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The rationale for genome-wide association study (GWAS) results is
sequence variation in cis-regulatory elements (CREs) modulating a
target gene’s expression as the major cause of trait variation. To
understand the complete molecular landscape of one of these
GWAS loci, we performed in vitro reporter screens in cardiomyo-
cyte cell lines for CREs overlapping nearly all common variants
associated with any of five independent QT interval (QTi)-
associated GWAS hits at the SCN5A-SCN10A locus. We identified
13 causal CRE variants using allelic reporter activity, cardiomyocyte
nuclear extract-based binding assays, overlap with human cardiac
tissue DNaseI hypersensitive regions, and predicted impact of se-
quence variants on DNaseI sensitivity. Our analyses identified at least
one high-confidence causal CRE variant for each of the five sentinel
hits that could collectively predict SCN5A cardiac gene expression and
QTi association. Although all 13 variants could explain SCN5A gene
expression, the highest statistical significance was obtained with
seven variants (inclusive of the five above). Thus, multiple, causal,
mutually associated CRE variants can underlie GWAS signals.
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Variable gene expression plays a major role in the phenotypic
evolution across species (1) and interindividual trait (or

disease risk) variation within species (2, 3). Although several
biological elements regulate gene expression, the major contri-
bution is from cis-regulatory elements (CREs) of gene expres-
sion, such as promoters, enhancers, and insulators (4). However,
for most coding genes, these noncoding CREs are largely un-
identified. Studies in model organisms indicate that multiple
unique and redundant CREs per gene are necessary for precise
spatiotemporal control of gene expression (5) and as a buffer
against widespread disruptive sequence variation within CREs
(6). Genome-wide association studies (GWAS) of human com-
plex traits and disease often implicate multiple independent
noncoding associations within a locus, consistent with multiple
CREs per gene. However, even multiple correlated trait-
associated variants may contribute to gene regulation. We have
previously demonstrated that in Hirschsprung disease, where
multiple independent and associated common CRE variants
modulate RET gene expression and disease risk (7).
Large-scale studies, such as the ENCODE (8) and NIH

RoadMap Epigenomics (9) projects, have made significant
strides toward annotation of the human genome with respect to
the molecular components of cis-regulation. However, these
datasets cannot be comprehensive or complete for all circum-
stances requiring cis-regulation of a specific gene. Consequently,
we present here a systematic approach for identification of all
CREs for a given gene, whose activity is altered by disease/trait-
associated common variants. We exemplify this CRE screen for
SCN5A using common variants associated with the electrocar-
diographic QT interval (QTi).

QTi, a clinically relevant quantitative trait with ∼30% herita-
bility and with age, gender, and heart rate as covariates (10),
measures the time taken by the cardiac ventricles to depolarize
and repolarize in every heartbeat. Its prolongation or shortening
is associated with an increased risk of cardiovascular morbidity
and mortality, primarily in the form of ventricular tachycardia
and ventricular fibrillation leading to sudden cardiac death
(SCD) (11). Extremes of the QTi are hallmarks of Mendelian
long-QT (LQTS) and short-QT syndromes, which are associated
with elevated risk for cardiac arrhythmias and SCD, and arise
from rare, high-penetrance coding mutations in nearly a dozen
genes encoding ion channels and associated proteins (12, 13),
including SCN5A. SCN5A encodes a voltage-gated sodium
channel alpha subunit, with rare coding mutations in type 3
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LQTS and Brugada syndrome (14). Further, at least one of the
35 loci identified by QTi GWAS in the general population en-
compasses SCN5A on chromosome 3p22.2 (15). Thus, both
coding and noncoding variants in SCN5A affect QTi variation
and SCD risk. Significantly, GWAS of other electrocardio-
graphic traits, the PR interval (16) and the QRS duration (17), as
well as conduction defects (18), atrial fibrillation (19), and
Brugada syndrome (20), have also mapped common variants to
this locus. Thus, although understanding SCN5A regulation is
important per se, we limited our SCN5A CRE screen here to
only the QTi-associated common variants at the 3p22.2 locus.
We performed an unbiased in vitro reporter screen for CREs

overlapping all common variants in linkage disequilibrium (LD)
with five QTi-associated GWAS hits at the SCN5A-SCN10A
locus to assess their potential causality, provided that an assay
could be developed (88%). We identified multiple causal CRE
variants, using reporter assays in human AC16 (21) and mouse
HL1 (22) cardiomyocyte cell lines, correlating with SCN5A car-
diac gene expression and capable of explaining the QTi associ-
ations. Finally, we assessed the adequacy of AC16 and HL1 as
in vitro cardiomyocyte cellular models, using RNA-sequencing
(RNA-seq) (23) and assay for transposase-accessible chromatin
using sequencing (ATAC-seq) (24) analyses. This study indicates
that multiple causal variants, genetically independent or not,
within CREs are contributory to trait association by varying their
target gene expression.

Results
Identification of QTi-Associated Candidate CRE Variants at SCN5A.
rs6793245 is the primary sentinel variant at the SCN5A-
SCN10A locus identified in a QTi GWAS meta-analysis (QT-
International GWAS Consortium) in European ancestry subjects
(SI Appendix, Fig. S1) (15). Four additional independent as-
sociations at the locus, rs11708996, rs11710077, rs6599234, and
rs6801957, based on low LD (r2 < 0.05) to other genome-wide
significant variants were also identified (15). Three of these
variants map to introns of SCN5A (rs6793245, rs11708996, and
rs11710077), one to an intron of SCN10A (rs6801957), and one
(rs6599234) to their intergenic region (SI Appendix, Fig. S1).
First, under the hypothesis that these five variants, or their LD
surrogates, are the causal factors underlying the associations, we
defined the target regions by their nearest upstream and
downstream recombination hotspots (recombination rate > 10
cM/Mb): four contiguous target regions covered ∼450 kb (25) (SI
Appendix, Fig. S1 and Table S1). Second, we used 1000 Genomes
Project data (26) from European ancestry subjects (n = 379)
to identify 121 common variants [minor allele frequency (MAF) >
5%] in the target and in moderate to high LD (r2 > 0.3) with

the five index variants (Fig. 1 and Dataset S1). We assumed that
all of these variants were causal candidates.

