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Consensus sequence design offers a promising strategy for de-
signing proteins of high stability while retaining biological activity
since it draws upon an evolutionary history in which residues
important for both stability and function are likely to be con-
served. Although there have been several reports of successful
consensus design of individual targets, it is unclear from these
anecdotal studies how often this approach succeeds and how
often it fails. Here, we attempt to assess generality by designing
consensus sequences for a set of six protein families with a range
of chain lengths, structures, and activities. We characterize the
resulting consensus proteins for stability, structure, and biological
activities in an unbiased way. We find that all six consensus
proteins adopt cooperatively folded structures in solution. Strik-
ingly, four of six of these consensus proteins show increased
thermodynamic stability over naturally occurring homologs. Each
consensus protein tested for function maintained at least partial
biological activity. Although peptide binding affinity by a
consensus-designed SH3 is rather low, Km values for consensus
enzymes are similar to values from extant homologs. Although
consensus enzymes are slower than extant homologs at low tem-
perature, they are faster than some thermophilic enzymes at high
temperature. An analysis of sequence properties shows consensus
proteins to be enriched in charged residues, and rarified in un-
charged polar residues. Sequence differences between consensus
and extant homologs are predominantly located at weakly con-
served surface residues, highlighting the importance of these res-
idues in the success of the consensus strategy.
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Exploiting the fundamental roles of proteins in biological sig-
naling, catalysis, and mechanics, protein design offers a

promising route to create and optimize biomolecules for medi-
cal, industrial, and biotechnological purposes (1–3). Many dif-
ferent strategies have been applied to designing proteins,
including physics-based (4), structure-based (5, 6), and directed
evolution-based approaches (7). While these strategies have
generated proteins with high stability, implementation of the
design strategies is often complex and success rates can be low
(8–11). Although directed evolution can be functionally directed,
de novo design strategies typically focus primarily on structure.
Introducing specific activity into de novo-designed proteins is a
significant challenge (8, 10).
Another strategy that has shown success in increasing ther-

modynamic stability of natural protein folds is consensus se-
quence design (12). For this design strategy, “consensus”
residues are identified as the residues with the highest frequency
at individual positions in a multiple sequence alignment (MSA)
of extant sequences from a given protein family. The consensus
strategy draws upon the hundreds of millions of years of se-
quence evolution by random mutation and natural selection that
is encoded within the extant sequence distribution, with the idea
that the relative frequencies of residues at a given position reflect
the “relative importance” of each residue at that position for
some biological attribute. As long as the importance at each
position is largely independent of residues at other positions, a
consensus residue at a given position should optimize stability,
activity, and/or other properties that allow the protein to func-

tion in its biological context and ultimately contribute to or-
ganismal fitness.* By averaging over many sequences that share
similar structure and function, the consensus design approach
has the potential to produce proteins with high levels of ther-
modynamic stability and biological activity, since both attributes
are likely to lead to residue conservation.
There are two experimental approaches that have been used

to examine the effectiveness of consensus information in protein
design: point-substitution and “wholesale” substitution. In the
first approach, single residues in a well-behaved protein that
differ from the consensus are substituted with the consensus
residue (13–17). In these studies, about one-half of the consensus
point substitutions examined are stabilizing, but the other half
are destabilizing. Although this frequency of stabilizing muta-
tions is significantly higher than an estimated frequency around
1 in 103 for random mutations (13, 18, 19), it suggests that
combining individual consensus mutations may give minimal net
increase in stability since stabilizing substitutions would be offset
by destabilizing substitutions.
The “wholesale” approach does just this, combining all sub-

stitutions toward consensus into a single consensus polypeptide
composed of the most frequent amino acid at each position in
sequence. By making a large number of substitutions at once,
wholesale consensus substitution may collectively combine the
incremental effects from the individual substitutions as well as
nonadditive effects arising from the substitution of each residue
into the novel background of the consensus protein (20, 21). The
stabilities of several globular proteins and several repeat proteins
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have been increased using this approach (22–31). An increase in
thermodynamic stability is seen in most (but not all) cases, but
effects on biological activity are variable. In a recent study, we
characterized a consensus-designed homeodomain sequence that
showed a large increase in both thermodynamic stability and
DNA-binding affinity (32). Unlike the point-substitution ap-
proach, where both stabilizing and destabilizing substitutions are
reported, the success rate of the wholesale approach is not easy
to determine from the literature, where publications present
single cases of success, whereas failures are not likely to be
published. One study of TIM barrels reported a few poorly be-
haved consensus designs that were then optimized to generate a
folded, active protein (24). Although this study highlighted some
limitations, it would not likely have been published if it did not
end with success.
Here, we address these issues by applying the consensus se-

quence design strategy to a set of six taxonomically diverse
protein families with different folds and functions (Fig. 1). We
chose the three single domain families including the N-terminal
domain of ribosomal protein L9 (NTL9), the SH3 domain, and
the SH2 domain, and the three multidomain protein families
including dihydrofolate reductase (DHFR), adenylate kinase
(AK), and phosphoglycerate kinase (PGK). We characterized
these six consensus proteins in terms of structure, stability, and
function. We find that consensus sequences for all six protein
families are quite soluble and adopt the native folds of their
respective families. Strikingly, four of the six consensus proteins
show increased thermodynamic stability compared with naturally
occurring homologs; the other two consensus proteins show
stabilities comparable to natural homologs. All consensus pro-
teins assayed for biological activity retain their expected activi-
ties, including molecular recognition and enzymatic catalysis. An
advantage of this multitarget comparison is that it allows us to
examine sequence features of consensus-designed proteins and
relate them to one another and to naturally occurring homologs.
This sequence analysis shows that consensus proteins are
enriched in charged residues and are depleted in polar un-
charged residues, and highlights the importance of weakly con-
served surface residues in enhancing stability through the consensus
design strategy.

