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Cardiolipin (CL) is a mitochondrial phospholipid with a very specific
and functionally important fatty acid composition, generated by
tafazzin. However, in vitro tafazzin catalyzes a promiscuous acyl
exchange that acquires specificity only in response to perturbations
of the physical state of lipids. To identify the process that imposes
acyl specificity onto CL remodeling in vivo, we analyzed a series of
deletions and knockdowns in Saccharomyces cerevisiae and Drosophila
melanogaster, including carriers, membrane homeostasis proteins,
fission-fusion proteins, cristae-shape controlling and MICOS proteins,
and the complexes I–V. Among those, only the complexes of oxidative
phosphorylation (OXPHOS) affected the CL composition. Rather than
any specific complex, it was the global impairment of the OXPHOS
system that altered CL and at the same time shortened its half-life.
The knockdown of OXPHOS expression had the same effect on CL
as the knockdown of tafazzin in Drosophila flight muscles, including
a change in CL composition and the accumulation of monolyso-CL.
Thus, the assembly of OXPHOS complexes induces CL remodeling,
which, in turn, leads to CL stabilization. We hypothesize that
protein crowding in the OXPHOS system imposes packing stress on
the lipid bilayer, which is relieved by CL remodeling to form tightly
packed lipid–protein complexes.
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The biogenesis of mitochondrial membranes requires the as-
sembly of proteins and lipids. While it is known that proteins

form well-defined complexes (1, 2), supercomplexes (3–5), and
mesoscopic structures (6, 7), the assembly of lipids, their self-
organization and their interactions, are not as clearly under-
stood. Among the mitochondrial lipids, cardiolipin (CL) is par-
ticularly important because it binds tightly to proteins (8–10) and
increases substantially their propensity to cluster and to form
supercomplexes (11–13). CL is therefore critical for the coassembly
of lipids and proteins in mitochondrial membranes.
The biosynthesis of CL is followed by an exchange of its four

fatty acids (14–16), called CL remodeling, which is accomplished
by the combined action of a phospholipase (17) and tafazzin, a
phospholipid-lysophospholipid acyltransferase (18). CL remod-
eling seems to play a role in membrane assembly because muta-
tions in tafazzin have profound effects on membrane homeostasis,
including a reduction in the CL concentration (19–21), a lower
abundance of supercomplexes (22–27), reduced efficiency of oxi-
dative phosphorylation (28, 29), and the clinical phenotype of
Barth syndrome (30). We recently found that CL remodeling is a
precondition for the exceptionally long half-life of CL (26).
Two unresolved issues have emerged with regard to the

mechanism of CL remodeling. First, the connection between CL
remodeling and membrane assembly and indeed the very func-
tion of CL remodeling have not been established and second, the
observed substrate specificity of CL remodeling remains to be
explained. This is because tafazzin is a promiscuous transacylase
that reacts with all phospholipids and does not have any intrinsic
acyl specificity (31). It is therefore not clear what is driving the
incorporation of certain fatty acids specifically into CL. We have

shown that the specificity of the tafazzin reaction results from the
physical properties of lipids. For instance, one can force tafazzin to
produce certain lipid species in vitro by altering the lipid phase state
provided this alteration induces sufficient packing stress (31, 32).
However, it is unknown what triggers such packing stress in vivo.
To identify the process that induces CL remodeling in vivo, we

altered the expression of various mitochondrial proteins. Spe-
cifically, we searched for proteins that, like tafazzin, produce an
altered CL species composition and a partial replacement of CL
by monolyso-cardiolipin (MLCL). We focused on inner mem-
brane proteins that are expected to disturb the packing order of
mitochondrial lipids. These included the MICOS complex and the
ATP synthase because they may induce strong membrane curvature
(33–36), the fission-fusion machinery because fission and fusion
create nonbilayer membrane intermediates (37), and respiratory
complexes because they may entrap lipids in a crowded protein
environment (38, 39). We reasoned that identifying the source of
acyl specificity is likely to reveal the biological function of tafazzin.