In Vitro Reporter Assays Identify 12 Candidate Causal CRE Variants.
We retrieved genomic sequences flanking these variants (±325 bp)
from the UCSC Genome Browser and used Primer3 (27) to
design variant-centered amplicons. A total of 104 amplicons
passed in silico primer design (Dataset S2), with 97 covering one,
6 covering two, and 1 covering three variants each (256 bp–617
bp, median = 397 bp; 0.25–0.63 guanine–cytosine content, me-
dian = 0.49). We cloned these amplicons into linearized pGL4.23
vector, immediately upstream of a minimal promoter driving
expression of firefly luciferase reporter gene; sequences (15–20
bases) homologous to the vector backbone cloning sites were
added to the 5′ ends of the forward and reverse primers (Dataset
S2). PCR amplification was performed on genomic DNA from
selected 1000 Genomes Project samples (26) that were homo-
zygous for either the reference or alternate alleles at each site.
Genomic DNA samples for multivariant amplicons were also
selected to capture all-reference or all-alternate alleles in sepa-
rate amplicons. Of 112 variants that passed primer design across
104 amplicons, we successfully cloned both alleles at 106 variants
within 98 amplicons (Fig. 1 and Dataset S2). All clones were
sequence-verified to ensure that other sequence differences
were absent.
At each site, reference and alternate alleles were evaluated for

CRE activity using transient reporter assays in the human AC16
(21) and mouse HL1 (22) cardiomyocyte cell lines. We com-
pared log10-transformed mean normalized reporter activity for
each construct in each cell line, and found high correlation for all
reference (r = 0.79) and all alternate (r = 0.81) alleles (SI Ap-
pendix, Fig. S2 and Dataset S3). To assess CRE activity, each test
construct was compared with empty vector to calculate stan-
dardized z-scores for log2-transformed relative firefly activities.
In HL1, at least one allele at 30 constructs behaved as an en-
hancer (average z-score > 2.326) and at least one allele at 51
constructs behaved as a suppressor (average z-score < −2.326),
while 17 constructs had intermediate values for both alleles and
were neutral (Fig. 2, SI Appendix, Fig. S3, and Dataset S4). The
corresponding numbers in AC16 were 35, 47, and 16 constructs,
respectively (Fig. 2, SI Appendix, Fig. S3, and Dataset S4). The
overall concordance in CRE effect between the two cell lines was
high (70%) and led to identification of 40 enhancers across the
two cell lines (Dataset S4). We considered any test element with
significant allelic enhancer activity difference in either cell line as
a CRE variant. In HL1 and AC16, eight of 30 (27%) and five of
35 (14%) constructs, respectively, showed allelic difference (P <
0.05), corresponding to a total of 12 (30%) unique elements on
13 common QTi-associated variants (Figs. 1 and 2).

SCN5A SCN10A

38,600,000 38,650,000 38,700,000 38,750,000 38,800,000chr3:
Index SNPs

LD SNPs
Amplicons

AC16 enhancers
HL1 enhancers

AC16 enhancer variants
HL1 enhancer variants

RefSeq Genes

Fig. 1. Genomic map of common variants at the QTi-associated SCN5A-SCN10A GWAS locus on chromosome 3p22.2. A 224-kb genomic segment is annotated
with tracks, showing (from top) the five independent GWAS hits (Index SNPs); all common (MAF > 5%) SNPs in 1000 Genomes Project European ancestry
samples in moderate to high LD (r2 > 0.3) with the five index SNPs (LD SNPs); amplicons encompassing the LD SNPs that were cloned and evaluated in reporter
assays (Amplicons); amplicons that were cis-regulatory enhancers by in vitro reporter assays in the human cardiomyocyte cell line AC16 (AC16 enhancers) and
the mouse cardiomyocyte cell line HL1 (HL1 enhancers); the cis-regulatory enhancers that displayed significant allelic difference in reporter activities in AC16
(AC16 enhancer variants) and HL1 (HL1 enhancer variants); and the protein-coding SCN5A and SCN10A (RefSeq) genes. The five independent GWAS hits are
marked in color (pink, blue, brown, purple, and green) in the Index SNPs track, while features in other tracks are color-coded based on the highest LD with
these five index variants. The genomic map was generated using custom tracks in the UCSC Genome Browser.
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In Vitro Binding Assays and In Silico Binding Predictions for Observed
CRE Variants. For additional experimental support of these 13
variants, we first performed electrophoretic mobility shift assays
(EMSAs) using both alleles at each variant, along with a 5-bp
deletion centered on each variant (Dataset S5) and nuclear ex-
tracts from HL1 and AC16. For six variants (rs12490047,
rs7373779, rs41312411, rs1171007, rs9880327, and rs13097780),
we found evidence of differential binding (stronger binding at
reference alleles for rs7373779, rs41312411, and rs13097780;
stronger binding at alternate alleles for rs12490047, rs1171007,
and rs9880327) by factors present in both HL1 and AC16 nuclear

extracts (Fig. 3). Importantly, the observed DNA–protein com-
plexes were lost in the deletion probes (Fig. 3). We did not ob-
serve any evidence of binding to probes representing the
remaining seven variants in either cell line. Note that signals
observed using AC16 nuclear extracts were consistently weaker
than those from HL1, despite the former’s human origin, leading
us to suspect that AC16 may be a less optimal cellular model
than HL1 for these studies. Second, we also evaluated the 13
candidate variants by in silico transcription factor (TF) binding
prediction. Twelve SNPs (except rs6810361) have at least one
significant match with either the reference or alternative allele,
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Fig. 2. In vitro activity variation in QTi-associated CREs at the SCN5A-SCN10A locus in cardiomyocyte cell lines. (Top) Average standardized reporter activity
(z-score) of all evaluated variant-centered amplicons (both alleles) is shown for assays performed in AC16 (pink) and HL1 (brown) cells; the empty vector
activity (control) is shown as a black circle. All tested amplicons (both alleles: first reference and then alternate) are arranged in their genomic order (Dataset
S2) along the x axis. The 99th and first-percentile z-scores from the empty vector controls are shown by the blue and orange dashed lines, respectively.
Variant-centered amplicons are shown as colored circles, except for the five index variant-centered amplicons, shown as triangles. Variant-centered amplicons
with significant allelic difference in enhancer activity are shown as filled circles or triangles; all other variant-centered amplicons are shown as empty circles or
triangles. Error bars are the SD of z-scores. (Bottom) Bar plots of average relative luciferase activities of the 12 selected variant-centered amplicons (13
variants; both alleles) that displayed enhancer activity with significant allelic difference in either HL1 (Left) and/or AC16 (Right) cell lines. Alt, alternate; Ref,
reference. Filled and empty bars indicate variant-centered amplicons with and without significant allelic difference in reporter activity, respectively. Asterisks
indicate P values from the Student’s t test (*P < 0.05; **P < 0.01; ***P < 0.001). Error bars are SEMs.