Results
Consensus Sequence Generation. The six families targeted for
consensus design are shown in Fig. 1. To generate and refine
MSAs from these families, we surveyed the Pfam (33), SMART
(34), and InterPro (35) databases to obtain sets of aligned se-
quences for each family. For each family, we used the sequence
set that maximized both the number of sequences and quality of
the MSA (SI Appendix, Table S1). For five of the six protein
families, we did not limit sequences using any structural or
phylogenetic information. For AK, we selected sequences that
contained a “long-type” LID domain containing a 27-residue
insertion found primarily in bacterial sequences (36). The
number of sequences in these initial sequence sets ranged from
around 2,000 up to 55,000 (SI Appendix, Table S1).
To improve alignments and limit bias from copies of identical

(or nearly identical) sequences, we removed sequences that de-
viated significantly (±30%) in length from the median length
value, and removed sequences that shared greater than 90%
sequence identity with another sequence. This curation reduced
the size of sequence sets by an average of 65% (ranging from
30 to 80%; SI Appendix, Table S1). Final sequence sets ranged
from 1,355 (NTL9) to 14,474 (SH3) sequences, and showed
broad ranges of sequence variability (quantified by average
pairwise identities among sequences in the set) and phylogenetic
distribution (SI Appendix, Table S1).
MSAs showed varying levels of conservation across positions

in sequence (SI Appendix, Fig. S1). Curated sequence sets were
aligned, and consensus sequences were determined from the
most probable residue at each position (SI Appendix, Table S2).
Consensus sequences differ substantially from aligned sequences
from which they are derived. The maximum identity between
consensus sequences and the most similar extant sequence in the
corresponding alignment ranges from 63% for SH2 to 80% for
NTL9; the average pairwise identity between consensus se-
quences and each sequence in the corresponding alignment
ranges from 58% for NTL9 and PGK to 40% for SH3 and SH2
(SI Appendix, Fig. S2).

Structural Characterization of Consensus Proteins. To determine
whether the six consensus sequence proteins adopt their target
folds, we expressed and purified consensus proteins (hereafter
denoted with a “c,” e.g., cNTL9) for each of the six protein
families and characterized them using circular dichroism (CD)
and NMR spectroscopies. Far-UV CD spectra for cNTL9, cAK,
and cPGK show minima at 222 and/or 208 nm (Fig. 2A), con-
sistent with α-helical secondary structure. Spectra for cSH2 and
cDHFR show single minima at 219 and 214 nm, respectively,
consistent with predominantly β-sheet secondary structure.
Consensus SH3 shows a far-UV CD spectrum with minima at
228 and 204 nm and a maximum at 219 nm, similar to published
spectra for a naturally occurring SH3 domain (37).
With the exception of cDHFR, 1H–

15N heteronuclear single
quantum coherence (HSQC) and transverse relaxation opti-
mized spectroscopy (TROSY) (for cPGK) NMR spectra for each
consensus protein show sharp resonances that are well dispersed
in the 1H dimension (Fig. 2 B–G), indicating that these con-
sensus proteins adopt well-folded tertiary structures. These six
consensus proteins show between 88 and 99% of expected cross-
peaks in the 1H–

15N HSQC and TROSY (cPGK) spectra, sug-
gesting that the consensus proteins maintain rigid tertiary
structure over most of their sequence. The high signal-to-noise
and sharp cross-peaks indicate that these consensus proteins
have high solubility at NMR concentrations (ranging from 400 to
800 μM).
For cDHFR, the 1H–

15N HSQC spectrum shows rather broad
resonances and only around 60% of expected cross-peaks (SI
Appendix, Fig. S3). However, addition of the substrate analog
methotrexate both sharpens resonances and increases the number
of resolved cross-peaks (Fig. 2E), suggesting that cDHFR may
undergo a large-scale conformational change and rigidification

Fig. 1. Targets for consensus design. A representative structure of an extant
sequence is shown for each target family (NTL9, 2HBB; SH3, 1LKK; SH2, 4U1P;
DHFR, 5DFR; AK, 1ANK; PGK, 1PHP). Length of consensus sequence, bi-
ological function, and number of sequences used in final MSA are noted.
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upon binding. This behavior has been observed in a study of two
naturally occurring DHFR proteins (38).
To determine the location of α-helices and β-strands, we

assigned backbone resonances for cNTL9, cSH3, and cSH2.
Using standard triple-resonance experiments, we were able to
assign backbone 1H and 15N resonances, as well as 13C Cα, Cβ,
and C′ chemical shifts, for 96%, 96%, and 89% of residues for
cNTL9, cSH3, and cSH2, respectively (SI Appendix, Figs. S4–S6).
Secondary chemical shift-based secondary structure predictions
using these resonances show α-helix and β-strand boundaries that
largely match secondary structure locations in consensus ho-
mology models, suggesting that the consensus proteins adopt
their archetypal folds (Fig. 2 H–J).

Equilibrium Stability of Consensus Proteins. To determine equilib-
rium folding free energies, we measured guanidine hydrochlo-
ride (GdnHCl)- and temperature-induced unfolding transitions
for all consensus proteins using a combination of CD and fluo-
rescence spectroscopies. All consensus proteins show sigmoidal
GdnHCl-induced unfolding transitions (Fig. 3A and SI Appendix,
Fig. S8), indicating that the consensus proteins unfold in a co-
operative manner similar to naturally occurring proteins. Four of
the six consensus proteins showed sigmoidal thermal unfolding
transitions, with Tm values ranging from 62 to 87 °C. For
cNTL9 and cSH2, unfolding transitions were not observed up to
the maximal temperature of 93 °C; addition of 4 and 2 M
GdnHCl revealed thermal unfolding transitions, demonstrating
that these proteins are hyperstable, with thermal unfolding
transitions significantly above 93 °C in the absence of denaturant.
Of the four proteins that showed thermal unfolding transitions

in the absence of GdnHCl, two (cSH3 and cAK) were not fully
reversible. In contrast, by chemical denaturation, all consensus
proteins were found to fold and unfold reversibly, allowing us to
determine equilibrium folding free energies and m values by
fitting a two-state linear extrapolation model to all consensus
protein GdnHCl denaturations. Folding free energies ranged
from −3.2 kcal/mol for cSH3 to −13.6 kcal/mol for cAK (Table 1).
Measured m values for cNTL9 and cSH2 match values predicted
from an empirical relationship based on chain length (39, 40)
within 5%, suggestive of two-state folding. The measured m
value for cSH3 is 30% larger than the predicted value. Measured
m values for cDHFR, cAK, and cPGK are 20%, 50%, and 70%
smaller than predicted values, suggesting the population of partly

folded states in the folding transition region. As a result, esti-
mated folding free energies for these constructs are likely to
underestimate the free energy difference between the native and
denatured states.
To compare the measured folding free energies of the con-

sensus proteins with extant sequences, we gathered folding free
energy values from the literature for naturally occurring se-
quences for each protein family. We limited our search to folding
free energy values determined by chemical denaturation exper-
iments and to proteins that appear to be monomeric†. For
comparison, we have included the consensus homeodomain
(cHD) that we recently characterized with this approach (32).
The stabilities of six of the seven consensus proteins are

greater than the mean stabilities of the extant homologs (Fig. 3B
and SI Appendix, Table S3), with stability increases ranging from
8.3 kcal/mol for cAK to 1.4 kcal/mol for cPGK (although, for
cPGK, fitted ΔG° parameters are likely to underestimate the free
energy difference between native and denatured ensembles since
the unfolding transition is almost certainly multistate). The sole
exception to this observation is cSH3, which shows a stability that
is 0.3 kcal/mol less than the mean value for the extant homologs.
Furthermore, stabilities of five of the seven consensus proteins
(cNTL9, cHD, cSH2, cDHFR, and cAK) are greater than that
of the most stable extant homolog, ranging from 0.6 kcal/mol
for cSH2 to 3.8 kcal/mol for cAK (Fig. 3B and SI Appendix,
Table S3).

