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Abstract

Path-integral Monte Carlo methods were applied to calculate the second, B(T), and the third, C(T), 

virial coefficients for water. A fully quantum approach and state-of-the-art flexible-monomer pair 

and three-body potentials were used. Flexible-monomer potentials allow calculations for any 

isotopologue; we performed calculations for both H2O and D2O. For B(T) of H2O, the quantum 

effect contributes 25% of the value at 300 K and is not entirely negligible even at 1000 K, in 

accordance with recent literature findings. The effect of monomer flexibility, while not as large as 

some claims in the literature, is significant compared to the experimental uncertainty. It is of 

opposite sign to the quantum effect, smaller in magnitude than the latter below 500 K, and varying 

from 1% at 300 K to 10% at 700 K. When monomer flexibility is accounted for, results from the 

CCpol-8sf pair potential are in excellent agreement with the available experimental data and 

provide reliable B(T) at temperatures outside the range of experimental data. The flexiblemonomer 

MB-pol pair potential yields B(T) that are slightly too high compared to experiment. For C(T), our 

calculations confirm earlier findings that the use of three-body potential is necessary for 

meaningful predictions. However, due to various uncertainties of the potentials used, especially the 

three-body ones, we were not able to establish benchmark values of C(T), although our results are 

in qualitative agreement with available experimental data. The quantum effect, never before 

included for water, reduces the magnitude of the classical value for H2O by a factor of 2.5 at 300 

K and is not entirely negligible even at 1000 K.
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1 Introduction

While the electronic structure of molecules can be described only using quantum mechanics, 

the motions of molecular nuclei can often be approximated well enough using equations of 

classical mechanics. Of course, in all such cases, one has to switch to quantum treatment of 

these motions at some threshold of accuracy required for description of a phenomenon. 

However, there are many systems for which only a quantum treatment of nuclear motions 

gives reasonable predictions. One group of such systems are atomic and molecular clusters.

An extreme example is the helium dimer, one of the weakest interatomic interactions in 

nature. This dimer has only one bound state, some time ago considered to be nonexistent. 

Now reliable experimental1–6 and theoretical7–11 information on properties of this state is 

available. This state is an important example of a halo state, i.e., it is a state with the 

property that the particles are mostly found in the classically forbidden region,11,12 an 

extreme example of quantum effects. The properties of this state depend in a measurable 

way on physical phenomena not often considered for molecular systems. One has in 

particular go beyond Schrödinger’s quantum mechanics and include relativistic and quantum 

electrodynamics effects,11,12 as these effects significantly impact the halo character of this 

state. At the required level of accuracy, one also has to include the nonadiabatic effects in an 

essentially exact way.11 At this advanced level, theoretical predictions of the size and 

binding energy of the bound state are significantly more accurate than experimental results. 

In particular, a recent measurement of the latter property6 resulted in experiment becoming 

compatible with theory,9 but the theoretical uncertainties are much smaller than the 

experimental ones. It is also worth mentioning that theoretical properties of helium gas are 

now being used in upcoming metrology standards.13,14 One element of theoretical input are 

virial coefficients, which are calculated from quantum scattering cross-sections10 (classical 

calculations are far from achieving the required accuracy).

The next example is a dimer of diatomic molecules, H2–CO. The rovibrational motions in 

this floppy dimer are extremely anharmonic, leading to complicated spectra where many 

measured lines are resonances.15 Full quantum treatment is needed to describe such motions, 

and the same is true for description of scattering of H2 on CO.16 The mixed second virial 

coefficient was calculated for this system using the path-integral Monte Carlo (PIMC) 

method.17 The quantum approach has to be used for essentially all temperatures of interest; 

only above 1000 K can one rely on the classical values.

Nuclear motions in water clusters and in liquid water are much less quantum than in the two 

dimers discussed above, and in fact classical molecular dynamics describes liquid water 

reasonably well.18,19 Nevertheless, with recently improved potential energy surfaces,20–23 

the quantum effects, if neglected, are becoming the largest source of uncertainties in 

theoretical predictions of water properties. In particular, quantum corrections are substantial 

for virial coefficients, the subject of the present work.

Advances in computational quantum mechanics have enabled creation of increasingly 

realistic models for water. While simple empirical rigid-monomer pair models like SPC/E24 

or TIP4P25 are still useful in simulations of condensed phases of water, they give huge 
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discrepancies with experiment if used in calculations of virial coefficients (see Fig. 4 in Ref. 

26). This is because such potentials effectively incorporate three- and higher-body effects in 

the pair potentials, while the virials are defined in terms of exact K-body potentials. More 

sophisticated empirical potentials that incorporate polarization effects do provide somewhat 

better second virial coefficients.27 Still, most rigid-monomer water dimer potentials fitted to 

ab initio interaction energies in the past 20 years gave second virial coefficients that agreed 

with experiment significantly better, see, e.g., Refs. 18, 26, 28, and 19. In fact, theoretical 

data became so accurate, that, in their correlation of experimental data for B(T) of H2O, 

Harvey and Lemmon29 included for T > 700 K values calculated from the SAPT-5s potential 

of Ref. 28. The first accurate flexible-monomer pair potentials were developed in 2006.30,31 

The most accurate current potentials of this type are those of Refs. 22 and 21. The number of 

three-body potentials for water is much smaller, and reliable potentials of this type were 

created only in the past decade32–34 (note that by three-body interaction energy we mean the 

trimer interaction energy minus the sum of all dimer interaction energies, with all vertical 

interaction energies, i.e., all the total energies are computed with monomers in the same 

geometries as in the trimer35,36). The currently best three-body potentials of this type are 

those from Refs. 23 and 20; the former is a flexible- and the latter a rigid-monomer 

potential. The development of high-quality potential functions for water has been reviewed 

by Szalewicz et al.37 and by Cisneros et al.38

While a fair number of third virial, C(T), calculations have been published for rare-gas 

atoms,39–44 there are only a few calculations of C(T) for water. The first calculation with 

realistic potentials was performed by Kusalik et al.,27 but the three-body potential was 

represented only by a simple point-charge polarization model. The most recent calculation 

of C(T) was published by Schultz et al.45

Virial coefficients appear in the expansion describing deviation from ideal-gas behavior as a 

series in powers of density

p
ρRT = 1 + B(T)ρ + C(T)ρ2 + …, (1)

where p is the pressure, ρ the molar density, R the molar gas constant, and T the absolute 

temperature. The second virial coefficient B(T) is rigorously defined by the pair potential 

only, the third virial coefficient C(T) depends on both the two-body and three-body 

potentials, etc. The virial expansion is useful for describing thermodynamic properties of 

water vapor in a variety of contexts, including steam turbines and atmospheric science. The 

third virial coefficient is expected to be important for water as three-body effects account for 

at least 15% of the values of properties of liquid water.18,19,33,35

For ordinary water (H2O), B(T) is well known from experiment above approximately 320 K,
29 while there is much less knowledge of C(T). For heavy water (D2O), B(T) is known over 

a more narrow range of temperature,46 and C(T) is known only for a few values of T from a 

single study. Calculating virial coefficients from potentials can therefore serve two 

functions. First, comparing calculated B and C at temperatures where reliable experimental 
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data exist serves as a test of the accuracy of the potentials and of the methods used to 

compute the virials. Second, for potentials that are shown to be sufficiently accurate, the 

calculated B and C at temperatures where no (accurate) data exist provide much needed 

estimates of these important thermodynamic functions.