10638 | www.pnas.org/cgi/doi/10.1073/pnas.1808734116 Kapoor et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808734116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808734116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808734116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1808734116


or both (Dataset S6). Some SNPs are predicted to disrupt
binding sites of known cardiac TFs and are consistent with
EMSA results. For example, the alternate alleles of rs7373779
and rs41312411 are predicted to disrupt GATA and SP1 binding
sites, respectively, while the reference allele of rs12490047 is
predicted to disrupt PPAR binding.

High Specificity and Sensitivity of Reporter Screens for Enhancers.
We sought to assess the specificity of our reporter screen by
evaluating the 40 enhancer CREs we identified with data on
human open-chromatin regions (8, 9) using DNase hypersensi-
tive sites (DHSs), a hallmark of cis-regulation (28). We divided
all human tissues and cells for which DHS data are publicly
available (8, 9) into two groups: a “cardiac” group from adult
heart tissues only and a remaining “noncardiac” group. Of 40
CREs, nine and 31 elements mapped to cardiac and noncardiac
DHSs, respectively (SI Appendix, Fig. S4 and Dataset S7), while
of the 12 CREs with significant allelic differences, six and nine
elements, respectively, mapped to these groups (SI Appendix,
Fig. S4 and Dataset S7). Compared with expectations based on
DHS overlap with the 40 CREs, the subset of 12 with significant
allelic differences represents a 2.2-fold enrichment for the car-
diac group but none for the noncardiac group (cardiac: χ2 = 4.03,
P = 0.04; noncardiac: χ2 = 0.01, P = 0.92). To assess sensitivity,
we assessed the activity of 10 of the original set of 98 elements
with >50% sequence overlap with adult cardiac DHSs (9). In
HL1, eight and two of these elements acted as enhancers/sup-
pressors and were neutral in reporter assays; in AC16, these
numbers were nine and one, respectively (Dataset S7), demon-
strating a sensitivity of 80–90%.

Multiple Sources of Evidence Identify High-Confidence Causal CRE
Variants. For each of five independent QTi-associated signals,
we detected at least one candidate causal CRE variant (Fig. 1):
five (rs6810361, rs6771881, rs12490047, rs1805126, and
rs7373779) were in LD with the sentinel rs6793245; two others
(rs6772948 and rs41312411) were in LD with the secondary hit
rs11708996; the secondary hit rs1171007 was itself a CRE vari-
ant; two variants (rs9880327 and rs13097780) tested together
were in LD with the secondary hit rs6599234; and the secondary
hit rs6801957 was itself a CRE variant, as shown previously (29,
30), but also in LD with CRE variants rs4076737 and rs6798015.
As biological evidence of a high-confidence causal CRE variant,
we considered any that scored “positive” on two of three bi-
ological features: binding in EMSA, overlap with cardiac DHS
peak, or high delta support vector machine (deltaSVM) score
(>0.9) (31) (Table 1). Consequently, we found five high-
confidence causal CRE variants, one for each of the five in-
dependent QTi-associated signals: rs7373779 for rs6793245
sentinel variant, rs41312411 for rs11708996 secondary signal,
rs11710077 for itself, rs13097780 for rs6599234 secondary signal,
and rs6801957 for itself (Table 1).

Multiple Enhancer Variants Predict SCN5A Cardiac Gene Expression
and QTi Variation. Noncoding causal variants are expected to in-
fluence gene expression of a nearby gene(s) within the topo-
logically associating domain (TAD) encompassing these variants
(32). The TAD of interest containing SCN5A and SCN10A
also contains three additional genes (ACVR2B, EXOG, and
SCN11A). Gene expression in human cardiac left ventricular
tissue from the Genotype Tissue Expression (GTEx) project (n =
268) (33) failed to detect any expression quantitative trait locus
(eQTL) for any of these genes. Because this result could arise
from the low statistical power of eQTL detection, given the
limited sample size, we next evaluated whether multiple variants
could be better predictors (7). We first used standard multiple
linear regression models to demonstrate that SCN5A expression
in left ventricles was significantly associated with the five GWAS

Fig. 3. Differential binding of AC16 and HL1 nuclear proteins to cis-
regulatory enhancer variants. EMSAs, using 25-bp Cy5-labeled probes con-
taining the reference (ref) or alternate (alt) alleles at 13 enhancer variants
show evidence for differential binding (black stars) of nuclear factors from
HL1 (Left) and AC16 (Right) cells at six enhancer variants but are abrogated
in 20-bp Cy5-labeled probes carrying a 5-base deletion centered on the
variant of interest (del).
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index SNPs taken together (adjusted R2 = 0.04, P = 6.4 × 10−3)
(Fig. 4A and Dataset S8). It is important to point out that the
direction of effect for rs6801957 on SCN5A cardiac expression in
the multiple linear regression model (Dataset S8) was consistent
with that reported previously (30). A similar association was also
observed for SCN10A expression (adjusted R2 = 0.04, P = 5.4 ×
10−3), although SCN10A shows far lower expression than SCN5A

[transcripts per million (TPM) in the GTEx project, version 7:
0.044 vs. 36.02]. Of the five genes, only three have median TPM
greater than 0.1 in left ventricles, and of these, only SCN5A
exhibits significant association (ACVR2B: adjusted R2 = 0.003,
P = 0.33; EXOG: adjusted R2 = 0.005, P = 0.29) (Dataset S8).
Given multiple candidate causal variants and LD between

SNPs, one can expect similar significant association for other

Table 1. Features of the 13 putative causal enhancer variants identified in the CRE screen

Putative CRE variant EMSA binding Cardiac DHS peak deltaSVM score* Index variant and LD

rs6810361 N Y 0.12 rs6793245; 0.32
rs6771881 N Y 0.77 rs6793245; 0.60
rs12490047 Y N 0.03 rs6793245; 0.57
rs1805126 N N 1.16 rs6793245; 0.76
rs7373779 Y Y 1.55 rs6793245; 0.94
rs6772948 N N 0.92 rs11708996; 0.59
rs41312411 Y Y 1.13 rs11708996; 0.94
rs11710077 Y Y 1.35 rs11710077; 1.00
rs9880327 Y N 0.02 rs6599234; 0.69
rs13097780 Y N 1.36 rs6599234; 0.41
rs4076737 N N 0.19 rs6801957; 0.88
rs6801957 N Y 1.42 rs6801957; 1.00
rs6798015 N N 1.09 rs6801957; 0.76