Results
Cld1, taz1, and Mitochondrially Encoded Proteins Are Necessary for CL
Remodeling in Yeast. CL remodeling in yeast requires the phos-
pholipase cld1 and the tafazzin homolog taz1 (17, 21, 28, 40–42).
Consistent with that notion, we found that the deletion of either
enzyme reduced the proportion of tetra-unsaturated CL in favor
of diunsaturated and triunsaturated species (Fig. 1A). Since cld1
removes acyl groups from CL and taz1 is capable of reattaching
them, they have been thought to work in tandem, exchanging fatty
acids by repeated cycles of deacylation and reacylation (Fig. 1B).
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Therefore, both enzymes are expected to accelerate the turnover
of CL-bound fatty acids. To test this prediction, we incubated yeast
strains with 2H33-oleic acid and determined isotopomer abundance
patterns of oleoyl-containing lipid species (Fig. 1C), which can be
used to calculate their fractional syntheses (26). As shown previously
in flies and cell cultures (26), the turnover of CL was considerably
slower than the turnover of other lipids (Fig. 1D). However, deletion
of cld1 further decreased the turnover of CL, whereas deletion of
taz1 had the opposite effect (Fig. 1 E and F). This is not consistent
with the deacylation-reacylation mechanism shown in Fig. 1B but
suggests that cld1 and taz1 act separately on CL. We propose a
revised mechanism, in which cld1 converts CL to MLCL and then
taz1 redistributes fatty acids between MLCL, CL, and other lipids,
which prolongs the half-life of CL (Fig. 1G).
As expected, Cld1 removed saturated acyl groups from CL in

vivo (SI Appendix, Fig. S1), consistent with its enzymatic specificity
in vitro (42). In contrast, taz1 acquires acyl specificity through the
phase state of lipids in vitro (31, 32), which raises the question of
what affects the acyl specificity in vivo. To identify factors that affect
the acyl specificity of CL remodeling, we measured the CL com-
position at different culture conditions. Conditions that promoted
mitochondrial biogenesis, such as the stationary instead of the
logarithmic growth phase or a nonfermentable (yeast extract-
peptone-glycerol-ethanol, YPGE) instead of a fermentable (yeast
extract-peptone-dextrose, YPD) carbon source, increased the
abundance of CL 68:4, CL 70:3, and CL 70:4 at the expense of CL
64:2, CL 66:2, CL 66:3, and CL 68:2. Importantly, this effect was
no longer present in the deletion mutants cld1Δ, taz1Δ, and
cld1Δtaz1Δ (Fig. 2A and SI Appendix, Fig. S2). Since conditions
that favor mitochondrial biogenesis also promote the expression of
proteins of oxidative phosphorylation (OXPHOS), we asked
whether the OXPHOS system plays a role in CL remodeling.
Indeed, when cells lacked mitochondrial DNA (rho0), preventing
the assembly of any OXPHOS complex, the CL composition be-
came abnormal. Deletion of mitochondrial DNA from the wild
type was as effective in altering CL as deletion of TAZ1 or CLD1,
but deletion of mitochondrial DNA from cld1Δ, taz1Δ, or
cld1Δtaz1Δ did not cause any further changes (Fig. 2B). These data
demonstrate that besides Cld1 and Taz1, other proteins play a role
in the remodeling of CL.

Specific Subunits of the OXPHOS System Affect CL Remodeling in
Yeast and in Drosophila. To identify specific proteins involved in
CL remodeling, we analyzed the CL composition in yeast strains
that carried deletions in the OXPHOS system, the MICOS
complex, solute carriers, and proteins affecting the membrane
organization (listed in SI Appendix, Table S1). Among those,
only the deletion ofMGM1, FZO1, and some OXPHOS subunits
had an effect on the CL composition but not the deletion of
MICOS proteins, carriers, PHB2, MDM33, AIM24, or DNM1
(Fig. 2C). The effects of mgm1Δ and fzo1Δ were expected given
that these mutants are unable to maintain mitochondrial DNA
and, therefore, behave similar to rho0 cells (43–45). Accordingly,
they also had a very low CL content (SI Appendix, Table S2).
However, the findings in the OXPHOS system were intriguing
because in all three complexes, some deletions had an effect on
CL, but others did not. For instance in complex IV, the deletion
of COX6 altered the CL composition but the deletion of COX12
did not, although both deletions inhibited complex IV activity as
shown by the growth defect on nonfermentable carbon sources
(SI Appendix, Fig. S3). Likewise, some subunits of complexes
III and V were essential for CL remodeling, but others were
not (Fig. 2C). Importantly, deletion of ATP20 and TIM11 did not
affect CL, suggesting that the dimerization of complex V was not
required to maintain a normal CL composition. To further test
the involvement of the OXPHOS system, we deleted OXA1, the
membrane insertion machinery that is required to initiate the
assembly of OXPHOS complexes (46). OXA1 deletion altered