The simplest to calculate are classical virial coefficients, as these are straightforward 

multidimensional integrals. However, because of the small moments of inertia of the water 

molecule, quantum effects on the virial coefficients are expected to be larger than in most 

molecules. Indeed, for the second virial coefficients, this has been known for long time, for 

example, calculations of Ref. 26 found that quantum effects reduce the the magnitude of 

classical B(T) by 14% at 298 K (however, no quantum calculations are available for C(T)). 

Note that such large quantum effects may seem to be in contradiction to the fact that these 

effects, as mentioned earlier, make in general fairly small contributions in simulations of 

liquid water; see a discussion of this issue in Sec. 5. The most often used expression for 

quantum effects is the leading term, proportional to the square of the reduced Planck 

constant, ℏ2, in the Wigner–Kirkwood expansion.47 Various other semiclassical 

approximations have been developed,48–51 but the errors of these approximations are 

difficult to estimate. We therefore employ the PIMC approach, which converges to the full 

quantum solution if sufficient computer resources are used.50,52,53

The PIMC calculations will be performed with full-dimensional potentials. Apart from this 

being the only way to get near-exact values, the ability to obtain the virials at this level is 

important for at least two other reasons. First, by performing PIMC calculations also with 

rigid-monomer potentials, we can determine the relative importance of monomer-flexibility 

effects on virials. One wants to know these contributions since for systems larger than water 

calculations of such corrections are beyond capabilities of present methods. The current 

information on monomer-flexibility effects is limited. For the second virial coefficient of H2, 

Garberoglio et al.54 found that a rigid-monomer model with the bond length at its 

vibrationally averaged ground-state value gives results nearly identical to the fully 

flexiblemonomer calculation, and later effects of similar size (0.8% effect at 300 K and 

0.09% at 1000 K) were found for H2-CO.17 On the other hand, for H2O, it has been claimed 

that monomer flexibility has a large effect on B(T). Refson et al.55 computed this effect as 

10% in the range 373–673 K, while Donchev et al.56 computed it as 20–40% for T ∊ 300 

− 800 K, with 40% effect at 300 K. In contrast, recent calculations by Jankowski et al.21 

gave much smaller monomer flexibility effects. In particular, near the edges of the 

investigated range of temperatures the effect was 2.4% (at 298 K) and −9% (at 3000 K). The 

percentage effect does become large at temperatures around 1500 K, but this is not 

meaningful since B(T) crosses zero there. Jankowski et al. also found that these effects are 

an order of magnitude smaller than quantum effects at low T, but become larger in 

magnitude for T larger than about 600 K. However, the quantum effects were computed only 

at the Takahashi–Imada level49 and only for rigid monomers. Our ability to calculate virial 

coefficients at exact quantum level from a flexible-monomer potential will allow us to 

definitely evaluate whether the literature claims of large flexibility effects are correct.

Second, the knowledge of the full-dimensional quantum results will allow evaluation of 

various approximate methods of including monomer-flexibility effects. While the virial 
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coefficients for fully flexible monomers are uniquely defined, derivations of approximate 

methods have to employ somewhat arbitrary procedures of averaging over intramolecular 

coordinates and therefore it is difficult to compare such methods based on the derivations. 

These issues have recently been extensively discussed in Refs. 54 and 21.

One more advantage of performing flexible-monomer calculations is that such calculations 

can be done for all isotopologues, such as D2O, using a single potential. This is because the 

clamped-nuclei (Born–Oppenheimer) potential does not depend on nuclear masses. Rigid-

monomer water models typically use the angle and bond length of H2O, while D2O has a 

slightly different geometry.57 Thus, either a separate potential has to be developed for D2O 

or some error is introduced by using the H2O geometry. This problem has been very recently 

partly overcome in Ref. 58 by using the atom-following method of Refs.59 and 60. 

However, with a flexible-monomer model, we can compute virial coefficients for D2O with 

full consideration of its (flexible-monomer) geometry, or we can “freeze” the 

flexiblemonomer model at the vibrationally averaged ground-state D2O geometry in order to 

perform simpler rigid-rotor calculations. The virial coefficients of D2O are of particular 

interest for a current effort to produce a new international standard reference equation of 

state for the thermodynamic properties of heavy water.61

In this work, we use the PIMC method to calculate B(T) for H2O and D2O at a fully 

quantum level from two high-accuracy flexible-monomer pair potentials. We also examine 

the effect of flexibility by performing PIMC calculations on rigid-monomer versions of 

those models, and examine the importance of quantum effects by performing classical and 

semiclassical calculations. We use the same pair potentials, in combination with one 

flexible-monomer and one rigid-monomer three-body potential, to calculate C(T) for H2O 

and D2O.

2 Theory

The path-integral calculations of virial coefficients from ab-initio potentials reported in this 

paper are largely based on the theory we developed in Ref. 54. Since in that paper we dealt 

specifically with linear molecules (H2 isotopologues), we now briefly describe how the 

results can be extended to deal with the general case.

2.1 Quantum exchange effects in an isolated water molecule

Let us denote by X = [xH1,xH2,xO] a point in 9-dimensional vector space of Cartesian 

coordinates of the atoms in a water molecule and let |X〉 be the quantum mechanical state of 

a molecule where the atomic positions have definite values described by the coordinates X. 

If the two hydrogens are treated as indistinguishable particles (that is, in the case of H2O or 

D2O), then the single-molecule partition function at temperature T is given by

Q1 = 1
2∫ dX X e−βh X + X e−βhχ X , (2)
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where β = (kBT)−1 , kB is the Boltzmann constant, H1 is the single-molecule Hamiltonian, 

and the operator χ exchanges the coordinates of the two hydrogens, that is χ|X〉 = χ|
xH1,xH2,xO〉 = |xH2,xH1,xO〉. The Hamiltonian is of the form H1 = t +u(X), where t is the 

kinetic energy operator for the three atoms and u(X) the potential energy of the system. As 

usual, we evaluate the right-hand side of Eq. (2) using the Trotter theorem

e−βh = lim
P ∞

e−βt /Pe−βu/P P,

truncated at a large but finite value of P, and inserting completeness relations of the form

∫ dXk | Xk Xk|,

(with k = 2,…,P) between the appropriate exponential operators. The space of states |Xk〉 is 

identical to the space of states |X〉, and we will from now on denote the latter states as |X1〉. 
In this way we arrive at the usual path-integral representation of quantum statistical 

mechanics:54,62 the first term in Eq. (2) (called the Boltzmann term) is equivalent to the 

partition function of a system of distinguishable particles where each of the initial atoms is 

replaced by a ring polymer with P beads. The beads having the same index k interact via the 

potential u(Xk)/P and the subsequent beads corresponding to the same atom a interact via a 

harmonic potential with the harmonic constant Ka = MaP(βℏ)−2, where Ma is the mass of 

atom a. Hence, the potential energy of a ring-polymer molecular configuration is

u X1, …, XP = 1
P ∑

i = 1

P
u Xi +

Ka
2 ∑

a = 1

N
∑
i = 1

P
Xi + 1

a − Xi
a 2, (3)

where Xi
a denotes the position of atom a (a = 1,…,N, where N is the number of atoms within 

the considered molecule) in the i-th bead. Notice that due to the condition of closed ring 

polymers, one has XP+1 = X1.

