Skip to main content
. 2019 Jun 11;17:198. doi: 10.1186/s12967-019-1951-y

Table 1.

Performance metrics of classification of IHC-decision tree algorithms and LDA

Algorithm Antibody combination Acc Sens Spec PPV NPV LR+ LR−
IHC-decision trees Nyman 3,5 0.72 0.52 0.91 0.84 0.67 5.56 0.53
Colomo 1,2,5 0.78 0.71 0.84 0.81 0.75 4.56 0.34
Hans 1,2,5 0.85 0.91 0.78 0.80 0.91 4.21 0.11
Hans* 1,5 0.82 0.94 0.70 0.75 0.92 3.14 0.09
Choi 1,2,3,4,5 0.88 0.94 0.84 0.84 0.93 5.70 0.08
Choi* 1,3,4,5 0.79 0.74 0.83 0.80 0.77 4.30 0.31
VY3 1,2,3 0.88 0.92 0.84 0.85 0.92 5.92 0.09
VY4 1,2,3,4 0.88 0.93 0.84 0.85 0.92 5.80 0.09
Linear discriminant analysis As in Hans* 1,5 0.84 0.77 0.91 0.89 0.81 8.59 0.25
As in Nyman 3,5 0.77 0.81 0.74 0.75 0.81 3.10 0.25
As in VY3 1,2,3 0.89 0.87 0.91 0.90 0.88 9.19 0.15
As in Hans/Colomo 1,2,5 0.87 0.86 0.88 0.87 0.87 7.25 0.16
1,4,5 0.87 0.81 0.92 0.90 0.84 9.93 0.20
As in VY4 1,2,3,4 0.87 0.84 0.90 0.89 0.86 8.24 0.17
As in Choi* 1,3,4,5 0.88 0.86 0.91 0.90 0.87 9.09 0.16
As in Choi 1,2,3,4,5 0.89 0.87 0.91 0.90 0.88 9.23 0.14

The upper section corresponds to the performance of the IHC-decision tree algorithms. Lower section corresponds to equivalent combinations of antibodies, but with LDA classification, this includes the rest of combinations not reported by IHC-decision tree algorithms. Choi, VY3, and VY4 algorithms reached the most considerable accuracy, representing the most balanced options of sensibility and specificity, with similar performance metrics

Numeric tags 1 = CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1

Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive values; LR+: likelihood ratio for positive test results; LR−: likelihood ratio for negative test result