Characterization of cSH3 Peptide Binding. To measure binding of
cSH3 to a target peptide, we acquired a synthetic peptide (Ac-
PLPPLPRRALSVW-NH2), which contains a proline-rich motif
used in previous binding studies of the human Fyn SH3 domain,
a well-studied extant sequence with peptide contact residues that
match those in consensus SH3 (41, 42). 1H–

15N HSQC spectra of
15N-labeled cSH3 at increasing concentrations of unlabeled pep-
tide show shifts in some (but not all) peaks (SI Appendix, Fig. S9).
This behavior is consistent with formation of a complex that is in
fast exchange on the chemical shift timescale. When plotted on a
homology model of cSH3, the largest chemical shift perturbations

A

B C D E F G

H I J

Fig. 2. Structural features of consensus proteins. (A) Far-UV CD spectra for all consensus proteins. (B–F) 1H–15N HSQC spectra for (B) cNTL9, (C) cSH3, (D) cSH2,
and (E) cDHFR with addition of 1:1 molar equivalents of methotrexate, and (F) cAK at 600 MHz. (G) 1H–15N TROSY spectrum for consensus cPGK at 800 MHz.
(H–J) Secondary chemical shift-based secondary structure probabilities using backbone resonances calculated by TALOS-N for (H) cNTL9, (I) cSH3, and (J) cSH2.
Schematics above plots represent sequence positions of secondary structures in homology models of consensus sequences.

†Although for most families this search resulted in five or more free energy values, pro-
viding a good representation of the average stability, all of these stabilities may be
biased by experimental constraints (expression, solubility, and baseline-resolved
folding transitions).
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(CSPs) cluster on the canonical peptide-binding site (Fig. 4A). A
global fit of a single-site binding model to the 10 residues dis-
playing the largest CSPs gives a Kd of 795 ± 13 μM (Fig. 4B; the
reported uncertainty is at a 67% confidence level derived from
5,000 bootstrap iterations in which residuals are randomly resam-
pled with replacement). This measured binding affinity for cSH3 is
∼5,000-fold weaker than a binding affinity reported for human Fyn
SH3 domain binding the same peptide sequence (41).

Steady-State Kinetics of Consensus Enzymes. To investigate how the
consensus design strategy affects enzymatic activity, we charac-
terized steady-state kinetics of catalysis for the three consensus
enzymes in our set. DHFR, AK, and PGK catalyze various chem-
ical reactions important for cellular metabolism:

Dihydrofolate  +  NADPH  ⇌   Tetrahydrofolate  +  NADP+

ATP  +  AMP  ⇌ 2ADP

3-phosphoglycerate  +  ATP ⇌ 1, 3-bisphosphoglycerate  +  ADP.

For each enzyme, we measured reaction velocities at 20 °C as a
function of substrate concentration, monitoring the oxidation of
NAD(P)H spectrophotometrically either as a direct readout of
activity (DHFR) or in an enzyme-coupled reaction (Materials
and Methods). Strikingly, all three consensus enzymes show sub-
stantial activity (Fig. 5). Michaelis constants for the consensus

enzymes are similar to those of extant enzymes, ranging from 10-
fold higher to 3-fold lower than values determined under similar
conditions (Table 2). Steady-state kcat values determined at 20 °C
for the consensus enzymes are all smaller than those for meso-
philic homologs (Table 2) but range from comparable to (1.3-
fold lower) to slightly lower (roughly 6-fold lower) kcat values for
thermophilic homologs.
The high thermal stability of the consensus enzymes allows us

to measure activity at high temperatures where reaction rates
likely increase considerably, providing a better comparison with
thermophilic homologs. To determine the effects of temperature
on enzyme activity, we measured kcat values for the consensus
enzymes over a range of temperatures. For cDHFR, where ab-
sorbance provides a direct readout of catalysis, we were able to
access temperatures up to 50 °C. However, for cPGK, we were
restricted to 40 °C due to the limited stability of the coupling
enzymes used in the absorbance assay. For cAK, we were able to
expand this temperature range to 70 °C using a 31P NMR-based
assay (AK; see SI Appendix and ref. 43), which directly monitors
conversion of reactants to products. Over the accessible tem-
perature range, all consensus enzymes show exponential in-
creases in catalytic rates with increased temperature, consistent
with Arrhenius kinetics (SI Appendix, Fig. S10), allowing us to
extrapolate kcat values to other temperatures. On the whole, the
consensus enzymes show levels of activity comparable to ther-
mophilic homologs (SI Appendix, Table S4), although there are
variations depending on the consensus enzyme and the ther-
mophile being compared. Consensus DHFR has a larger turn-
over number than two thermophilic homologs (by 5- and 31-
fold). Consensus PGK shows both larger (1.8-fold increase) and
smaller turnover numbers (1.2-, 4-, 5-, and 13-fold decreases). In
contrast, cAK has a smaller turnover number (by 21-fold).