the CL composition drastically (Fig. 2C). Thus, particular
deletions in the OXPHOS system had a similar effect on the CL
composition as the deletion of TAZ1, although they did not in-
duce the formation of MLCL (SI Appendix, Fig. S4). Together,
our data strongly support the idea that the OXPHOS complexes
are involved in the remodeling of yeast CL.
To explore the extent to which this phenomenon is conserved,

we tested this result in a different organism. Specifically, we
knocked down mitochondrial proteins in Drosophila S2 cells
using double-stranded RNA-mediated interference (RNAi) (47).
RNAi efficiency was determined by quantitative RT-PCR (SI
Appendix, Table S3), and the knockdown effect on the CL spe-
cies composition was determined by mass spectrometry (MS). As
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Fig. 1. Taz1 and Cld1 have opposite effects on the turnover of CL in yeast.
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expected, the knockdown of tafazzin altered the composition of
CL by shifting the proportion of the three main species (CL 64:4,
CL 66:4, CL 68:4) from longer to shorter chains. In contrast, the
knockdown of many other mitochondrial proteins, including
proteins involved in mitophagy (PINK1, FUNDC1), the fission-fusion
cycle, cristae biogenesis (OPA1, DRP1, FIS1), the adenine nucleotide
translocase (ANT2), and the mic60 homolog mitofilin, did not
cause any change in CL. However, knockdown of the mitochondrial
RNA polymerase (mtRNAP), which prevents the assembly of all
OXPHOS complexes, altered the CL composition, as did the
knockdowns of ND75 and COX7C. The knockdowns of mtRNAP
and COX7C were as effective in changing CL as the knockdown
of tafazzin (Fig. 3A). Importantly, the abundance of tafazzin
remained normal (SI Appendix, Fig. S5). These data confirm the
importance of OXPHOS proteins for CL remodeling and docu-
ment that their effect was not caused by a suppression of the
tafazzin protein level.

Only Global Inhibition of the OXPHOS Expression Destabilizes CL. To
determine why some OXPHOS proteins affected CL but others
did not, we performed tissue-specific knockdowns in Drosophila
flight muscle, an organ with very high OXPHOS capacity (48),
and measured the total amount of CL (SI Appendix, Fig. S6),
the composition of CL species (SI Appendix, Table S4), and the
abundance of OXPHOS complexes (SI Appendix, Fig. S7). The
knockdowns of core subunits were generally more effective in
altering the CL composition than the knockdowns of accessory
subunits (Fig. 3B). Importantly, the knockdown of several core
subunits also increased the MLCL/CL ratio, i.e., they faithfully
mimicked the effect of tafazzin on CL (Fig. 3C). Those knock-
downs (SdhC, UQCR-C1, ATPsyn-α, ATPsyn-β, ATPsyn-γ) also
caused larger changes in the CL composition than most other
knockdowns (Fig. 3D). At the same time, those knockdowns re-
duced the abundance of multiple OXPHOS complexes, including