The second term in Eq. (2) (called the exchange term) corresponds to a classical system 

where the ring polymers of the two hydrogen atoms within the same molecule are coalesced 

into a single ring polymer of 2P beads. A pictorial representation of these two cases is 

presented in Fig. 1. When considering exchanged configurations, we will denote the ring-

polymer potential energy as uxc. Notice that the only difference between uxc and u is in the 

harmonic contribution of Eq. (3), and it corresponds to the variation in energy obtained by 

cutting the dashed bonds between hydrogen atoms in Fig. 1(b) and adding the bold ones.

As shown in Ref. 54, the relative importance of the Boltzmann versus exchanged 

configurations depends on the temperature. In the limit of high temperatures, only the 

Boltzmann configurations contribute to sampling. At finite temperatures, the relative 

probability Ξ(T) of the appearance of exchanged configurations vs. Boltzmann ones can be 

obtained via thermodynamic integration
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Ξ(T) = exp −β∫
0

1
dλ Δu (λ) , (4)

where Δu (λ) denotes an average of the potential energy difference

Δu = uxc − u,

(independent of λ) performed by sampling molecular configurations where ring-polymer 

potential is given by

uλ = (1 − λ)u + λuxc .

As discussed above, Δu depends only on the difference in the harmonic energy between the 

exchange and Boltzmann configuration (see Fig. 1). The relative probabilities Ξ(T) for a 

single H2O molecule in vacuum are plotted in Fig. 2. This figure shows that the exchange 

effects are completely negligible above T = 40 K. Since in the following we will be 

interested in temperatures T ≥ 200 K, this result implies that only Boltzmann polymers will 

contribute to the calculation. Thus, we will neglect the exchange term in Eq. (2), resulting in 

a considerable simplification of the sampling procedure.

2.2 PIMC virial coefficients

The virial coefficients discussed here are determined in terms of partition functions Qi, i = 

1,2,3: the monomer partition function Q1, defined in Eq. (2), the dimer one Q2, and the 

trimer one Q3. The definitions of Q2 and Q3 are completely analogous to the definition of 

Q1: neglecting exchange effects, and denoting by qN all the coordinates necessary to 

describe N molecules, one has

QN = 1
N !∫ dqN qN e

−βHN qN , (5)

where HN is the quantum mechanical Hamiltonian of an N-molecule system. Introducing the 

auxiliary variables

ZN
N ! =

QNVN

Q1
N , (6)

where V is the volume containing the system under consideration, we can write the second 

virial coefficient as63,64
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B(T) = − 1
2V Z2 − Z1

2 = − V
2

2Q2
Q1

2 − 1 , (7)

and the third one as

C(T) = 4B2(T) − 1
3V Z3 − 3Z2Z1

2 + 2Z1
3 . (8)

The derivation of the PIMC expression for the second virial coefficient from Eq. (7) is 

analogous to that described in Ref. 54, starting from the expression

Q2 = 1
2∫ dXadXb XaXb e

−βH2 XaXb ,

with

H2 = ta + u Xa + tb + u Xb + U2 Xa, Xb ,

where ti is the kinetic energy operator for all the atoms in molecule i, Xi is the variable X of 

Sec. 2.1 with the subscript distinguishing the two molecules, and U2 is the flexible-monomer 

intermolecular potential which, in this notation, depends on 18 variables. Since the 

intermolecular potential is invariant by an overall translation or rotation of the coordinate 

system, U2 actually depends on 12 independent variables. In PIMC with P beads, the 

evaluation of the partition function Q2 results in a 18P-dimensional integral. In this integral, 

the potential U2 enters as the sum

U2 Za, Zb = 1
P ∑

i = 1

P
U2 Xa, i, Xb, i , (9)

where Xc,i denotes the positions of the atoms of monomer c in the ith bead and 

Zc = Xc, i i = 1
P . Thus, U2 is a function of 18P variables. Since the integral is invariant to 

translations of the whole dimer, one can integrate three of the 18P coordinates, which we 

choose as the position of the first bead of the oxygen of molecule a. This results in the 

appearance of a factor V, and, in the remaining integrand, this bead can be considered fixed 

at the origin of the coordinate system. Further simplifications of Eq. (7) can be achieved by 

realizing that among the remaining 18P − 3 coordinates one describes the relative position of 

the two molecules: we use the first bead of the oxygen in molecule b and denote its value by 

x. The remaining 18P−6 coordinates describe the internal configurations of the two ring 

polymers. We note that the expression of B(T) includes two single-molecule partition 

functions Q1 in the denominator, which are both proportional to V due to translational 
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invariance, resulting in a cancellation of the volume factors in Eq. (7). Furthermore, one can 

interpret the integration in the 18P−6 internal coordinates in Q2 as an average over two 

single-molecule ring polymers, whose oxygens in the first bead are separated by x. Using 

these considerations, one can then show54 that the formula for the second virial coefficient 

can be written as

B(T) = − 1
2∫ dx z2(x) − 1 , (10)

where z2(x) is defined by

z2(x) = e
−βU2 Za, Zb , (11)

with the average 〈⋯〉 performed over ring-polymer configurations of isolated water 

molecules whose oxygen atoms in the first bead are separated by x. In our computer code, 

these ring-polymer configurations are generated using a hybrid Monte Carlo procedure.65,66 

Equation (10) is also valid in the case of rigid molecules. In this case, the center of mass of 

the molecule in the first bead is fixed at the origin of the coordinate system, and x denotes 

the position of the center of mass of the first bead of the second molecule. The average is 

then performed over ring-polymer configurations corresponding to free rigid-water 

molecules that have been sampled using the straightforward Metropolis Monte Carlo.

Starting from Eq. (8), the third virial coefficient can be written as

C(T) =  4B2(T) −  13∫ dxdy z3(x, y) − z2(x) − z2(y) − z2(x − y) + 2 (12)

z3(x, y) = exp −βU3 Za, Zb, Zc , (13)

where U3 Za, Zb, Zc  is the total three-body potential averaged over the P beads, with a 

definition analogous to U2 in Eq. (9), in the configuration where the first bead of the oxygen 

atom of molecule a is fixed at the origin of the coordinate system, and the first beads of the 

oxygen atoms of the other two molecules (b and c) are in positions x and y, respectively. As 

in the case of z2(x), the average leading to z3(x, y) is performed over the configurations of 

three free-molecule ring polymers. In actual calculations averages such as that of Eq. (11) 

are performed on the fly while integrating over x (and y in the case of the third virial), using 

at least 12 independent pairs (or triplets) of ring polymers. When calculating B(T), 

invariance under rotation implies that the integrand is a function only of |x|, whereas in the 

case of C(T), the integrand is a function only of |x|, |y|, and the angle between x and y. 
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Integrations over these independent coordinates are performed using the VEGAS algorithm, 

sampling 5000 points for B(T) and 105 points for C(T).