N, no; Y, yes.
*deltaSVM scores >0.9 are considered statistically significant and are set in boldface.
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Fig. 4. Cardiac gene expression of SCN5A is significantly associated with QTi GWAS and CRE variants. Normalized expression of SCN5A in human heart left
ventricle tissue (n = 268; data from GTEx project, version 7) was compared with predicted expression from multivariable linear regression models using five
independent index GWAS variants (A), five high-confidence causal CRE variants (B), and the most significant causal CRE variants that maximized the asso-
ciation (C). The circles represent normalized expression in each sample, with the regression fit as shown. (D–F) Repeated comparisons of the SCN5A haplotype
expression (expr.) ratio to the predicted expression from multivariable linear regression models using the same sets of variants as A, B, and C, respectively.
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combinations of CRE variants. Indeed, the five high-confidence
causal CRE variants also achieved significant association with
SCN5A comparable to the five sentinel SNPs (adjusted R2 =
0.04, P = 5.3 × 10−3) (Fig. 4B and Dataset S9). Thus, we asked
whether any or all of the remaining eight candidate causal CRE
variants can further improve the genotype–gene expression as-
sociation. We included the five high-confidence causal CRE
variants and then considered all 255 (i.e., 28−1) possible com-
binations of the remaining eight candidate causal CRE variants
to build multivariable linear regression models and assess asso-
ciation. Of these, a set containing seven CRE variants
(rs7373779, rs6772948, rs41312411, rs11710077, rs13097780,
rs4076737, and rs6801957; henceforth referred to as the most
significant causal CRE variants) achieved the highest statistical
significance (adjusted R2 = 0.06, P = 1.2 × 10−3) (Fig. 4C and
Dataset S9), suggesting that the two additional CRE variants,
rs6772948 and rs4076737, also likely affect gene expression and
the QTi phenotype.
We next assessed the CRE genotype and gene expression as-

sociation by studying allelic imbalances of SCN5A cardiac ex-
pression. Thus, for each SCN5A heterozygous sample from the
GTEx project, we estimated SCN5A expression by haplotype and
calculated its ratio (“haplotype expression ratio”). We repeated
the multivariable linear regression analysis using the five index
variants, the five high-confidence causal CRE variants, and the
seven most significant causal CRE variants. Interestingly, the five
index SNPs are much more significantly associated with the
haplotype expression ratio than with total expression (adjusted
R2 = 0.27, P = 2.2 × 10−6; Fig. 4D). The five high-confidence
causal CRE variants achieved an even better association (ad-
justed R2 = 0.38, P = 3.8 × 10−9; Fig. 4E) than the five index
SNPs, but the set of seven causal CRE variants improved the
association marginally (adjusted R2 = 0.39, P = 1.0 × 10−8; Fig.
4F). Importantly, the estimated effects of these variants are
largely concordant between the two analyses (SI Appendix, Fig.
S5). When comparing the total expression-based and haplotype
expression-based models for the effects of the seven most sig-
nificant causal CRE variants, five of them showed the same di-
rection of effect, while the remainder have near-zero beta values
in the total expression-based model. Thus, the signals captured
in the two models are largely shared even though their statistics
are completely independent.
Finally, we asked whether SCN5A cardiac expression also

correlates with QTi. Since no existing study has cardiac gene
expression and QTi values in the same individuals, we instead
predicted (or imputed) SCN5A expression from genotypes in the
Atherosclerosis Risk in Communities (ARIC) study, where QTi
phenotypes are also available (15, 34). Although this approach is
similar to PrediXcan (35), we differ in that only potential regu-
latory variants are used as predictors. Both models for the seven
most significant causal CRE variants achieved significant corre-
lation between predicted SCN5A expression and QTi, but the
haplotype expression-based model predicted QTi better than the
total expression-based model (P < 1.6 × 10−7 versus P < 1.5 ×
10−10). Note that the QTi variation explained by SCN5A ex-
pression variation (R2 = 0.005) is not trivial, given that many
genetic, as well as environmental, factors influence the QTi (SI
Appendix, Fig. S6).

Adequacy of AC16 and HL1 as Cardiac Cellular Models. The genetic
studies we conducted critically depend on cellular models that
can serve as adequate surrogates for human tissue transcriptional
systems. To assess AC16 (human) and HL1 (mouse) as car-
diomyocyte models, we performed RNA-seq (23) and ATAC-seq
(24) to generate gene expression and open-chromatin maps,
respectively, and systematically compared them with available
data from various tissues and primary cells of human and mouse
origin. Gene expression profiles of both cell lines were

moderately to highly correlated to many matched human and
mouse tissues, including the heart (36, 37) (SI Appendix, Fig. S7
A, B, E, and F and Table S2). We suspect that these widespread
correlations arise from the many genes commonly expressed in
multiple tissues. Thus, we repeated this analysis after excluding
all commonly expressed genes (defined as expression >1 TPM in
at least 50% of samples), significantly reducing the correlation
for all tissues in both cell lines (one-tailed P < 2.2 × 10−16 for all
tissues in both cell lines based on Fisher r-to-z transformation).
Surprisingly, the HL1 gene expression profile showed the highest
correlation to mouse heart tissue, while AC16 did not, suggesting
that HL1 may be physiologically more relevant to cardiac anal-
ysis than AC16 (SI Appendix, Fig. S7 C, D, G, and H). To further
probe this aspect, we compared AC16 gene expression with
publicly available human primary cell gene expression data (8)
(SI Appendix, Table S3). Here again, reasonably high Pearson
correlation coefficients with all primary cells were observed (SI
Appendix, Fig. S8A), but removal of commonly expressed genes
revealed that AC16 was most significantly correlated with fi-
broblasts, followed by skeletal muscle myoblasts (no data were
available from primary cardiomyocytes) (SI Appendix, Fig. S8B).
These results support the fact that AC16 cells, generated by
fusing SV40-transformed human skin fibroblasts lacking mito-
chondria with nonproliferating ventricular primary cardiomyocytes
(21), transcriptionally appear fibroblast-like even though they ex-
press many well-established cardiac markers.
Finally, we compared open-chromatin maps of AC16 and HL1

with available data on human and mouse tissues and primary
cells (9, 37) (SI Appendix, Tables S4 and S5). In the top-scoring
50,000 open-chromatin regions in all tissues and primary cells
evaluated, consistent with the above data, we also discovered
that HL1 most significantly overlaps features in the mouse heart
(SI Appendix, Fig. S9A), while AC16 does so with human skin
fibroblasts (SI Appendix, Fig. S9B). Thus, for in vitro studies of
enhancer function in cardiomyocytes, the mouse HL1 appears to
be a better transcriptional cell line model than the human AC16.