Sequence Properties of Consensus Proteins and Consensus Mismatches.
The studies above show that, for all six families examined here,
consensus design is successful. That is, proteins adopt well-folded
structures, these structures match the fold of the families from
which they derived, they retain biological activity, and importantly,
their stabilities equal or (more often) exceed median stabilities of
extant sequences. With this broad collection of consensus-
designed proteins, we are in the position to ask whether there are
any sequence features that set these consensus proteins apart from
extant sequences, and if so, which features are most important for
increased stability. Such properties include general position-
independent features such as sequence composition, charge, po-
larity, and hydrophobicity, as well as position-specific properties
within each family such as degree of conservation and surface
accessibility.
General sequence features. We compared various sequence prop-
erties of our six consensus sequences to those of the naturally
occurring sequences within our curated MSAs. As with the sta-
bility comparisons above, we have included the cHD that we
have described previously (32). For every sequence (consensus
and every sequence in each MSA), we calculated the proportion
of sequence (averaging over all sites) made up of charged resi-
dues (D, E, K, and R), polar uncharged residues (C, H, N, Q, S,
and T), total polar residues (the sum of charged and polar un-
charged), and nonpolar residues. Similarly, we calculated the net
charge of each sequence (the difference between the number of
positively and negatively charged residues, assuming full positive
charges for R and K, and full negative charges for D and E).
For each metric, the naturally occurring sequences appeared

approximately normally distributed (SI Appendix, Fig. S11).
Consensus sequences show strong biases within the distributions
of natural sequences for some of these sequence and structural
features. Most notably, consensus sequences all lie toward the
upper-tail end of the distributions for proportion of charged
residues, averaging 2.1 SDs above the mean (Fig. 6A). Con-
versely, consensus sequences lie toward the lower-tail end of
the distributions for proportion of polar uncharged residues,
averaging 2.1 SDs below the mean. These two biases offset in

A

B

Fig. 3. Equilibrium folding of consensus proteins. (A) Representative gua-
nidine hydrochloride-induced folding/unfolding curves for consensus pro-
teins. Data were collected using CD (cDHFR, cAK, and cPGK) or fluorescence
(cNTL9, cSH3, and cSH2) spectroscopies. The solid lines are obtained from
fitting a two-state model to the data. (B) Comparison of measured folding
free energies of consensus proteins to those of extant sequences. The open
circles represent folding free energies of extant eukaryotic or mesophilic
(blue) and thermophilic (red) sequences. The black dashed lines represent
measured folding free energies of consensus sequences. Folding free energy
values and sources are reported in SI Appendix, Table S3.
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terms of total polar (charged and uncharged) residues: Con-
sensus sequences lie near the middle of the distribution for the
proportion of total polar residues, averaging 0.1 SDs below
the mean. Likewise, consensus sequences lie near the middle of
the distribution for the proportion of nonpolar residues, as would
be expected given the proportion of total polar residues. Thus, it
appears that the consensus design strategy implicitly creates se-
quences that are preferentially enhanced in charged residues at
the expense of polar uncharged residues, without a large per-
turbation of the number of total polar versus nonpolar residues.
Two protein families, SH3 domain and homeodomain, deviate
from this trend, both showing an increase in total polar residue
content and a decrease in nonpolar residue content. The net
charge of six of the seven consensus protein sequences are also
close to mean values from the MSA, with DHFR showing the
only significant deviation.
The observed increase in the proportion of charged residues in

consensus sequences relative to extant sequences must arise from
differences in the proportions of each of the charged residues
individually. However, an increase in the charged residue con-
tent does not require that the proportion of each charged residue
increases. To determine the specific residues responsible for this
overall increase, we compared the proportions of individual
residues over the extant sequences in each MSA (again averaging
over all sites) to those in the consensus sequence. Many residues
show consistent enrichment or depletion in consensus sequences
relative to the extant sequences. For example, consensus sequences
are enriched in D, E, and K, and depleted in C, N, Q, S, and T in all
or six of the seven protein families (SI Appendix, Fig. S12). These
trends are highlighted when the relative differences between the
consensus sequence and extant sequences for each residue are av-
eraged over the seven protein families. Consensus sequences show
the largest enrichments in E, K, G, L, and D, the largest depletion
in Q, S, and I, and marginal effects on all other residues (Fig. 6B).
Thus, the increase in charged residues for the consensus proteins
results from increased proportions of D, E, and K, but not R, while
the decrease in polar uncharged residues results from decreased
proportions (albeit modest proportions for some residues) of all
polar uncharged residues.
Position-specific sequence features. In addition to the general se-
quence features described above, which average over each se-
quence, we also examined the features of sequence substitution in
a position-specific way. At each position in the MSA, we compared
the residue of each extant sequence to the consensus residue at
that position. We separated these residue-specific comparisons
into “consensus matches” and “consensus mismatches” for the
positions at which extant residue matched or differed from the
consensus residue, respectively. Clearly, all changes in structure,
stability, and function in consensus constructs compared with ex-
tant homologs result from the residues that differ from the con-
sensus. Thus, the properties of these “consensus mismatches” are
important for understanding, for example, the increase in stability
we have observed for most of our consensus constructs.

On average, there will be more consensus mismatches at po-
sitions with low sequence conservation, although there will also
be some number of mismatches at positions with high conser-
vation. One simple question that can be asked about consensus
mismatches is “how biased are consensus mismatches towards
positions of low conservation?” To quantify the extent to which
consensus mismatches are made at sites with high conservation,
we calculated the sequence entropy (44) at each position i in
each MSA using the following formula:

Sseq, i =−
X

j∈f20AAg
pjlnpj, [1]

where pj is the frequency of residue j occurring at position i, and
plotted this distribution for each family (purple distributions in
Fig. 6C and SI Appendix, Fig. S13). We then weighted this dis-
tribution by the fraction of sequences in the MSA that differ
from the consensus at each position:

Smismatch, i = pmismatch, i × Sseq, i [2]

(red distributions in Fig. 6C and SI Appendix, Fig. S13), and the
fraction that match the consensus at each position:

Smatch, i = pmatch, i × Sseq, i [3]

(blue distributions in Fig. 6C and SI Appendix, Fig. S13).

Table 1. Equilibrium folding free energies of consensus proteins

Protein ΔG°H2O, kcal·mol−1 m value, kcal·mol−1·M−1 ΔΔG°H2O, kcal·mol−1

cNTL9 −7.9 ± 0.1 1.23 ± 0.02 −4.7
cSH3 −3.2 ± 0.1 1.88 ± 0.05 +0.3
cHD −10.8 ± 0.5 1.60 ± 0.08 −5.3
cSH2 −7.2 ± 0.1 2.28 ± 0.01 −3.6
cDHFR −10.1 ± 0.1 4.32 ± 0.03 −6.7
cAK −13.6 ± 0.5 3.83 ± 013 −8.3
cPGK −7.5 ± 0.2 4.34 ± 0.12 −1.4

ΔG°H2O and m values represent the folding free energy extrapolated to water and the denaturant sensitivity
of the folding free energy determined from a two-state fit. Reported uncertainties are SEMs from three in-
dependent experiments. ΔΔG°H2O values represent the difference of the measured folding free energy value of
the consensus protein and the mean folding free energy value of the naturally occurring proteins from the
literature (SI Appendix, Table S3).

