Table 3.
Algorithm | Antibody combination | Acc | Sens | Spec | PPV | NPV | LR+ | LR− | |
---|---|---|---|---|---|---|---|---|---|
IHC-decision tree | Nyman | 3,5 | 0.79 | 0.65 | 0.95 | 0.93 | 0.71 | 12.47 | 0.37 |
Colomo | 1,2,5 | 0.84 | 0.77 | 0.91 | 0.91 | 0.79 | 8.98 | 0.25 | |
Hans | 1,2,5 | 0.89 | 0.95 | 0.83 | 0.86 | 0.94 | 5.52 | 0.06 | |
Hans* | 1,5 | 0.86 | 0.95 | 0.76 | 0.81 | 0.94 | 3.94 | 0.06 | |
Choi | 1,2,3,4,5 | 0.93 | 1.00 | 0.84 | 0.87 | 1.00 | 6.44 | 0.00 | |
Choi* | 1,3,4,5 | 0.83 | 0.79 | 0.86 | 0.86 | 0.79 | 5.73 | 0.24 | |
VY3 | 1,2,3 | 0.90 | 0.97 | 0.83 | 0.86 | 0.96 | 5.61 | 0.04 | |
VY4 | 1,2,3,4 | 0.90 | 0.97 | 0.83 | 0.86 | 0.96 | 5.61 | 0.04 | |
Machine learning | PV | 1,3,4,5 | 0.94 | 0.95 | 0.93 | 0.94 | 0.95 | 13.8 | 0.05 |
ANN | 1,2,3,4,5 | 0.94 | 0.95 | 0.93 | 0.94 | 0.95 | 13.8 | 0.05 | |
BS | 1,2,3,4,5 | 0.94 | 0.95 | 0.93 | 0.94 | 0.95 | 13.8 | 0.05 | |
SVM | 1,2,3,4,5 | 0.94 | 0.97 | 0.91 | 0.92 | 0.96 | 11.23 | 0.04 | |
SVM | 1,2,3,4 | 0.94 | 0.97 | 0.91 | 0.92 | 0.96 | 11.23 | 0.04 |
Metrics correspondent to eight IHC-decision tree algorithms and the best five machine learning algorithms are shown, cases of the VY subset were classified. Numeric Tags 1= CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1. IHC-decision tree algorithms could not overcome any of the remarkable metrics obtained for the best five machine learning algorithms
Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive values; LR+: likelihood ratio for positive test results; LR−: likelihood ratio for negative test result; PV: Perfecto–Villela; ANN: artificial neural networks; BS: Bayesian simple; SVM: support vector machine