Discussion
Significant variants from GWAS are commonly annotated using
epigenomic data from genome-wide analyses, such as in the
ENCODE (8) and NIH RoadMap Epigenomic (9) projects. This
is because the major assumption underlying GWAS is the pres-
ence of one or more variants disrupting CREs controlling a
target gene’s expression and, thereby, a downstream phenotype.
However, such annotations are not comprehensive because (i)
many of these CRE effects are cell type-specific and (ii) en-
hancer effects can be unique or redundant effects (shadow en-
hancers), as well as continuous or stage-specific, situations not
well represented in a single genome-wide survey (38). Also, trait
associations can arise from multiple variants that are function-
ally, but not necessarily genetically, independent (7, 39). Thus,
deep studies of individual genes/loci are an important adjunct to
understand the diversity of enhancers, their variants, and their
phenotypic effects, exemplified here for SCN5A using QTi-
associated common variants. The method we outline in this
study is one of several approaches one can take. Further, addi-
tional in-depth work is necessary to understand the role of
multiple causal CRE variants.
In this study, in contrast to other investigations, we compre-

hensively examine the DNA containing every QTi-associated
common variant for enhancer function, using three biological
criteria: allele-specific CRE activity, EMSA binding, and pre-
dicted effects on chromatin openness (DNaseI hypersensitivity).
We identify five high-confidence causal CRE variants collectively
associated with SCN5A cardiac gene expression to the same level
as the five independent index GWAS variants. However, the best
statistical model for explaining SCN5A gene expression includes
two additional CRE variants, beyond the above five, based on
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functional, rather than statistical, data. Thus, at this association
locus, we have identified a set of seven CRE variants that can
explain the QTi GWAS signal on chromosome 3p22.2. The al-
leles that prolong QTi increase SCN5A expression for all five
GWAS hits except one (rs11708996) (Dataset S10), likely a false-
negative finding owing to the small sample size in eQTL analysis.
However, the QTi-prolonging alleles of functional CRE variants
are not necessarily concordant with the direction of enhancer
activity or SCN5A gene expression. This feature is not un-
expected, because variant effects on the trait (SCN5A or QTi)
are from the ensemble of causal variants, rather than an
individual SNP.
As opposed to most GWAS loci, where the target gene is

unknown, we selected to identify CREs and their variants for
SCN5A using QTi-associated GWAS variants because of
SCN5A’s role in QTi regulation (12, 13). However, we also
evaluated the four other genes within the TAD encompassing
the QTi GWAS signals at this locus. Immediately downstream of
SCN5A is SCN10A, a gene that encodes a nociceptor-associated,
voltage-gated sodium channel alpha subunit. Based on our eQTL
analyses, we cannot completely rule out SCN10A as an addi-
tional target gene regulating QTi, but its role in PR and QRS
intervals is debatable and remains mechanistically unclear (40).
The three other genes are unrelated to QTi.
As shown here, GWAS associations can arise from multiple

CRE variants that are functionally, but may not be genetically,
independent. At both the population and individual levels then,
the genetic effects on the phenotype need to be understood as
arising from an ensemble of TFs that bind to multiple CREs (7).
As a consequence, a specific gene expression level can arise from
many different CREs, different CRE genotypes, and therefore
different TF occupancy profiles (5). A corollary is that some
combinations create a bigger gene expression effect than others,
leading to an ascertainment bias of detecting CREs with strong
allelic activity differences when assessed through a trait associ-
ation. Comprehensive CRE detection, such as performed here,
can therefore lead to uncovering a more unbiased set of variants
and CREs (SI Appendix, Fig. S10). Gene expression regulation is
largely (∼60% of variation) through variable CRE activity;
however, genetic variations at transregulatory sites, microRNA
(miR) binding sites, and sequences regulating posttranscriptional
and translational processing are additional causal factors. Con-
sider that rs1805126, with enhancer activity in HL1 cells (Table
1), is also a site for common SCN5A synonymous variation as-
sociated with cardiac electrophysiological parameters and mod-
ulating miR-24–driven regulation of SCN5A gene expression
(41). This suggests that our CRE-based screen may have failed to
detect other causal variants that do not also alter CRE activity.
Our in vitro reporter assays for CRE detection used two

cardiomyocyte-like cell lines, because cardiomyocytes are the
primary cells underlying cardiac impulse generation and propa-
gation (42), rather than published epigenomic information only.
As we show by their genomic characterization, the human cell
line AC16 is less cardiomyocyte-like than the mouse cell line
HL1, justifying the use of both. Also within the SCN5A QTi
GWAS locus we evaluated, we identified 22 ATAC-seq peaks in
AC16 cells, of which 13 (59%) overlapped human cardiac DHS
peaks and all but one (95%) overlapped human noncardiac DHS
peaks (Dataset S11). Nevertheless, the functional data show high
correlation for allelic activity and expression effect (enhancer/
suppressor/neutral) between AC16 and HL1. Since no single cell
line is expected to be a perfect proxy for cardiomyocytes in vivo,
using multiple cell lines can throw a wider net to identify relevant
CREs. However, genomic characterization of the cell lines used
is necessary.
This study focused on one locus and tested ∼100 sequence

elements using the classical luciferase enzymatic readout for
CRE detection; it also allowed us to test longer elements

(median = 397 bp) that can capture the typical size of enhancers.
However, expanding this approach to identify CREs across many
genes/loci is only practical using higher throughput methods,
such as the massively parallel reporter assay (MPRA) (43).
However, due to current technical limitations in high-density
oligonucleotide synthesis, current MPRA designs can only eval-
uate thousands of elements of ∼150 bp, limiting their use in
CRE/enhancer screens. Therefore, for CRE identification, each
of these approaches has its complementary advantages. How-
ever, both of these approaches suffer from technical artifacts.
First, false-positive findings in reporter assays are not un-
common, which is why we require additional functional criteria
(open-chromatin overlap, binding of nuclear factors, and pre-
dicted impact of variants on DNaseI sensitivity) for CRE iden-
tification. Second, reporter assays can also identify apparent
suppressors of reporter activity. In this study, AC16 and HL1
identified 59 unique suppressor elements. Given that the re-
porter activity of each test element evaluated was in the context
of a minimal TATA-box promoter in pGL4.23, observing this
large number of suppressive elements was surprising. We hy-
pothesize that this silencing effect is due to positional effects of
heterochromatinized test elements. We believe this to be an
artifact because 31 (53%) of the 59 suppressors overlap known
DHS peaks in one or more human tissues/cells, close to its ex-
pectation of ∼42% (χ2 = 1.6, P = 0.21) (2). In contrast, of the 40
enhancers identified across AC16 and HL1, 32 (80%) overlap
known DHS peaks in one or more human tissues/cells, a twofold
enrichment over expectation (χ2 = 13.8, P = 2.0 × 10−4).
Therefore, broader studies of the kind reported here are nec-
essary to delineate how trait associations arise from noncoding
genetic variation.