A B

Fig. 4. Peptide binding of cSH3 by NMR spectroscopy. (A) Chemical shift per-
turbations (CSPs) of backbone 1H–15N HSQC cross-peaks resulting from addition
of a 20-fold excess unlabeled peptide to 15N-labeled consensus SH3. The red and
blue lines indicate 1 and 2 SDs, respectively. Inset shows a homology model of
cSH3 aligned to a peptide-bound structure of human Fyn SH3 (PDB 1A0N;
peptide shown in green). Residues showing CSPs greater than 1 and 2 SDs are
shown with α-carbons as spheres and side-chain atoms as lines, and colored red
and blue, respectively. (B) Binding isotherms for the 10 consensus SH3 residues
showing largest CSPs. The solid lines are obtained from a global fit to a single-
site binding model using a common dissociation constant for all residues.
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As expected, we see a bias of consensus matches toward low
sequence entropy positions and a bias of consensus substitutions
toward high entropy positions. For example, at positions that have
entropies below 0.5, nearly all sequences in the MSA match the
consensus. Likewise, at positions that have entropies above value
of 2, most sequences in the MSA differ from consensus. However,
at positions with intermediate entropies (ranging from 1 to 1.5),
there are significant numbers of sequences in each MSA that
differ from consensus. It is possible that these substitutions
disproportionately contribute to the observed stability increase
of consensus proteins.
Finally, we examined the extent to which these sequence dif-

ferences occur at surface positions. Since surface residues tend to
contribute less to overall stability than buried residues (45, 46),
we might expect the stability increases of consensus proteins to
have their origins in substitutions at buried positions. However,
because surface positions tend to be more highly variable, we
expect most consensus substitutions to occur at surface sites; as a
result, surface residues may contribute to stability enhancement
through the collective effect from many substitutions. Consistent
with this, Makhatadze and coworkers (47, 48) have shown that
stability can be increased through careful placement of surface
charged residues. To identify surface positions within each MSA,
we generated a homology model from the corresponding con-
sensus sequence, calculated the side chain solvent-accessible
surface area at each position, and referenced to the average
side chain solvent-accessible surface area of the same residue in
an extended peptide (SI Appendix, Materials and Methods).

A comparison of the distribution of consensus mismatches
occurring at surface, intermediate, and buried positions shows
that, for six of the seven proteins, consensus mismatches occur
most frequently at surface positions (SI Appendix, Fig. S14;
darker bars). Overall, mismatches occur at surface, intermediate,
and buried positions with median proportion of 0.49, 0.27, and
0.22, respectively. However, these proportions are dependent on
the overall proportions of surface, intermediate, and buried
residues that make up each protein. The four smaller domain
families of NTL9, SH3, HD, and SH2 all have more surface
residues than intermediate or buried residues (SI Appendix, Fig.
S14; lighter bars). However, the larger proteins DHFR, AK, and
PGK have more buried residues than surface or intermediate
residues (consistent with a decreased surface-to-volume ratio for
larger proteins).
To account for this underlying difference in surface accessi-

bility, we divided the conditional probabilities that consensus
mismatches are located at surface, intermediate, and buried
positions [i.e., p(X j mismatch), where X represents the three
structural classes; dark bars in SI Appendix, Fig. S14] by the
overall marginal probabilities of the three structural classes
(surface, intermediate, buried; light bars in SI Appendix, Fig.
S14). By Bayes’ theorem, this ratio represents the true enrich-
ment (or suppression) of consensus mismatches at surface, in-
termediate, and exposed sites. This ratio shows an enrichment of
consensus mismatches at surface positions for all seven protein
families (Fig. 6D), with an average factor of 1.21. In contrast,
there is a suppression of consensus mismatches at core positions
in all seven protein families, with an average factor of 0.71. At
intermediate positions, mismatches are neither enhanced nor
suppressed (Fig. 6D; with an average factor of 1.03).

Discussion
There are a number of reports in the literature in which con-
sensus design has successfully been used to produce proteins that
adopt their archetypical fold. This approach has found recent
success for linear repeat-protein targets (49–52) but has also
shown some success for globular protein targets (13, 14, 23, 26,
27). In most reports, globular consensus proteins have enhanced
equilibrium stability and sometimes retain biological activity.
However, point-substitution studies suggest stability gains from
wholesale consensus substitution may be marginal, and protein
engineering studies with a WW domain suggest that consensus
proteins may lack the coupling energies needed to fold (53).
Because publications of successful design of globular proteins
have so far been “one target at a time,” and since unsuccessful
designs are unlikely to be published, it is difficult to estimate how
likely the consensus approach is to yield folded proteins, and to
determine how to improve on the approach when it performs
poorly. The studies presented here, where we generate and
characterize consensus sequences for six protein families, pro-
vide an unbiased look at rates of success and failure. Compari-
sons for different targets are aided by the use of a common
design protocol for all targets, a common purification pipeline,
and a uniform set of protocols for measuring stability, structure,
and function. This multitarget approach also allows us to eval-
uate sequence features that are likely to contribute consensus
stabilization in general way, and correlate these features with
measured biochemical properties.
Our results show that consensus sequence design is both a

general and successful strategy for small and large globular pro-
teins with diverse folds. For all six protein families targeted, the
resulting consensus proteins expressed to high levels, remained
soluble in solution, and adopted a well-folded tertiary structure.
Structural information obtained from CD and NMR spectros-
copies suggest that all of the consensus proteins adopt their ar-
chetypal fold. Support for folding is provided by the observation
that all consensus proteins tested show their expected biological
activities (Figs. 2, 4, and 5).
Our findings indicate that thermodynamic stabilization of