The Trotter index P was fixed at P = 64 for the flexiblemonomer models (both H2O and 

D2O), because we found convergence at this value for B(T) even at the lowest investigated 

temperature. In the case of rigid molecules, we used a temperature-dependent value given by 

P = 2500 K/T +4 for both isotopologues. In this case, this value was fixed by checking the 

convergence of B(T) at the temperatures of 200 K, 300 K, 500 K, and 1000 K. The statistical 

uncertainties on the calculations are reported as the variance of the mean taken on 16 

independent runs.

2.3 Kinetic energy transition matrix for rigid monomers

For rigid monomers, the variables describing the state of a single molecule in a cluster are 

the molecular center-of-mass coordinates, RC, and the set of three Euler angles, Ω, 

describing its orientation. In this case, the most time-consuming step of a PIMC simulation 

is the calculation of the transition matrix for the rotational kinetic energy operator trot

ρrot(ΔΩ) = Ω1 e
−βtrot/P Ω0 , (14)

which is a function of the Euler angles ΔΩ describing the rotation from the configuration 

described by the Euler angles Ω0 to the configuration described by the Euler angles Ω1. This 

quantity has been studied by Noya et al.,67,68 and can be expressed in the form of nested 

loops, as shown in Eq. (15) of Ref. 68. We precalculate ρrot(ΔΩ) on a three-dimensional grid 

with an angular resolution of 2°, and use cubic spline interpolation to obtain its value during 

the path-integral simulation. This approach resulted in a significant speedup of calculations 

with a negligible impact on the accuracy.

2.4 Semiclassical virial coefficients

By expanding Eq. (7) in powers of ℏ, it turns out that the fully quantum second virial 

coefficient can be approximated by a classical calculation with a modified potential.50 One 

common form of this semiclassical potential is the one proposed by Feynman and Hibbs62,69 

(FH) which – in the case of two interacting rigid rotors whose centers-of-mass separation is 

denoted by R and whose orientations are given by the Euler angles Ω1 and Ω2, respectively – 

has the form

U2
FH = U2 R, Ω1, Ω2 + ℏ2

24kBT ∑
i = 1

3 1
μ

∂2U2
∂Ri

2 + ∑
n = 1

2 1
Ii

∂2U2
∂θni

2 , (15)

where μ is the reduced mass of the two interacting molecules and θni denotes a rotation 

around the principal axis i of molecule n, with Ii being the corresponding moment of inertia. 

However, we used the Takahashi–Imada (TI)49 form of the effective potential, which 

involves only the first order derivatives and is given by
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U2
TI = U2 R, Ω1, Ω2 + ℏ2

24kB
2 T2

F 2

μ + ∑
i = 1

3 τ1i
2 + τ2i

2

Ii
, (16)

where F is the force between the centers of mass of the two molecules and τni is the i-th 

component of the torque acting on molecule n. The classical and semiclassical virial 

coefficients for rigid monomers are usually written as 9-dimensional integrals over 

(R,Ω1,Ω2), but can be reduced to 6-dimensional integrals due to isotropy of the potential. In 

our calculations, integrations were performed in 7 dimensions, i.e., all the 6 Euler angles and 

the radial separation, as it was easier to sample such subspace uniformly.

In the case of the third virial coefficient, we are not aware of any semiclassical formula for 

rigid or flexible molecules. In this case, we followed Ref. 45, and used the TI potential for 

the two-body interaction, while keeping the regular potential for the three-body interaction.

2.5 Intermolecular potentials

Given the importance of water in many physical and chemical processes, a large number of 

intermolecular potentials have been developed and optimized for specific applications (e.g., 

simulation of the liquid and solid phase). In this work, we will consider only potentials that 

have been developed using ab-initio electronic structure calculations performed on water 

dimers and trimers.

In the case of two-body interaction, we will consider the CCpol-8sf21,30,70 and MB-pol23 

potentials, which explicitly consider flexible molecules, as well as their rigid-molecule 

approximations, obtained by fixing the O–H distance and the H–O–H angle at their average 

values in the ground rovibrational state, rOH = 0.9716257 Å and HOH= 104.69°, 

respectively.71 In this case, the CCpol-8sf potential reduces to the rigid-monomer CCpol-8s 

potential of Ref. 72 (which is an improved version of the CCpol-5s potential of Ref. 73). 

The CCpol2 potential20 is very similar to CCpol-8s, but represents a small improvement 

over it (mainly by using additional grid points at small intermonomer separations from Ref. 

74). To take advantage of this improvement, we used CCpol2 in rigid-monomer calculations 

(note that there are some mistakes in the Supplementary Information of Ref. 20, which are 

corrected in an erratum75). The same approach has been applied to generate rigid-monomer 

heavy-water potentials; in this case we have used rOD = 0.97077 Å and DOD= 104.408°.57

Few three-body potentials are available for water. Two full-dimensional potentials exist: the 

surface of Ref. 76 (an improved version of the surface from Ref. 34) and the three-body part 

of MB-pol.23 CCpol320 is a recent three-body potential developed using highly-accurate 

quantum mechanical calculations and a much denser grid than in Refs. 76 and 23, but it was 

developed only in rigid-monomer form. Despite this, we will use it also for flexible-

monomer simulations in the following way: when the PIMC program requires a value of 

three-body potential at some deformed monomer geometry, this geometry is projected onto 

the closest rigid-monomer configuration obtained using the bisector-axis embedding 

described in the Supplementary Information of Ref. 21 and such rigid-monomer value of the 
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three-body potential is used. Since CCpol3 is in site-site form, another option would be to 

use the atom-following scheme.59,60

As a general remark, we note that all of these potentials have been obtained by fitting a 

given functional form using a large number (from several thousands to hundreds of 

thousands) of water dimer or trimer configurations. The resulting functions reproduce with 

high fidelity the ab-initio energies of configurations close to the training set. However, in 

performing the integrals leading to the virial coefficients, one often needs the value of the 

potential for molecular configurations very dissimilar from those used in the fitting 

procedure, and the resulting extrapolation might lead to unphysical values of the potential 

which, in turn, results in inaccurate virial coefficients. In general, we identified two cases in 

which this extrapolation is particularly inaccurate: short intermonomer distances and large 

monomer deformations.

To deal with the first case, we introduced a short-range cutoff, setting the potential to a very 

high value (105 K) whenever two molecules are closer than a specific distance. The details 

of this procedure depend on the specific potential: in the case of MB-pol we used a criterion 

based on the center-of-mass distance d, assuming strong repulsion as soon as d < 1.8 Å. In 

the case of CCpol-8sf, we used a more complicated criterion based on the distances dab 

between atoms a and b on different molecules; we assumed strong repulsion as soon as at 

least one of the following conditions were met: dOO < 1.8 Å, dHH < 1.3 Å, dOH < 1.3 Å.

