---|---|---|---|
IHC-decision trees | Nyman | 3,5 | 0.72 | 0.52 | 0.91 | 0.84 | 0.67 | 5.56 | 0.53 |
Colomo | 1,2,5 | 0.78 | 0.71 | 0.84 | 0.81 | 0.75 | 4.56 | 0.34 | |
Hans | 1,2,5 | 0.85 | 0.91 | 0.78 | 0.80 | 0.91 | 4.21 | 0.11 | |
Hans* | 1,5 | 0.82 | 0.94 | 0.70 | 0.75 | 0.92 | 3.14 | 0.09 | |
Choi | 1,2,3,4,5 | 0.88 | 0.94 | 0.84 | 0.84 | 0.93 | 5.70 | 0.08 | |
Choi* | 1,3,4,5 | 0.79 | 0.74 | 0.83 | 0.80 | 0.77 | 4.30 | 0.31 | |
VY3 | 1,2,3 | 0.88 | 0.92 | 0.84 | 0.85 | 0.92 | 5.92 | 0.09 | |
VY4 | 1,2,3,4 | 0.88 | 0.93 | 0.84 | 0.85 | 0.92 | 5.80 | 0.09 | |
Linear discriminant analysis | As in Hans* | 1,5 | 0.84 | 0.77 | 0.91 | 0.89 | 0.81 | 8.59 | 0.25 |
As in Nyman | 3,5 | 0.77 | 0.81 | 0.74 | 0.75 | 0.81 | 3.10 | 0.25 | |
As in VY3 | 1,2,3 | 0.89 | 0.87 | 0.91 | 0.90 | 0.88 | 9.19 | 0.15 | |
As in Hans/Colomo | 1,2,5 | 0.87 | 0.86 | 0.88 | 0.87 | 0.87 | 7.25 | 0.16 | |
– | 1,4,5 | 0.87 | 0.81 | 0.92 | 0.90 | 0.84 | 9.93 | 0.20 | |
As in VY4 | 1,2,3,4 | 0.87 | 0.84 | 0.90 | 0.89 | 0.86 | 8.24 | 0.17 | |
As in Choi* | 1,3,4,5 | 0.88 | 0.86 | 0.91 | 0.90 | 0.87 | 9.09 | 0.16 | |
As in Choi | 1,2,3,4,5 | 0.89 | 0.87 | 0.91 | 0.90 | 0.88 | 9.23 | 0.14 |
The upper section corresponds to the performance of the IHC-decision tree algorithms. Lower section corresponds to equivalent combinations of antibodies, but with LDA classification, this includes the rest of combinations not reported by IHC-decision tree algorithms. Choi, VY3, and VY4 algorithms reached the most considerable accuracy, representing the most balanced options of sensibility and specificity, with similar performance metrics
Numeric tags 1 = CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1
Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive values; LR+: likelihood ratio for positive test results; LR−: likelihood ratio for negative test result