consensus proteins is the norm, rather than the exception. Four

A

C

D E

B

Fig. 5. Steady-state kinetics of consensus enzymes. Representative Michaelis–
Menten curves generated for each substrate for cDHFR (A, varying DHF with
150 μM NADPH; B, varying NADPH with 100 μM DHF), cAK (C, varying AMP
with 5 mM ATP), and cPGK (D, varying 3-PG with 20 mM ATP; E, varying ATP
with 10 mM 3-PG). The solid lines are obtained from fitting a Michaelis–
Menten model to the data. In A, full activity was obtained at the lowest DHF
concentration we could measure; as a result, the Km value for DHF could not
be accurately determined.
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of the six [and five of the seven including the previously reported
homeodomain (32)] consensus proteins showed stabilities
greater than the most stable naturally occurring sequences
identified in our literature search, and the other two showed
stabilities near and above average (Fig. 3 and SI Appendix, Table
S3). In short, consensus design can be expected to provide sta-
bility enhancements about three-quarters of the time. This result
is particularly surprising, given that proteins are not under direct
evolutionary selection for maximal stability (54, 55), but must
simply retain sufficient stability to remain folded. It appears that
by taking the most probable residue at each position, a large
number of small stability enhancements sum to a large net in-
crease in stability. Although naturally occurring extant proteins
are of lower stability (perhaps because high stabilities are not re-
quired for function), this information gets encoded in alignments
of large numbers of sequences. Taken at face value, these results
highlight the importance of information encoded at the level of
single residues. Though single-residue information does not ex-
plicitly include pairwise sequence correlations, favorable pairs may
be retained in our consensus designs as long as each residue in the
pair is highly conserved. Thus, the extent to which consensus se-
quences capture such “accidental” correlations and their contri-
butions to the observed effects on stability require further studies.
The source of the relative instability of cSH3 is unclear. The

consensus SH3 and the extant sequences from which it was generated
have some exceptional features, although none of these is unique to
SH3. The SH3 sequences are among the shortest sequence families
examined (54 residues), although not the shortest (NTL9 is
46 residues). The consensus SH3 sequences has a high fraction of
polar residues and the lowest fraction of uncharged residues (Fig.
6A), although the cHD is a close second. The SH3 sequence is also
the only protein in our set that has an all-β structure.
Taxonomically, sequences in the SH3 MSA show the lowest

pairwise identity (26%; SI Appendix, Table S1), although the
SH2 family is a close second (28%). It may be noteworthy that
the increase in stability of cSH2 compared with the available
extant values is the smallest stability increment observed for

those proteins likely to conform to a two-state mechanism. It
may also be noteworthy that, along with SH2, the SH3 multiple
sequence is uniquely dominated by eukaryotic sequences. In a
study of consensus superoxide dismutase sequences, Goyal and
Magliery (56) found successful consensus design to be highly
dependent on the phylogeny represented in the MSA.
A particular advantage of consensus sequence design is that it

draws upon the natural evolutionary history of a protein family.
As a result, residues important for function are likely to be
conserved (57). However, it cannot be assumed a priori that the
resulting consensus proteins will show biological function, since
consensus sequences are novel sequences that have experienced
no evolutionary selection for function. Importantly, all consensus
proteins we assayed for function maintained some level of
expected biological activities of both molecular recognition and
enzymatic catalysis (Figs. 4 and 5). This result, combined with
previously reported studies showing consensus protein function
(22–31), indicates that information necessary for protein func-
tion is retained in averaging over many sequences that each in-
dividually contain functionally important information.
In both this study and our previous investigations of a cHD

(32), consensus substitution showed varying effects on molecular
recognition. Consensus HD and cSH3 each showed two to three
orders of magnitude differences in their binding affinities to
cognate substrates relative to naturally occurring sequences, with
cHD showing higher affinity and cSH3 showing lower affinity.
The origins of these differences in substrate binding affinities
remain unclear. It is possible that the sequences used to obtain
the cHD sequence bind similar sequences (indeed, many of these
sequences are from the engrailed superfamily), resulting in an
“optimized” homeodomain, whereas sequences used to obtain
the consensus SH3 possess different specificities, resulting in a
sequence whose binding affinity has been “averaged out.” Test-
ing this explanation will require an investigation of the binding
specificities of the consensus proteins as well as those of the
sequences used to generate them.

Table 2. Steady-state kinetic parameters of catalysis for consensus and naturally
occurring enzymes

Enzyme Substrate kcat, s
−1 Km, μM kcat/Km, M

−1·s−1

Consensus DHFR DHF 1.7 ± 0.1 <5* >3.4 × 105

Escherichia coli DHFR† 12.3 ± 0.7 0.7 ± 0.2 1.8 ± 0.03 × 107

Bacillus stearothermophilus DHFR‡ 2.2 3.5 6.3 × 105

Consensus DHFR NADPH 1.6 ± 0.1 15 ± 2 1.0 ± 0.1 × 105

E. coli DHFR† 10 ± 1 4.8 ± 1 2.1 ± 0.7 × 106

B. stearothermophilus DHFR‡ 2.3 1.5 1.5 × 106

Consensus AK AMP 5.1 ± 0.6 86 ± 10 5.9 ± 1.0 × 104

E. coli AK§ 400 ± 10 120 ± 20 3.3 ± 0.6 × 106

Aquifex aeolicus AK¶ 30 ± 10 21 1.4 × 106

Consensus PGK 3-PG 12.8 ± 0.1 190 ± 10 6.7 ± 0.3 × 104

Yeast PGK# 335 590 5.6 × 105

Thermotoga maritima PGKjj 85 30 NR
Consensus PGK ATP 14.1 ± 2.1 1,200 ± 400 1.2 ± 0.4 × 104

Yeast PGK# 345 370 4.1 × 105

T. maritima PGKjj 85 NR NR

Michaelis–Menten parameters for consensus enzymes (top), a mesophilic enzyme (middle), and a thermophilic
enzyme (bottom). Uncertainties reported for consensus enzymes represent SEMs from two independent exper-
iments. Experiments for consensus enzymes were performed at 20 °C. NR denotes values that are not reported in
the study.
*The Km value for DHF was found to be too low to accurately measure under experimental conditions. Consensus
DHFR showed full activity at lowest DHF concentration tested of 5 μM.
†Data are from ref. 76. Experiments were performed at 25 °C.
‡Data are from ref. 77. Experiments were performed at 20 °C.
§Data are from ref. 78. Experiments were performed at 25 °C.
¶Data are from ref. 59. Experiments were performed at 20 °C.
#Data are from ref. 75. Experiments were performed at 25 °C. Errors were reported to as <5%.
jjData are from ref. 79. Experiments were performed at 20 °C.
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For the three enzymes examined here, consensus substitution
shows variable effects on catalysis. At low temperatures (20 °C),
steady-state turnover numbers for all consensus enzymes were
smaller than those for naturally occurring mesophilic sequences,
but on par with those of thermophilic homologs (Table 2). This is
consistent with the observation that thermophilic proteins show
lower catalytic activities at low temperatures than their less sta-
ble mesophilic counterparts (58, 59). At higher temperatures,
cPGK has a kcat value comparable to thermophilic homologs,
whereas cDHFR and cAK have higher and lower kcat values,
respectively. On the whole, this observation demonstrates that
consensus enzymes can (but sometimes do not) achieve the same
level of activities as their naturally occurring counterparts. The
observed inverse correlations between enzyme stability and cat-
alytic rates have widely been interpreted as resulting from a
trade-off between dynamics and catalysis (60). As this issue is
still debated (61, 62), consensus sequence design may offer a
promising avenue to gain insights into the relationships among
protein stability, dynamics, activity, and evolution.
The consensus design strategy used here appears to impart a