Materials and Methods
Variant Selection.Our analysis focused on the sentinel variant, rs6793245, and
four other independent association signals, rs11708996, rs11710077,
rs6599234, and rs6801957, at the SCN5A-SCN10A locus; these were associ-
ated with the QTi in a GWAS meta-analysis of individuals of European an-
cestry (15). We defined target regions around these variants using
recombination hotspots (recombination rate >10 cM/Mb) identified in the
HapMap phase II genetic map (25) (ftp://ftp.ncbi.nlm.nih.gov/hapmap/
recombination/2011-01_phaseII_B37/). Within this region, we selected all
common (MAF > 5%) variants observed in the 1000 Genomes Project (26)
European ancestry samples (n = 379; ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20110521/) that were in moderate to high LD (r2 > 0.3) with any
of the five variants. LD was calculated by VCFtools (vcftools.sourceforge.net/)
using the 1000 Genome Project phased genotypes.

Amplicon Design. Genomic sequences flanking selected variants (±325 bp)
were obtained from the UCSC Genome browser (https://genome.ucsc.edu/
cgi-bin/hgGateway; hg19) and used as input for primer design. Primers were
designed using Primer3 (27) (bioinfo.ut.ee/primer3-0.4.0/) in batch mode (all
default settings except the following: mispriming library human; primer size
minimum 20, optimum 25, maximum 27; primer Tm minimum 55, optimum
65, maximum 70; maximum Tm difference 5; primer GC minimum 30, opti-
mum 50, maximum 60; primer maximum polynucleotide 3; primer GC clamp
0/1). Primer pairs were evaluated for specificity against the human reference
genome template using the Primer-BLAST tool (https://www.ncbi.nlm.-
nih.gov/tools/primer-blast/) to retain only those that mapped to a single
target. For In-Fusion cloning of amplicons into the pGL4.23 vector (Promega)
between the KpnI and XhoI sites, TGGCCTAACTGGCCGGTACC vector ho-
mologous sequence was added to the 5′ end of all forward primers and
TCTTGATATCCTCGAG vector homologous sequence was added to the 5′ end
of all reverse primers.

Amplification and Cloning. All steps of amplification and cloning were per-
formed in 96-well and 24-well formats. Variant-centered amplicons were PCR-
amplified using genomic DNA from 1000 Genomes Project samples (26) that
were homozygous for the reference or alternate allele at each variant. PCR was
performed in a 50-μL volume containing 50 ng of genomic DNA, 0.2 mM (each)
dNTP, 500 nM forward primer, 500 nM reverse primer, 1 unit of Phusion High-
Fidelity DNA Polymerase (New England Biolabs), and 1× Phusion HF buffer
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(New England Biolabs). Thermal cycling was performed as follows: initial
denaturation at 98 °C for 1 min, 35 cycles of denaturation at 98 °C for 10 s,
annealing at 65 °C for 15 s, extension at 72 °C for 20 s, and final extension
at 72 °C for 5 min. An aliquot (5 μL) of PCR product was visualized by 2%
agarose TAE (Tris base, acetic acid, and EDTA) gel electrophoresis. PCR
products were purified using AMPure XP magnetic beads (Beckman Coulter)
following the manufacturer’s recommendations, and the final elution
was performed using 30 μL of 10 mM Tris pH 8.0. The pGL4.23 vector
(Promega) was linearized by double digestion with KpnI-HF (New England
Biolabs) and XhoI (New England Biolabs) and gel-purified using a QIAquick
Gel Extraction Kit (Qiagen). Purified PCR products were cloned into line-
arized pGL42.3 vector using an In-Fusion HD EcoDry Cloning Kit (Clontech)
following the manufacturer’s recommendations. Briefly, 10–50 ng of pu-
rified PCR product (2 μL postelution) was mixed with 50 ng of linearized
pGL4.23 vector in a total volume of 10 μL, added to the In-Fusion HD
EcoDry pellet, and mixed by pipetting. The In-Fusion reaction mixture was
incubated at 37 °C for 15 min, followed by 50 °C for 15 min, and was then
cooled on ice. Following a 10-fold dilution with 10 mM Tris pH 8.0, 1 μL of
the diluted In-Fusion reaction mixture was used to transform 20 μL of Stellar
competent cells (Clontech). Of the 100-μL transformation mixture [after
addition of 80 μL of SOC medium (Thermo Fisher Scientific)], 2 μL was diluted
with 23 μL of SOC medium, spread on selective medium [LB agar + ampicillin
(50 μg/mL)], and incubated overnight at 37 °C. Bacterial colonies were in-
oculated in LB broth + ampicillin, incubated at 37 °C and 225 rpm overnight,
and then harvested for glycerol stock and plasmid preparations. Positive
clones for each allele of each variant were identified by restriction digestion
(KpnI and XhoI) and Sanger sequencing of plasmid DNA using pGL4.23
vector backbone primers.

Cell Culture.Mouse cardiomyocyte HL1 cells (a gift fromWilliam C. Claycomb,
Louisiana State University, New Orleans) were maintained in Claycomb
medium (Sigma) (22). Human cardiomyocyte AC16 cells (Mercy P. Davidson,
Columbia University, New York) were maintained in DMEM/F-12 (Thermo
Fisher Scientific) as described (21).