The case of large molecular deformations, which appear quite frequently in the path-integral 

sampling, was particularly problematic for CCpol-8sf. We noticed that intermolecular 

energies resulted in unphysical values when extrapolating beyond the range of OH bond-

lengths [0.8639–1.0778] Å and HOH angles [76.68 –137.27°] used in the training set. In that 

case, we adjusted the problematic monomer to a geometry corresponding to the nearest 

endpoint of the appropriate range. In the case of MB-pol, this problem did not appear, 

possibly due to the fact that there was no range of separations and angles used for selecting 

grid points, but rather such points were extracted from molecular simulations.

Another unphysical behavior exists in the case of the published version of the CCpol3 

potential.75 This fit produces unphysical values at configurations with at least one 

intermonomer distances larger than about 25 Å, and insufficiently accurate values in the 

range 10 Å to 25 Å. The problem is related exclusively to the exchange terms proportional to 

the third power of orbital overlap integrals. However, the exchange terms should be 

completely negligible for distances larger than 10 Å. Thus, a simple solution is to set the 

exchange terms to zero at such distances, which then gives a well-behaved function without 

any loss of accuracy (see Ref. 75 for more details). To be on the safe side, we decided to 

truncate the exponential part for separations larger than 7 Å. The induction part of the 

potential, which dominates three-body interactions at large separations, does not exhibit any 

problems and was kept in our calculations. The same approach was taken by Schultz et al.45

All the calculations used the PJT2 potential by Polyansky et al.77 to represent the 

intramonomer energy u(X).
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3 Results for B(T)

Table 1 shows the calculated second virial coefficients B(T) for H2O for the full-dimensional 

potentials (CCpol-8sf and MB-pol) and for various approximations (PIMC for a rigid-

monomer potential at the vibrationally averaged ground-state geometry, semiclassical rigid, 

classical rigid). For conciseness, we do not tabulate semiclassical and classical results for the 

rigid MB-pol pair potential; deviations of these approximations from the PIMC calculation 

are nearly identical for CCpol2 and MB-pol.

The experimental B(T) data for H2O were reviewed by Harvey and Lemmon.29 For 

comparison purposes, in this paper we discuss only the sources they found to be reliable; 

many older data are inaccurate due to adsorption effects. Kell et al.78 extracted B(T) from 

volumetric measurements between 423 K and 773 K. Eubank et al.79 used the Burnett 

expansion method to derive B(T) from 348 K to 623 K. Both the Kell and Eubank studies 

made corrections for adsorption, which are essential below roughly 500 K. Abdulagatov et 

al.80 reported B(T) from volumetric data from 523 K to 653 K, and Vukalovich et al.81 used 

previously measured high-temperature volumetric data from his laboratory to derive B(T) 

from 773 K to 1173 K. Finally, Harvey and Lemmon29 derived B(T) from the vaporization 

data of Osborne et al.82,83 This procedure only works in a limited temperature range; Harvey 

and Lemmon report values from 323 K to 473 K.

Harvey and Lemmon (HL)29 represented the experimental B(T) (and some theoretical values 

as mentioned earlier), along with some data related to dB/dT, with a correlation function that 

was stated to be valid, i.e., reproduce data within their uncertainty, between 310 K and 1170 

K. We will use the HL correlation as the baseline for examining how well our calculated

Figure 3 shows the calculated B(T) for H2O from both pair potentials, with and without 

monomer-flexibility contributions, as the difference from the HL correlation. The selected 

experimental data are also plotted, along with their uncertainties (expanded uncertainties 

with coverage factor 2, roughly corresponding to a 95% confidence interval) where 

available. The results from the flexible-monomer CCpol-8sf potential are in excellent 

agreement with the HL correlation and with the experimental data. The differences are large 

only relative to the data of Osborne et al.83 in the range 325 K – 350 K, but these data have 

uncertainties so large that theoretical and experimental values are still consistent. In the 

same range, the discrepancies with the HL correlation are also fairly large (although smaller 

than with Ref. 83), but note that this region is close to the validity limit. As seen in Table 1, 

below this limit the relative discrepancies become still larger. While the flexible-monomer 

MB-pol potential yields results that are near the experimental data, they are clearly not 

consistent with experiment, yielding B(T) slightly too high over the entire range.

Table 1 and Fig. 3 show that the effect of monomer flexibility for both pair potentials is to 

lower B(T) for T > 250 K. This effect is several times larger than the uncertainties of the 

experimental data, showing that accounting for flexibility is necessary for quantitative 

agreement with experiment at the current level of experimental accuracy. As a percentage of 

the total B(T), the monomer-flexibility effect varies from 1% at 273 K to 10% at 700 K (for 

higher temperatures the relative contribution becomes very large, but this is mainly due to 
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the fact that the function B(T) crosses zero near 1500 K). This shows that the effect 

calculated by Refson et al.,55 close to 10% in the whole range investigated by them, was too 

large in magnitude, except at their highest value of T, whereas the 20–40% contribution 

obtained by Donchev et al.56 was much too large. On the other hand, the agreement with 

monomer-flexibility effects computed by Jankowski et al.21 in the range 273 K – 1000 K is 

excellent, to within about 1%. Although the virial coefficients from all-dimensional 

CCpol-8sf and MB-pol potentials are fairly close to each other, Fig. 3 shows that the 

monomer-flexibility corrections are about twice as large for CCpol-8sf as for MB-pol in the 

range of T displayed.

In Fig. 4, we show the effect of approximating the quantum nature of the B(T) calculations. 

Only results from the CCpol2 potential for H2O and the rigid-monomer version of the 

CCpol-8sf potential for D2O are shown; the results for the rigid-monomer versions of MB-

pol are similar. The vertical axis on Fig. 4 is the difference between the approximately 

calculated B(T) and that obtained from a full PIMC calculation (in rigid-monomer 

approximation). As expected for a molecule with a small moment of inertia and strongly 

anisotropic intermolecular forces, quantum effects are significant even at high temperatures, 

amounting to 4% at 1000 K (the larger relative contribution for some higher temperatures is 

again related to the crossing of zero). As temperature decreases, the percentage increases to 

reach 25% at 300 K. The quantum effects move the B(T) curve up, acting opposite to 

monomer-flexibility effects. However, a significant cancellation between the two effects 

takes place only in a relatively narrow range of T: from about 450 K to 600 K (as the former 

effects decrease with T, while the latter increase). The semiclassical approximation works 

well over virtually the whole range of temperatures, as it recovers PIMC results to within 

about 2% (except near the crossing of zero). The absolute discrepancies may seem large 

below roughly 400 K, but even at 300 K the error is only 1.8%, very small compared to 

experimental uncertainties in this region. This is a positive finding for future work on larger 

molecules, since the TI calculations are much less expensive than the PIMC ones.