strong bias on sequence: Taking the most probable residue at
each position does not result in average composition. This bias
may have significant effects on stability and function. The con-
sensus sequences all have a high content of charged residues and
low content of polar uncharged residues (Fig. 6). Consensus
substitutions from uncharged to charged residues show a stron-
ger bias toward positions of higher sequence entropy than sub-
stitutions among uncharged residues (SI Appendix, Fig. S15).
Thus, the overall enrichment of charged residues in consensus
sequences results from charged residues (E, D, and K) “winning”
over uncharged residues at positions with low conservation.
Similar (but not identical) compositional biases have also been

observed in thermophilic sequences, consistent with the high

stabilities observed for the consensus proteins. Like our con-
sensus sequences, thermophilic proteins have been shown to be
enriched in E and K, and depleted in A, C, H, Q, S, and T (63,
64). However, thermophilic proteins have also been shown to be
enriched in Y, R, and I, which are at or below average compo-
sition in our consensus sequences. Although it might be expected
that the inclusion of sequences from thermophilic organisms in
our MSAs contributes both to the composition bias and to high
stabilities, most of the sequences in our MSAs are from mesophilic
organisms. The sequences in the SH3 and SH2 MSAs are pre-
dominantly eukaryotic (as were our previous cHD sequences);
aside from a small number of moderately thermophilic fungi,
these sequences all derive from mesophiles. For the other four
protein families (NTL9, DHFR, AK, and PGK), MSAs are
composed of at most 5% of sequences from thermophilic or
hyperthermophilic bacteria or archaea (SI Appendix, Table S5).
If the identified thermophilic sequences are removed from the
MSA before consensus sequence generation, the resulting con-
sensus sequences have identities of 98.6% or greater to the
consensus sequence derived from the full MSAs (SI Appendix,
Table S5).‡
Makhatadze et al. (47, 48) have been able to increase stability

by introducing charged residues at surface positions of several
proteins and optimizing electrostatic interactions. It is unclear to
what extent the locations of consensus charged residues optimize
electrostatic interactions, or whether additional stability in-
creases can be obtained by charge shuffling. Increases in stability
and solubility have also been reported for “supercharged” pro-
teins, which have similar numbers of charged residues (65);
however, the consensus proteins studied here are generally close
electroneutrality, whereas supercharged proteins have highly
imbalanced positive or negative charge.
It should be noted, however, that some of the consensus se-

quences deviate from the general trends observed in sequence
biases. For instance, consensus SH3 and HD have a greater
percentage of polar residues and a lower percentage of non-
polar residues, and cDHFR has a much lower net charge,
compared with the average for each MSA. Thus, consensus
sequence statistics appear to abide by general trends but not
absolute rules.
Similarly, analysis of the positions at which the consensus se-

quences differ from extant sequences highlights important as-
pects about the consensus design strategy. These consensus
mismatches occur mainly at positions with relatively low con-
servation and positions on the protein surface (Fig. 6), consistent
with the well-known correlation between residue conservation
and solvent-accessible surface area (66). This may highlight an
implicit advantage of consensus sequence design, since substi-
tutions at core positions are often destabilizing (67). However,
the large observed effects of consensus substitution on both
stability and activity indicate that these weakly conserved and
surface positions play a sizable role in both stability and function,
and considerable gains can be made by optimizing these posi-
tions. This observation is consistent with the observation of the
functional impacts of nonconserved “rheostat” substitutions on
the surface of lac repressor (68). Furthermore, the importance of
these weakly conserved positions suggests that using a large
number of sequences may be a key component of successful
consensus design, since weakly conserved positions are most
sensitive to phylogenetic noise and misalignment (69).
Our work here demonstrates that the consensus sequence

design method is both a general and successful strategy to design
proteins of high stability that retain biological activity. Compared
with other rational, structure-based, or directed evolution
methods, consensus sequence design provides a simple route to

A

C

B

D

Fig. 6. Sequence properties of consensus sequences. (A) Z scores (the
number of SDs that separate the consensus sequence from the mean value
of sequences in the MSAs; SI Appendix, Eq. 3) for various sequence proper-
ties. Distributions for all protein families are shown in SI Appendix, Fig. S11.
(B) Differences between residue frequencies in the consensus sequences and
the MSAs averaged over all seven protein families. Residues are colored as
follows: polar charged (red), polar uncharged (blue), and nonpolar (black).
The vertical offset is used for clarity. (C) Distributions of sequence entropy
values for all positions in the PGK MSA (purple), positions at which residues
in extant sequences differ from the consensus sequence (consensus mis-
matches; red), and positions at which residues in extant sequences match the
consensus sequence (consensus matches; blue) for PGK. Sequence entropy
distributions for all protein families are shown in SI Appendix, Fig. S13. (D)
Ratios of conditional probabilities of different structural environments
(surface, intermediate, and buried; “X” in the y label) for consensus mis-
matches relative to overall probabilities of surface, intermediate, and buried
residues at all positions. Conditional and overall probabilities for all protein
families are shown in SI Appendix, Fig. S14. The legend is as in A.

‡Though the 5% estimate of thermophilic sequences is likely to undercount the number
of thermophilic sequences in our MSA, since not all sequences could be unambiguously
assigned to a source organism, the total number of thermophiles in our MSAs is not likely
to exceed 16% (the ratio of identified thermophiles to thermophiles plus mesophiles).
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accomplish longstanding goals of protein design. Furthermore,
its foundation in phylogenetics provides a promising avenue to
address questions regarding the relationships of protein sequence,
biophysics, and evolution.

Materials and Methods
Design of Consensus Sequences. Sequences for each family were gathered
from Pfam (33), SMART (34), or InterPro (35) databases. Resulting sequence
sets for each domain were filtered by sequence length, removing sequences
30% longer or shorter than the median sequence length of the set. To avoid
bias from sequence groups with high identity, we used CD-HIT (70) to cluster
sequences at 90% identity and selected a single representative sequence
from each cluster. This curated sequence set was used to generate an MSA
using MAFFT (71).