Reporter Assays. To assess cis-regulatory activity, each test element (variant-
centered amplicon) was cloned upstream of a minimal promoter driving
firefly luciferase gene in the pGL4.23 vector (Promega). Reporter constructs
were transfected into HL1 and AC16 cells, grown in 24-well plates at ∼90%
confluency, using FuGENE HD Transfection Reagent (Promega) following the
manufacturer’s recommendations. pRLSV40 (Promega), expressing Renilla
luciferase, was cotransfected to normalize for transfection efficiency.
Twenty-four hours after transfection, cells were harvested and lysed, and
firefly and Renilla luciferase activities were measured on the Infinite 200Pro
multiplate reader (Tecan) using the Dual-Luciferase Reporter Assay System
(Promega) following the manufacturer’s protocols. Luciferase activity from
each test construct was measured in three replicates, except for the empty
vector construct, which was measured in six replicates. For each measure-
ment, the observed firefly luciferase reading was divided by the observed
Renilla luciferase reading to get relative firefly activity. Relative firefly ac-
tivity was divided by the average relative firefly activity from empty vector,
and then averaged across replicates, to obtain the mean normalized re-
porter activity for each test construct. To compare reporter assays between
two cell lines, the log10-transformed mean normalized reporter activity for
the reference and alternate allele in one cell line was compared with the
log10-transformed mean normalized reporter activity for the reference and
alternate allele in the other cell line. To assess enhancer, suppressor, or
neutral activity, the relative firefly activity from each measurement was log2-
transformed and a standardized z-score was calculated based on the mean
and SD of log2-transformed relative firefly activity from empty vector. The z-
scores across replicates of a test construct were averaged: constructs with an
average z-score value greater than 2.326 (99th percentile of a standard
normal distribution) were called enhancers, and constructs with an average
z-score value less than −2.326 (analogous first percentile) were called sup-
pressors; other elements were neutral. The significance of the allelic differ-
ence for enhancer constructs was evaluated by comparing the log2-
transformed relative firefly activities of the two alleles using a Student’s
t test.

EMSAs. Nuclear extracts from HL1 and AC16 cells were prepared with NE-PER
Nuclear and Cytoplasmic Extraction Kits (Thermo Fisher Scientific) following
the manufacturer’s instructions. Twenty-five–base–long sense (3′ Cy5-
labeled) and antisense oligos centered on the variants of interest (for both
alleles), along with 20-base-long sense (3′ Cy5-labeled) and antisense oligos
carrying a 5-base deletion centered on the variant of interest, based on the

reference human genome sequence (UCSC Genome Browser, https://
genome.ucsc.edu/cgi-bin/hgGateway), were synthesized (Integrated DNA
Technologies). Equimolar amounts of complementary oligonucleotides were
mixed and annealed in 10 mM Tris pH 7.4 using a thermal cycler [95 °C for 5
min, −1 °C per cycle with a 1-min incubation at each cycle (70 cycles), and 25 °C
for 5 min] to generate double-stranded fluorescent-labeled probes. For binding
assays, 2 μL of labeled probe (10 nM) was incubated with 4 μL of the nuclear
extract and 1 μg of poly(deoxyinosinic–deoxycytidylic) in a buffer containing
10 mMTris pH 8.0, 0.1 mg/mL BSA, 50 μMZnCl2, 100 mM KCl, 10% glycerol, and
0.1% IGEPAL CA-630 in a 20-μL reaction, and incubated in the dark for 1 h at
4 °C. Protein–DNA complexes were resolved by running them on a non-
denaturing 8% polyacrylamide 1× Tris-glycine gel (prerun for 1 h at 100 V) for
∼30 min at 200 V, with fluorescence detected using a Typhoon 9400 Imager (GE
Amersham).

Overlap with DHS Datasets and DeltaSVM Scores. To evaluate overlap of each
cis-element with published DHS data, we used all available DNase-sequencing
(DNase-seq) data (n = 799) from the ENCODE (8) (https://www.encodepro-
ject.org/) and NIH Roadmap Epigenomics (9) (www.roadmapepigenomics.org/)
projects. We also included DNase-seq data from two adult human heart sam-
ples we generated recently (44). For each experiment, DHS peaks were called
using MACS2 (version 2.1.1) (45) and an overlap was declared when >50% of a
test element was part of a DHS peak. Overlap analysis was performed against
DHS peaks called in (i) samples from adult heart tissues only (cardiac set; n = 5)
and (ii) samples from all human tissues and cells except adult heart tissues
(noncardiac set; n = 796) as described (44). We also used deltaSVM scores for
selected variants from the generic cardiac gkm-SVM model in the same
study (44).

In Silico Prediction of TF Binding Sites. For each of the 13 candidate causal CRE
variants, we generated two 21-base-long sequences centered at the SNP,
corresponding to the reference and alternate alleles. We scanned these 26
sequences using FIMO (46) against the JASPAR CORE vertebrates (non-
redundant) database (2018; meme-suite.org/db/motifs), with default settings.
The database contains 579 manually curated and nonredundant motifs.

GTEx eQTL Analyses. Raw read counts per transcript for 272 heart left ventricle
samples (GTEx_Analysis_2016-01-15_v7_RSEMv1.2.22_transcript_expected_count.
txt.gz) were obtained from the GTEx portal (33) (https://www.gtexportal.org/
home/; version 7), as were the first three principal components of genotypes,
gender, and genotyping platform. Theses raw counts were aggregated to
obtain raw read counts per gene, which were subjected to variance stabilizing
transformation (VST) as implemented in DESeq2 (47). Genes with at least three
VST-normalized read counts in at least 20% of the samples (at least 55 samples)
were retained. We then used the probabilistic estimation of expression re-
siduals (PEER) method (48) to account for hidden covariates (i.e., batch ef-
fects) in the expression data. We obtained the first 40 PEER factors using the
VST-normalized read counts as expression input and the three principal
components from genotypes, gender, and genotyping platform as covariates.
After removing four outliers (>3 SD from the mean of the VST-normalized
read counts), we regressed out the 45 covariates (40 PEER factors, three
principal components, gender, and platform) and performed eQTL analysis
using residuals as normalized gene expression values. We built standard
multivariable linear regression models using genotypes from the GTEx dbGaP
database via authorized access (accession no. phs000424.v7.p2). All genotypes
were identified by whole-genome sequencing and coded for alternate alleles.
Therefore, the sign of beta values (effect sizes) is always relative to their
alternative alleles.

To calculate haplotype expression ratios, allele-specific expression (ASE)
data for SCN5A in the 220 heart left ventricle samples that have at least one
heterozygous ASE SNP were extracted from the GTEx dbGaP database via
authorized access. Since phased genotypes from whole-genome sequencing
data are not yet available, we instead obtained phased (and imputed)
genotypes from the array data for 152 of the 220 samples. We further fil-
tered out 12 additional samples in which no phased genotypes were avail-
able for their ASE SNPs, resulting in 140 samples. Then, for each of these
samples, we aggregated the read counts of the SCN5A ASE SNPs by haplo-
type to estimate haplotype expression levels and calculated the ratio be-
tween the two haplotypes. We excluded samples that significantly deviate
from the mean of the expression ratio (>3 SD). As for the independent
variables, we calculated the difference in allele identities for each test SNP
between the two haplotypes using phased genotypes. We note that any
samples with unphased genotypes for the independent variables could not
be used in our analysis and were removed. Similar to the previous total
expression-based analysis, we built multivariable linear regression models to
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predict haplotype expression ratio from the same sets of variants. To eval-
uate the effect of noise in the ASE read counts, we repeated the regression
analysis using different thresholds for the minimum haplotype read counts
(0, 30, 50, and 100) (SI Appendix, Fig. S11) and determined that 100 read
counts were an optimal threshold.