The second virial coefficients can be compared with those computed by Jankowski et al.21 

Both calculations used the same CCpol-8sf potential, but different methods of computing 

B(T). The authors of Ref. 21 calculated the monomer-flexibility correction by subtracting 

the values computed with the potential averaged over the monomer ground-state vibration, 

〈U2〉0, from values computed with the potential taken at the vibrationally averaged 

geometry, U2(〈r〉0). As discussed above, this correction is in excellent agreement with our 

results. The correction was then added to the quantum virial coefficients computed in TI 

approximation from the U2(〈r〉0) potential. Since Jankowski et al. performed calculations for 

temperatures used in experiments, only a few of these coincide with those used by us. At 

273 K and 450 K, the differences are 6% and 2% (after an interpolation from 448 K), 

respectively. At 1000 K, 1500 K, and 2000 K, the differences are below 1.8 cm3/mol. Thus, 

the agreement is very good. At the lowest T, the discrepancy is mainly due to an incomplete 

account of quantum effects. When these effects become less important, the agreement 

improves at 450 K. At high T, the discrepancies are due to the different treatments of 

monomer-flexibility effects.
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Table 2 shows results of PIMC calculations for D2O. For this isotopologue, the only reliable 

experimental B(T) are from Kell et al.,78 extending from 423 K to 773 K. Hill and 

MacMillan46 (HM) used those data and the behavior of H2O to derive a correlation for B(T) 

of D2O; we use the HM correlation as a baseline for plotting our calculated D2O results.

In Fig. 5, we show B(T) as differences from the HM correlation, along with the experimental 

data. Once again, we find quantitative agreement between our calculations with CCpol-8sf 

and the experimental data in the range 450 K to 800 K, with the MB-pol pair potential 

yielding B(T) somewhat too high. As was the case for H2O, quantitative agreement with the 

experimental data requires accounting for monomer flexibility. Figure 5 and Table 2 also 

show that, unlike the HL correlation for H2O which is accurate at high temperatures (since it 

was fitted to theory there), high-temperature extrapolation of the HM correlation for D2O 

overestimates B(T) and the present theoretical data should be used in this region. Similarly 

as for H2O, the agreement becomes poor for T’s below the range covered by experiments, 

and theory is likely more reliable in this region.

As expected from its larger moment of inertia, the quantum effects on B(T) are smaller for 

D2O than for H2O. Figure 4 shows the error introduced by the classical and semiclassical 

approximations. The size of the error for D2O in the classical approximation is slightly more 

than half of the error for H2O at the same temperature. The semiclassical approximation also 

yields somewhat smaller errors than for H2O, maintaining quantitative accuracy in absolute 

terms to near 300 K (the relative accuracy is good throughout).

4 Results for C(T)

The calculation of C(T) requires substantial computer time (roughly 1500 hours per 

temperature on a single core of a 2.5 GHz machine for the full-dimensional case), but is 

tractable with the methods described in Sec. 2.2. Such calculations, if sufficient accuracy can 

be achieved, would be valuable since the few available experimental data sources for 

H2O78–81,84 are not fully mutually consistent and there is only one experimental source for 

D2O.78 We report C(T) at only five temperatures (300 K, 500 K, 600 K, 700 K, and 1000 K) 

in order to discuss qualitative trends and the size of various effects. Except for 300 K, these 

temperatures overlap available experimental data. The point at 300 K allows us to examine 

quantum effects which should be relatively large at that low temperature. We could have 

performed calculations for more points, but as discussed below, the present three-body 

potentials need more work to yield results with better quantitative accuracy.

In Table 3, we present C(T) calculated for H2O using several different methods, along with 

the values interpolated (to the T values used in the table) from available experimental 

sources. To see the influence of three-body effects, we perform fully quantum PIMC 

calculations with only the CCpol2 rigid-monomer pair potential, and then with the addition 

of the rigid-monomer CCpol3 three-body potential. We also test the MB-pol potential in a 

rigid-monomer three-body calculation. To evaluate the magnitude of nuclear-motion 

quantum effects, we perform the rigid-monomer CCpol2 + CCpol3 calculation in the 

classical and semiclassical approximations. Finally, we perform three calculations with the 

molecules treated as flexible. We use the flexible-monomer CCpol-8sf pair potential, with 
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the three-body energies mapped onto the rigid-monomer CCpol3 three-body energies as 

discussed in Sec. 2.5. For MB-pol, C(T) is calculated with both two-body and three-body 

potentials in flexible-monomer form. Lastly, since the CCpol-8sf pair potential performed 

better than MB-pol for B(T), we combine it with the flexible three-body contribution from 

MB-pol.

The first thing we can see in Table 3 is the crucial role of three-body forces. Comparing the 

fully quantum results with only the CCpol2 pair potential (first line in the table) with those 

including the three-body CCpol3 contribution (fourth line), we see that omitting the three-

body forces gives the wrong sign of C at some temperatures, and that in general the three-

body contribution is similar in magnitude to the value of C itself. It is clear that 

approximating C(T) with only two-body forces, while often done in the literature, is 

seriously in error for water.

Second, we examine the quantum effects on C(T) by comparing the values calculated with 

the full PIMC method for the rigid CCpol2+CCpol3 case (fourth line in Table 3) with the 

classical and semiclassical approximations (second and third lines). The classical calculation 

is consistent with the fully quantum results at 700 K and 1000 K, but not below. In fact, the 

performance of the classical approximation deteriorates dramatically at lower temperatures, 

and at 300 K the classical value is 2.5 times larger in magnitude than the quantum one. The 

semiclassical approximation retains accuracy at 600 K, and marginally so at 500 K. These 

ranges of validity for the classical and semiclassical approximations are similar to the 

corresponding ranges for B(T). As with B(T), the classical calculation produces C(T) that 

are too negative.

The effect of monomer flexibility is smaller than that of three-body forces, but it is 

significant compared to the experimental and theoretical uncertainties. This can most easily 

be seen by comparing the rigid-monomer MB-pol results (sixth line in Table 3) with those 

computed with full pair and three-body flexibility in MB-pol (seventh line). Monomer 

flexibility makes C(T) more negative (as was the case for B(T)), and at the two temperatures 

where multiple data sources exist this effect is somewhat larger than the magnitude of the 

scatter among data sources.

In Fig. 6, we compare the performance of different approaches to experimental data. For 

clarity, we omit the pair-only calculations and the classical and semiclassical 

approximations. The MB-pol flexible-monomer model gives C(T) distinctly lower than 

experiment at all temperatures but 500 K, where it is consistent with the experimental data. 

The situation with the CCpol family of potentials is better; CCpol-8sf+ CCpol3 (flex) yields 

C(T) reasonably close to experiment at 500 K (the value is above most experimental data, 

but consistent within mutual uncertainties with one of the data sources79). The agreement is 

excellent at 1000 K (to three significant digits which is certainly fortuitous). At 600 K, the 

theoretical result lies somewhat below the two higher experimental values,78,79 but agrees 

well with the interpolated value of Ref. 80. At 700 K there is a discrepancy with the single 

experimental data source,78 but since Kell et al. did not report uncertainties in C(T) it is 

difficult to say whether the difference is significant. If (as the MB-pol results suggest) 

incorporation of flexibility in the three-body potential adds a negative contribution to C(T), 
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adding such flexibility to the CCpol3 potential would worsen agreement with experiment 

except at 500 K.