supercomplexes, not only the abundance of a single complex. In
particular, the knockdown of UQCR-C1 and ATPsyn-γ suppressed
nearly all OXPHOS complexes (SI Appendix, Fig. S7). In contrast,
knockdowns that reduced only a single complex were less effective
in changing CL. Thus, impaired assembly of the OXPHOS com-
plexes led to changes in the CL composition, the severity of which
were greater the more complexes were affected. To further test global
involvement of OXPHOS complexes, we overexpressed ImpL2,
a secreted homolog of insulin growth factor binding protein 7,
which counteracts insulin signaling in flies (49, 50). Indeed,
overexpression of ImpL2 caused a reduction in the abundance of all
OXPHOS complexes and a near complete loss of supercomplexes
in flight muscle mitochondria. The total amount of CL was also
reduced, and the composition of CL was altered (SI Appendix,
Fig. S8). These data suggest that it is the assembly of the entire
OXPHOS system, rather than any of its specific components,
that drives CL remodeling.
We have previously shown that the remodeling of fatty acids

protects CL from degradation and have suggested that the pro-
tection may result from increased protein association (26). To
determine whether it is the assembly of the OXPHOS complexes
that stabilizes CL, we again used the muscle-specific Drosophila
knockdown system. Adult flies were cultured in the presence of
13C6-glucose and the isotopomer pattern of CL was determined
in the flight muscles (SI Appendix, Fig. S9). The fractional syn-
thesis of CL, i.e., the proportion of newly synthesized molecules,
was calculated from the isotopomer patterns of individual mo-
lecular species (26). As expected, the fractional synthesis rose
very slowly in muscle CL of wild-type flies, whereas it rose
quickly in flies with tafazzin deletion (Fig. 4A), and therefore, the
half-life of CL was much shorter in the absence of tafazzin (SI
Appendix, Table S5). Next, we analyzed flies with muscle-specific
knockdowns. Not only the knockdown of tafazzin but also the
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knockdown of ATPsyn-γ and mitochondrial ribosomal protein
S29, both of which inhibit global OXPHOS assembly, increased
the turnover of CL in flight muscle. In contrast, knockdown of
NDUFV1, which affects complex I assembly only, did not increase
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CL turnover (Fig. 4B). We confirmed these results by another
labeling technique, in which flies were incubated with 2H2O. Knockdown
of either tafazzin or the ATPsyn-γ accelerated the incorporation
of 2H isotopes, indicating a faster turnover of CL (SI Appendix,
Fig. S10). Finally, we tested whether the stimulation of OXPHOS
expression, either by activating the SIRT/PGC pathway or by star-
vation (51, 52), can counteract the effect of tafazzin deletion. Indeed,
either starvation or the overexpression of SIRT1 or PCG1,
partially reversed the effect of tafazzin deletion on the MLCL/
CL ratio (Fig. 4C). Since the MLCL/CL ratio is an indicator of
CL degradation (26), the data further support the stabilizing effect
of OXPHOS complexes on CL. Collectively, our data demonstrate
that both tafazzin and the assembly of the OXPHOS system are
required for the remodeling of CL, which, in turn, is a precondition
for CL stability.

Discussion
Tafazzin-catalyzed remodeling of the acyl groups of CL has been
recognized as an important step in mitochondrial biogenesis
because mutations in tafazzin cause Barth syndrome, a mitochon-
drial disease associated with CL degradation (26), dissociation of
respiratory supercomplexes (23), and inefficient oxidative phos-
phorylation (29). It has remained unclear, however, whether
remodeled CL is superior to nonremodeled CL and, thus, what
the actual function of tafazzin is (28, 41). Since in vitro, the activity
and also the specificity of CL remodeling critically depend on the
physical state of lipids (31), we hypothesized that in vivo CL
remodeling is controlled by a mitochondrial process that affects
the physical state of membrane lipids. Our data demonstrate that
CL remodeling is dependent on the expression of OXPHOS com-
plexes. In yeast, the expression of mitochondrial DNA and sev-
eral nuclear-encoded OXPHOS proteins was essential for CL
remodeling, and in Drosophila, knockdown of OXPHOS complexes
inhibited CL remodeling. Importantly, there was a close connec-
tion between CL remodeling and CL stability. Knockdown of either
tafazzin or OXPHOS complexes increased the turnover of CL,
suggesting that both are necessary to prevent CL degradation.
The OXPHOS complexes are located in the cristae, which are