At each position of the MSA, frequencies were determined for the
20 amino acids along with a gap frequency using an in-house script. Positions
occupied by residues (as opposed to a gap) in at least half of the sequences
were included as positions in the consensus sequence. The most frequent
residue at each of these “consensus positions” was gathered to create the
consensus sequence for that protein family.

NMR Spectroscopy. 15N- and 13C,15N-isotopically labeled proteins were
expressed and purified as described in SI Appendix. NMR samples, data ac-
quisition, and data analysis are also described in SI Appendix.

Peptide binding to cSH3 was monitored by heteronuclear NMR spec-
troscopy. A putative SH3-binding peptide (Ac-PLPPLPRRALSVW-NH2) was
synthesized by GenScript. Samples containing 200 μM 15N-labeled cSH3 were
prepared at 0-, 0.05-, 0.125-, 0.5-, 1.25-, 2.5-, 5-, 10-, and 20-fold molar
equivalents of unlabeled peptide. 1H–15N HSQC spectra were collected on a
Bruker Avance 600-MHz spectrometer in 150 mM NaCl, and 5% D2O, 25 mM
NaPO4 (pH 7.0) at 25 °C. 1H–15N chemical shifts varied monotonically with
peptide concentrations such that assignments from the apo-protein could be
transferred to the bound state. CSPs were calculated and globally fit using a
single-site binding equation as described in SI Appendix.

CD and Fluorescence Spectroscopies. CD measurements were collected on an
Aviv Model 435 CD spectropolarimeter. Far-UV CD spectra were collected
using a 1-mm cuvette with protein concentrations ranging from 2 to 31 μMat
20 °C, averaging for 5 s with a 1-nm step size. Consensus NTL9, cSH3, cSH2,
and cDHFR were collected in 150 mM NaCl and 25 mM NaPO4 (pH 7.0).
Consensus AK and cPGK were collected in 50 mM NaCl, 0.5 mM TCEP, and
25 mM Tris·HCl (pH 8.0).

GdnHCl- and temperature-induced folding/unfolding transitions were
monitored using either CD or fluorescence spectroscopy. All unfolding
transitions were collected with protein concentrations ranging from 1 to
6 μM. GdnHCl melts were collected at 20 °C. UltraPure GdnHCl was pur-
chased from Invitrogen. Concentrations of GdnHCl were verified using re-
fractometry (72).

Temperature-induced unfolding transitions were generated by measuring
CD or fluorescence in 2 °C increments. Samples were allowed to equilibrate
for 2 min at each temperature before signal measurement. The signal at
each temperature was then averaged for 30 s. Reversibility was assessed
by cooling samples to 25 °C after thermal denaturation and comparing CD
or fluorescence emission spectra to those collected immediately before
thermal unfolding.

GdnHCl-induced unfolding of cDHFR was monitored by CD at 222 nm,
signal averaging for 30 s at each GdnHCl concentration. Unfolding of cNTL9,

cSH3, and cSH2 was monitored by tryptophan fluorescence on an Aviv Model
107 ATF. Fluorescence was measured using a 280-nm excitation and either a
332-nm (cSH2 and cSH3) or 348-nm (cNTL9) emission, signal averaging for 30 s
at each GdnHCl concentration. For these four proteins, unfolding was found
to equilibrate rapidly, so that titrations could be generated using a Hamilton
automated titrator, with a 5-min equilibration period.

Gdn-induced unfolding of cAK and cPGK was found to equilibrate on a
slower timescale than the other consensus proteins, prohibiting the use of an
automated titrator. Therefore, samples at each denaturant concentration
were made individually and equilibrated at room temperature for 24 h (cAK)
or 5 h (cPGK). For each sample, the CD signal at 225 nm (cAK) or 222 nm (cPGK)
was averaged for 30 s. Melts for both proteins were collected in buffer
containing 50 mM NaCl, 0.5 mM TCEP, and 25 mM Tris·HCl (pH 8.0).

Titrations were carried out in triplicate for each protein. Thermodynamic
folding/unfolding parameters were determined by fitting a two-state linear
extrapolation model to the folding/unfolding curves (73).

Steady-State Enzyme Kinetics. Steady-state enzyme kinetic parameters at
20 °C were determined for cDHFR (in the direction of tetrahydrofolate for-
mation), cAK (in the direction of ADP formation), and cPGK (in the di-
rection of 1,3-bisphosphoglycerate formation) using absorbance spectroscopy
to monitor the oxidation of NAD(P)H catalyzed either directly by the consensus
enzyme (cDHFR) (74), or by the activity of an enzyme that is directly coupled
to the products produced by the rate-limiting activity of the consensus en-
zyme (cAK and cPGK) (59, 75). The absorbance at 340 nm was monitored over
time after rapid addition of consensus enzyme. Steady-state velocities were
determined as the initial linear slope of the time course. Because these
enzymes catalyze bisubstrate reactions, we were able to obtain Michaelis–
Menten kinetic parameters for each substrate by varying the concentration of
one substrate at a constant, saturating concentration of the other substrate.

For cDHFR assays, a concentration of 175 nM cDHFR was used in reaction
buffer containing 25 mM Hepes (pH 7.5) and 150 mM NaCl. For cAK assays, a
concentration of 53 nM cAK was used in reaction buffer containing 50 mM
Hepes (pH 7.5), 100 mM NaCl, 20 mM MgCl2, 1 mM phosphoenolpyruvate,
0.1 mM NADH, 10 units of pyruvate kinase, and 10 units of lactate de-
hydrogenase. For cPGK assays, a concentration of 53 nM consensus
PGK was used in reaction mixture containing 100 mM Tris·HCl (pH 8.0),
3 mM MgCl2, 0.1 mM NADH, and 5 units of glyceraldehyde phosphate
dehydrogenase.

For cDHFR and cPGK, kcat values were measured at high temperatures
using the absorbance spectroscopic assays described above at saturating
concentrations of both substrates. Samples were allowed to equilibrate at
the desired temperature for 5 min before initiation of the reaction. Con-
sensus DHFR activity was measured up to 50 °C. Consensus PGK activity was
measured up to 40 °C, the temperature of onset of denaturation of the
coupling enzyme (glyceraldehyde phosphate dehydrogenase). For cAK, en-
zyme activity at various temperatures was measured using a direct 31P NMR
assay previously used for an AK from Aquifex aeolicus (SI Appendix, Sup-
plementary Methods) (43). Consensus AK activity was measured up to 70 °C.
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