We note that the low-temperature experimental C(T) values are not beyond question; 

absorption of water on the surfaces of apparatus makes deriving virial coefficients from 

experiment, especially coefficients beyond the second, very difficult at roughly 500 K and 

below. This difficulty is apparent in comparing the data of Kell et al.78 and Eubank et al.79 

for H2O. The two sets already differ significantly at 500 K (visible in Fig. 6a and in Table 3), 

and the disagreement increases at lower temperatures, reaching a factor of three at their 

lowest common temperature of 423 K (not shown).

Finally, we consider the combination of the CCpol-8sf two-body potential with the MB-pol 

three-body potential. We might expect this to be the best performer, since it combines the 

flexible-monomer pair potential that almost perfectly reproduces experimental B(T) with a 

three-body potential that includes flexibility. However, as is apparent in Fig. 6, this 

combination does not improve matters, producing C(T) values similar to those from MB-pol 

and similarly inconsistent with experiment above 500 K. The fact that both high-quality 

flexible-monomer pair potentials (CCpol-8sf and MB-pol2) yield almost identical C(T) 

when combined with the same three-body potential (MB-pol3) suggests that the two-body 

potentials are adequate for use in C(T) calculations, and that the need for improvement lies 

in the three-body potentials.

One more way to analyse the results is to realize that the values of C(T) obtained with the 

CCpol2+3 rigid-monomer potential are likely very close to the limit values for the rigid-

monomer approximation. This is because both the two- and three-body parts of this potential 

were fitted to highly-accurate ab initio data computed for a very large number of grid points 

(more than 70 thousand for the three-body part in 12 dimensions). Thus, if the monomer-

flexibility effects lower the value of C(T), as MB-pol calculations imply, C(T) computed 

with CCpol2+3 provides an upper bound for this quantity. If this were true, it would suggest 

that the Kell et al. results in the range 600 K – 750 K may be systematically high. However, 

we cannot be certain about the sign of the monomer-flexibility effect. The three-body part of 

MB-pol was fitted to about 10 thousand grid points in 21 dimensions, which gives a much 

less dense grid than in the case of CCpol3. Thus, the rigid-monomer part of MB-pol3 is 

quite different from CCpol3, which is seen from MB-pol rigid-monomer results being 

significantly different from CCpol2+3. We have no way to determine how accurate the 

monomer-flexibility correction given by MB-pol is. If experiments are right, even the sign of 

the true correction would be different from what MB-pol gives.

Table 4 and Fig. 7 present analogous results for D2O. We note that the calculations with 

rigid-monomer pair potentials are performed not at the H2O geometry but rather with the 

flexiblemonomer potentials (CCpol-8sf and MB-pol) “frozen” at the D2O geometry as 

described in Sec. 2.5. Some error is introduced by the use of the CCpol3 three-body 

potential for D2O since it was developed for the H2O geometry and we have kept the 

monomers in this geometry. We expect this error to be small, since the averaged geometries 

of the H2O and D2O monomers are not very different.
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For D2O, the situation is similar to that for H2O, although there is only one experimental 

data source.78 Three-body effects are essential for even qualitative accuracy. The quantum 

effects are, as expected, somewhat smaller than for H2O. Flexibility makes C(T) more 

negative by an amount similar to that found for H2O. Results from the CCpol models are 

only slightly below the experimental data at 600 K and 700 K, but lie above the data near 

500 K. The C(T) from the MB-pol model are clearly too low at the higher temperatures, but 

(if flexibility is included) agrees with the lone data source near 500 K.

5 Discussion and Conclusions

With the path-integral methods developed in this and earlier work,54 and with the existing 

state-of-the-art pair and three-body potentials, we have calculated from first principles the 

second and third virial coefficients for H2O and D2O with full account of both quantum 

nuclear motion effects and monomer-flexibility effects. The only previous calculations of 

this type for B(T) were by Babin et al.22 In the case of C(T), our work represents the first 

calculations at this level for water. The method is general, and could be applied to other 

isotopologues such as HDO or for unlike interactions such as H2O–HDO.

For the second virial coefficient B(T), rigid-molecule quantum calculations are inconsistent 

with the experimental data, giving B(T) higher than experiment. The monomer-flexibility 

correction is negative for T larger than 250 K. For H2O, the percentage values of this 

correction vary from 1% at 273 K to 10% at 700 K. While this is significant compared to 

experimental uncertainties, it is smaller than some earlier values reported in the literature, 

but agrees very well with recent calculations of Jankowski et al.21

The nuclear-motion quantum effects in water are very significant and at 300 K amount to 

25% of B(T). These effects, always positive, decrease with increasing T, but still amount to 

4% at 1000 K (although this large relative value is partly due to T approaching the value 

where B(T) crosses zero). The quantum effects are recovered well by the semiclassical 

approximation which for most points differs from the fully quantum values by less than 2%. 

We note, however, that there is no algorithm for using a semiclassical approximation with 

flexible-monomer potentials. The method proposed in Ref. 21 partly avoids this problem by 

constructing potentials averaged over the ground-state rovibrational motion in monomers. In 

fact, our current PIMC approach is similar in spirit. Due to the opposite behavior as 

functions of T, at very large T the monomer-flexibility effects are much larger in magnitude 

than quantum effects, becoming about the same in magnitude near T = 500 K, which results 

in near cancellations over a narrow range of T. As expected, the quantum effects are smaller 

for D2O than for H2O.

For the second virial coefficient, theory has reached a level where first-principles 

calculations can match experiment and yield reliable values at temperatures where no 

reliable data exist (or for isotopologues where reliable data are lacking). With monomer-

flexibility and quantum effects included, B(T) from CCpol-8sf are fully consistent with the 

experimental data, except perhaps at the lowest temperatures where the experimental values 

are highly uncertain. The corresponding MB-pol B(T) values are somewhat too high 

compared to experiment. The present results agree well with those of Jankowski et al.,21 
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since both the semiclassical model and the approximate account for monomer flexibility 

used in that work turned out to perform quite well. However, the more advanced methods 

used here resulted in an improvements of the agreement with experiment. For temperatures 

outside the range of experimental data, especially for D2O where the experimental data are 

more sparse, we believe the present full-dimensional results with the CCpol-8sf pair 

potential provide the best available values of B(T). These values have already been used as 

input for a new reference equation of state for heavy water.61

Ideally, we would assign uncertainties to our values of B(T), as we have done in some 

previous work.43,54 This would require knowledge of the uncertainty of the pair potential, 

including uncertainty for configurations when the monomers are deformed. Calculations 

with “plus” and “minus” potentials displaced by the uncertainty would then provide 

uncertainty bounds on B(T). In addition, further uncertainty is introduced for the CCpol-8sf 

potential by the need to restrict the range of molecular deformations allowed in the path-

integral sampling. Work is ongoing to develop a pair potential that remains valid for the 

complete range of deformations encountered in PIMC simulations.