Comparison of QTi and SCN5A Expression Using the ARIC Study Data. We
studied 8,046 European ancestry subjects in whom we had access to both QTi
phenotype and imputed genotype data. For sample quality control, we
adopted an established pipeline from our previous study (15, 49). We cor-
rected the raw QTi ECG measure for three covariates: heart rate (calculated
from RR interval on ECG), age and gender, as previously described (15, 49);
regression residuals were used as the “normalized QTi.” We then calculated
the predicted gene expression using the multivariable regression model of
the seven most significant causal CRE variants.

Cell Line RNA-Seq. Total RNA was isolated from HL1 and AC16 cells using a
RNeasy Mini Kit (Qiagen) following the manufacturer’s instructions, including
the on-column DNase treatment using the RNase-Free DNase set (Qiagen).
RNA quality was assessed using a Bioanalyzer RNA Kit (Agilent Technologies)
before preparing sequencing libraries. An Illumina TruSeq RNA Sample Prep-
aration Kit v2 (Illumina) was used to generate indexed sequencing libraries
following the manufacturer’s protocols. A sample from each library was used
to assess library fragment size distribution by electrophoresis, using a Bio-
Analyzer High Sensitivity DNA Assay (Agilent Technologies), and to assess li-
brary concentration by qPCR, using a KAPA Library Quantification Kit (KAPA
Biosystems). Equimolar amounts of libraries were pooled and sequenced on an
Illumina HiSeq 2500 instrument using standard protocols for paired-end 100-
bp reads with a desired sequencing depth of ∼75 million paired-end reads per
library. RNA-seq for both cell lines was performed in technical duplicates.

Cell Line RNA-Seq Analyses.We estimated the abundance of mRNA transcripts
for each of the replicates using Kallisto (50). For estimating gene and tran-
script expression levels, we used the GENCODE human transcript (release 25
mapped to GRCh37) and mouse transcript (release 12 mapped to GRCm38)
sequences as references (gencode.v25lift37.transcripts.fa.gz and genco-
de.vM12.transcripts.fa.gz; https://www.gencodegenes.org/). TPM values
were estimated using Kallisto (50) directly from the raw reads, with default
settings, and aggregated to obtain gene-level TPMs for downstream anal-
ysis. To compare gene expression profiles of AC16 and HL1 cell lines with
human and mouse tissues and primary cells, we calculated the Pearson
correlation coefficients between gene level TPMs using public RNA-seq data
for a broad set of human tissues/primary cells and mouse tissues down-
loaded from the mouse ENCODE project (37) (www.mouseencode.org/).
Specifically, we obtained the raw read FASTQ RNA-seq files for matched
human and mouse tissues (36) and quantified gene level TPMs using the
same pipeline as above. For primary human cells, we obtained gene level
TPMs from the ENCODE project (8) (https://www.encodeproject.org/). We
applied the log2 transformation to TPMs with one pseudocount, and only
considered protein coding genes for correlation analysis. Average TPM val-
ues of the AC16 and HL1 technical replicates were used for analysis. We also
repeated the correlation analysis after removing commonly expressed
genes, defined as genes with TPM > 1 in at least 50% of samples (six for
tissues and 13 for primary cells). All HL1 and AC16 RNA-seq data have been

deposited in the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and are ac-
cessible at accession no. GSE109716.

ATAC-Seq and Analysis. ATAC-seq was performed on ∼50,000 fresh unfixed
HL1 and AC16 cells each, using published protocols (24). A sample from each
indexed library was used to assess library fragment size distribution by 2%
agarose TAE gel electrophoresis and to assess library concentration by qPCR
using the KAPA Library Quantification Kit (KAPA Biosystems). Equimolar
amounts of libraries were pooled and sequenced on an Illumina HiSeq 2500
instrument using standard protocols for 50-bp paired-end sequencing, with
a desired sequencing depth of ∼150 million paired-end reads per library.

For primary data processing and peak calling, we adopted existingworkflows
(24, 51) with some modifications. Briefly, we aligned the paired-end reads to
the reference genome (hg19 for human and mm9 for mouse) using Bowtie2
(version 2.2.3) (52) with options “-X 2000 --dovetail --no-mixed --no-discordant
-t” after trimming the adapter sequences (CTGTCTCTTATACACATCT) from the
raw reads using Cutadapt (version 1.12) (53) with parameters “-q 3,3 -m 35.”
Duplicated reads were removed using SAMtools (version 1.3.1) (54) with the
“rmdup” command, and only properly paired and mapped reads with a
mapping quality score >30 were retained for peak calling. All reads mapping to
the + or − strand were offset by +5 bp and −4 bp, respectively, to account for
the 9-bp duplication of the target site by Tn5 transposase (55). Next, we
identified peaks using MACS2 (version 2.1.1) (45) with the option “--nomodel
--shift -50 --extsize 100 --keep-dup all” and defined open-chromatin regions as
600-bp regions centered at the summits of MACS2 peaks; overlapping regions
were merged. To compare these regions from AC16 and HL1 cell lines with
human and mouse tissues and primary cells, we used public DNase-seq data
from the NIH Roadmap Epigenomics (9) (www.roadmapepigenomics.org/) and
mouse ENCODE (37) (www.mouseencode.org/) projects. Specifically, we
obtained mapped reads of DNase-seq experiments from diverse human and
mouse tissues and primary cells, and called DHS peaks and defined open-
chromatin regions as above. For a fair comparison, we further selected the
top 50,000 regions from each of the datasets based on MACS2 P values. We
evaluated the similarities between the open-chromatin regions of AC16 and
HL1 cell lines and human/mouse tissues and primary cells using the Jaccard
index (number of bases in their intersection over their union). All HL1 and AC16
ATAC-seq data have been deposited in the NCBI GEO (https://www.ncbi.nlm.-
nih.gov/geo/) and are accessible at accession no. GSE109716.
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