among the protein-richest membranes of the cell. Their fre-
quently cited lipid-to-protein mass ratio of 22:78 (53) implies
that any complex, depending on its size, is surrounded by only
40–400 lipid molecules (SI Appendix, Table S6). It has been shown
that such high density of proteins imposes curvature elastic stress
on the molecular packing of lipids (54). We hypothesize that the
function of tafazzin is to mitigate this packing stress. Because
tafazzin can form any molecular species within the confines of the
total fatty acid composition, it will naturally produce molecular
species with the lowest free energy, i.e., the ones that minimize
stress by bringing the monolayer spontaneous curvature as close as
possible to the actual curvature (Fig. 4D). As a result, tafazzin
lowers the energy cost to build tightly packed cristae membranes.
Consistent with that, deletion of tafazzin reduced the density of
complex V molecules in flight muscle mitochondria (7).

In summary, we have shown that the expression of OXPHOS
complexes is a precondition for CL remodeling and that CL
remodeling in turn is necessary for CL stability. This conclusion
is supported by recent reports that show increased CL remod-
eling in response to muscle overload (increased OXPHOS ex-
pression) (55) and decreased CL remodeling in response to rapid
cell proliferation (decreased OXPHOS expression) (56). Fur-
thermore, the conclusion is consistent with the clinical presenta-
tion of Barth syndrome that afflicts organs, such as skeletal muscle
and heart (30), which have high aerobic energy metabolism and,
therefore, a high concentration of OXPHOS proteins. The idea
that impaired lipid–protein interactions in the OXPHOS com-
plexes are the principal underlying cause of the disease explains the
established lability of supercomplexes in Barth patients and in
tafazzin-deficient models (22–27).

Materials and Methods
Specimens. Saccharomyces cerevisiae strains were previously described (41).
Strains with knockouts of various mitochondrial proteins, including the wild-
type parent strain BY4743, were obtained from the Yeast Knockout Collec-
tion of Dharmacon (https://dharmacon.horizondiscovery.com/cdnas-and-orfs/
non-mammalian-cdnas-and-orfs/yeast/yeast-knockout-collection). Yeast cells were
grown at 30 °C in YPDmedium containing 10 g/L yeast extract, 20 g/L peptone,
and 20 g/L dextrose, or in YPGE medium containing 10 g/L yeast extract, 20 g/L
peptone, 3% glycerol, and 3% ethanol. Drosophila melanogaster Schneider
2 (S2) cells were cultured at 23 °C in Schneider’s Drosophila medium. For the
knockdown experiments, S2 cells were treated with double-stranded RNA
(dsRNA). D. melanogaster strains are specified in SI Appendix. Flies were
raised on standard fly media. To isolate flight muscles, thoraces of adult ani-
mals were dissected under the microscope.

Lipid Analysis. Lipid extracts, supplemented by internal standards, were an-
alyzed by matrix-assisted laser-desorption ionization time-of-flight mass
spectrometry (MALDI-TOF MS) (57). Molecular species were identified by LC-
MS/MS. The calculation of the Euclidean distance between two CL composi-
tions was described in a previous paper (58). The turnover of lipids was
measured by isotopomer spectral analysis, which requires the incorporation of
isotope-labeled metabolites and the subsequent analysis of the samples by LC-
MS/MS. Fractional syntheses were estimated by isotopomer spectral analysis
(59) as described in detail in a previous paper (26).

Protein Analysis. Blue-native polyacrylamide gel electrophoresis (BN-PAGE)
was performed using NativePAGE gels from Life Technologies. Silver staining
of native gels was performed with the SilverXpress staining kit from Life
Technologies. For Western blot analysis, proteins were separated by SDS/
PAGE, transferred to a polyvinylidene fluoride (PVDF) membrane, incubated
with primary polyclonal tafazzin antibody, and visualized with fluorescent
LiCor GAM-IRDye680 secondary antibodies.

Detailed methods and biological reagents are described in SI Appendix,
Materials and Methods.
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