For the third virial coefficient C(T), theory is not as reliable as for B(T), and we cannot 

claim to be able to calculate C(T) for H2O and D2O with accuracy challenging experiments. 

Our results show that three-body interactions are critical in determining C(T) and 

incorporation of monomer flexibility appears to be necessary for quantitative accuracy. The 

CCpol3 potential is close to the exact rigid-monomer potential, but by definition gives no 

information about monomer-flexibility contributions. The flexible-monomer MB-pol three-

body potential, while producing qualitatively correct behavior, does not yield C(T) 

consistent with available experimental data: C(T)’s are clearly too low in comparison with 

experiment at all but the lowest temperatures (see Figs. 6 and 7). The CCpol potential gives 

C(T) values that agree with experiment much better than those from MB-pol, except at the 

lowest temperature (see Fig. 6a) where it is nevertheless compatible with one experimental 

source (and we have less confidence in the experimental results at those temperatures). 

However, since the three-body part of CCpol is in rigid-monomer form, if the corresponding 

monomerflexibility correction is added, the agreement with experiment may deteriorate. 

Addressing this situation will require the development of three-body potentials that are 

accurate both for configurations with the monomers at their vibrationally-averaged 

geometries (here the rigid-monomer CCpol3 potential might provide a reference point) and 

also over the entire range of intramolecular deformations sampled in PIMC calculations.

The large nuclear quantum effects on the virial coefficients of H2O (at 300 K, roughly 25% 

for B(T) and a factor of 2.5 for C(T)) may seem surprising. Classical simulations of liquid 

water near 300 K with high-quality polarizable potentials can typically produce agreement 

with experiment to within a few percent for properties such as neutron scattering cross 

sections, heat of vaporization, diffusion coefficients, density, etc.18,19,74 While the cited 

work used rigid monomers, a cancellation of large quantum and monomer-flexibility effects 

is unlikely. Two exceptions are recent flexible-monomer MB-pol classical calculations for 

H2O by Reddy et al.85 of the isobaric heat capacity which gave values of this quantity 56% 

larger than experiment and of the dielectric constant which was 13% smaller than the 

experimental value. By performing both quantum and classical simulations with the flexible-
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monomer MB-pol potential for liquid water at ambient conditions, Medders et al.86 found 

that quantum effects were very small for some properties, such as the density, neutron 

scattering cross-sections, and the self-diffusion coefficient (note that Ref. 85 corrected an 

erroneous self-diffusion coefficient reported in Ref. 86). Quantum effects were found to be 

more significant, 8%, for the enthalpy of vaporization, however, note that the joint statistical 

uncertainty of the two calculations amounts to 6%. Medders et al.86 also found a very large 

quantum effect in the orientational relaxation time: the quantum value of this quantity is 2.3 

times smaller than the classical one. One can conclude from this survey that the quantum 

effects in liquid water are at most a few percent for many properties, but that a few 

properties show larger effects of similar magnitude to those we found for the virial 

coefficients. It is worth noting that, because the virial coefficients provide only corrections to 

ideal-gas values, cf. Eq. (1), these effects do not have a large impact on measurable 

properties such as pressure; for the saturated vapor the virial coefficients reduce the pressure 

by approximately 0.2% at 300 K (where the saturation pressure is so low that the vapor is 

nearly ideal) and 3% at 400 K.

The fact that virial coefficients include large quantum contributions can be rationalized by 

realizing that these coefficients reflect directly the strength of intermolecular interactions. 

Assuming that this strength can be measured by the dissociation energy of the water dimer 

and considering the values for (H2O)2: 1105 ± 10 cm−1 (Ref. 87) and for (D2O)2: 1244 ± 10 

cm−1 (Ref. 88), we can conclude that quantum effects make the interaction weaker 

(physically, this is largely due to a greater delocalization of the H atom relative to the D 

atom, weakening the hydrogen bonds more in ordinary water), and then extrapolate to the 

classical case (a hypothetical high-mass H atom) as resulting in the strongest interactions. 

This quantum weakening of the intermolecular interactions is consistent with quantum 

effects making B(T) less negative. If the weakening of the interactions is the major factor 

impacting quantum effects in properties of liquid water, one can understand why these 

effects are of different size for different properties. For example, one can expect that 

properties depending more directly on strength of interactions, like enthalpy of vaporization 

or heat capacity, will be affected more, while a quantity like liquid density that depends 

mainly on molecular size will be affected less, which indeed seems to be the case. Some 

information about the expected size of nuclear-motion quantum effects can be inferred from 

accurately known data on D2O vs. H2O at 300 K: molar density of liquid D2O is 0.3% 

smaller,61,89 dielectric constant of liquid is 0.5% smaller,90,91 molar heat capacity of liquid 

is 11% larger,61,89 enthalpy of vaporization is 3.3% larger,61,89 and second virial coefficient 

is 8% larger in magnitude (Tables 1 and 2). All these trends are in line with the expected 

effects on various properties due to quantum weakening of intermolecular interactions. 

Using these results, one can also comment on the few published large values of quantum 

effects in liquid water that were listed above. For example, the 8% quantum effect for the 

enthalpy of vaporization86 and the 56% effect on heat capacity85 could be expected based on 

experimental data, whereas the 13% effect on the dielectric constant appears too large.
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Fig. 1. 
Water molecules in the ring-polymer representation; the blue ring polymer corresponds to 

the oxygen atom, the red ring polymers to the two hydrogens. (a) Example of a Boltzmann 

configuration. (b) Example of an exchanged configuration, obtained from (a) by cutting the 

dashed bonds between hydrogen atoms and creating the bold ones.
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Fig. 2. 
The relative importance of exchange versus Boltzmann polymers – the quantity Ξ in Eq. (4) 

– in the case of a single H2O molecule in vacuum.

Garberoglio et al. Page 25

Faraday Discuss. Author manuscript; available in PMC 2019 December 13.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 3. 
The second virial coefficient of H2O compared with experimental data, all relative to the HL 

correlation values.
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Fig. 4. 
Importance of quantum effects in water’s B(T). The virial coefficients computed classically 

and semiclassically are shown relative to the PIMC values for the same rigid-monomer 

potentials.
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Fig. 5. 
The second virial coefficient of D2O compared with experimental data. The baseline is the 

HM correlation.
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Fig. 6. 
The third virial coefficient of H2O for several potentials and water models, together with 

experimental results. Panel (a): temperature range 470–625 K. Panel (b) temperature range 

570–1025 K. CCpol-8sf+3 (flex) denotes the use of a flexible-monomer approach for the 

two-body part and a mapping for the three-body potential, see text.
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Fig. 7. 
The third virial coefficient of D2O for several potentials and water models, together with 

experimental results. CCpol-8sf+3 (flex) denotes the use of a flexible-monomer approach for 

the two-body part and a mapping for the three-body potential, see text.
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