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Abstract

Obesity is associated with increased incidence and worse prognosis of more than one

dozen tumor types; however, the molecular mechanisms for this association remain under

debate. We hypothesized that insulin, which is elevated in obesity-driven insulin resistance,

would increase tumor glucose oxidation in obesity-associated tumors. To test this hypothe-

sis, we applied and validated a stable isotope method to measure the ratio of pyruvate dehy-

drogenase flux to citrate synthase flux (VPDH/VCS, i.e. the percent of total mitochondrial

oxidation fueled by glucose) in tumor cells. Using this method, we found that three tumor cell

lines associated with obesity (colon cancer [MC38], breast cancer [4T1], and prostate can-

cer [TRAMP-C3] cells) increase VPDH/VCS in response to physiologic concentrations of insu-

lin. In contrast, three tumor cell lines that are not associated with obesity (melanoma

[YUMM1.7], B cell lymphoma [BCL1 clone 5B1b], and small cell lung cancer [NCI-H69]

cells) exhibited no oxidative response to insulin. The observed increase in glucose oxidation

in response to insulin correlated with a dose-dependent increase in cell division in obesity-

associated tumor cell lines when grown in insulin, whereas no alteration in cell division was

seen in tumor types not associated with obesity. These data reveal that a shift in substrate

preference in the setting of physiologic insulin may comprise a metabolic signature of obe-

sity-associated tumors that differs from that of those not associated with obesity.

Introduction

Obesity is well-known to increase the prevalence and mortality of more than one dozen tumor

types. In spite of the prevalence of obesity and its privileged place in public health discourse,

the metabolic and molecular mechanisms underpinning the relationship between obesity and

cancer remain contentious. Hyperinsulinemia has emerged as a focal point of research on obe-

sity-related tumors, with increased plasma insulin concentrations independently predicting

increased risk and mortality in prostate [1, 2], colon [3–7], breast [8–13], endometrial [12, 14,

15], and pancreatic cancer [16, 17], as well as several other tumor types. The idea that
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hyperinsulinemia may promote cancer risk is bolstered by the fact that biguanides such as met-

formin and phenformin, the most commonly prescribed class of diabetes drug worldwide,

slow tumor growth associated with reductions in plasma insulin concentrations [18–30],

although this class of agents has also shown efficacy in vivo independent of changes in plasma

insulin concentrations in a minority of studies [31–33]. We recently showed that both metfor-

min and a novel insulin sensitizer, a controlled-release mitochondrial protonophore, slows

tumor growth in two models of colon cancer, and that the tumor-slowing effects of both agents

were dependent on reversal of hyperinsulinemia [21], demonstrating a causative role for

hyperinsulinemia in these mouse models.

While the association between hyperinsulinemia and obesity-related cancer progression is

well established, the mechanisms by which hyperinsulinemia may promote tumor growth

remain under debate. High doses of dichloroacetate, an indirect activator of pyruvate dehydro-

genase and therefore of mitochondrial glucose oxidation, were shown to inhibit proliferation

of colorectal cancer cells, particularly under hypoxic conditions [34]; however because these

studies were performed in unphysiologic media containing glucose but without pyruvate, lac-

tate, amino acids, or fatty acids, it is difficult to draw strong conclusions regarding the impact

of a shift in substrate utilization from glycolytic to oxidative metabolism on tumor cell division

under physiologic conditions. To that end, we show here that insulin increases mitochondrial

glucose oxidation and augments cell division in cells from obesity-associated tumors, while

obesity-independent cell lines show no alteration of substrate preference. These data break

with the conventional stance that glucose oxidation is constitutively high in cancer cells,

revealing a shift in substrate preference which may comprise a metabolic signature of obesity-

related tumors.

Materials and methods

Cells

MC38 cells (ENH204) were obtained from Kerafast and YUMM1.7 (CRL-3362), TRAMP-C3

(CRL-2732), BCL1 clone 5B1b (TIB-197), 4T1 (CRL-2539), NCI-H69 (HTB-119), HCT 116

(CCL-247), DLD-1 (CCL-221), B16-F10 (CRL-6475), and COLO 829 (CRL-1974) cells from

ATCC. All cells were cultured in the manufacturer’s recommended media, supplemented with

penicillin/streptomycin, and were trypsinized and split 2–3 times weekly. Cells were plated in

6 well plates (5x105 cells per well) one day prior to each in vitro experiment, and on the day of

the experiment were washed twice with warmed PBS prior to the study. For the cell division

studies, two insulin doses were chosen: 0.1 nM (the approximate plasma insulin concentration

previously measured in vivo in overnight fasted rodents [30, 35, 36] and utilized in in vitro
tumor studies [37–40]) and 100 nM (a dose previously used extensively in in vitro studies to

assess the impact of insulin on tumor cells [38, 41–45]). Cells were plated in 6 well plates

(1x105 cells per well), incubated in the manufacturer’s recommended media with or without

insulin (0.1 or 100 μM), dichloroacetate (25 mM in 0.1% DMSO), or 6,8-bis(benzylthio)octa-

noic acid (1 μM in 0.1% DMSO), and counted by a blinded investigator three days later. These

data are presented normalized to controls (without insulin/6,8-bis(benzylthio)octanoic acid)

from the same cell line.

In vitro 13C labeling studies

The base media used for the 13C labeling studies was Dulbecco’s Modified Eagle’s Medium

(DMEM) containing 5 mM [13C6] glucose, nonessential amino acids, 2 mM glutamine, 1 mM

lactate, 1 mM palmitate, and 0.1 mM β-OHB. In certain cases, insulin (100 nM), etomoxir

(10 μM in 0.1% DMSO), dichloroacetate (25 mM in 0.1% DMSO), or 6,8-bis(benzylthio)
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octanoic acid (1 μM in 0.1% DMSO) was added, with 0.1% DMSO added to the media in the

control wells. Cells were incubated for 2 hours in this media, after which the media was aspi-

rated and cells were washed three times with warmed PBS, after which they were quenched

with ice-cold 50% methanol, scraped from the cell plate, and frozen at -80˚C pending further

analysis.

Measurement of glucose uptake and oxidation

Glucose uptake was measured by incubating 105 cells per replicate in DMEM containing 5

mM glucose, nonessential amino acids, 2 mM glutamine, 1 mM lactate, 1 mM palmitate, and

0.1 mM β-OHB, and [1-14C] 2-deoxyglucose (PerkinElmer) (0.5 μCi per replicate) for 120

min, after which cells were washed three times in PBS, scraped, and collected into scintillation

vials. The 14C specific activity was quantified using a scintillation counter, and glucose uptake

was calculated by assuming a constant isotopically labeled precursor and a constant rate of glu-

cose uptake over the 120 min incubation period.

VPDH/VCS was measured in cells incubated in [13C6] glucose as
VPDH
VCS
¼
½4;5� 13C2� glutamate
½13C3� alanine [35,

46]. Briefly, this method employs measurement of [4,5-13C2] glutamate as equivalent to [13C2]

acetyl-CoA, the product of PDH (S1 Fig), whereas [13C3] alanine serves as a reciprocal pool for

[13C3] pyruvate, the latter of which is found at lower concentrations and is much more labile,

rendering it difficult to reliably measure under these conditions. Cell samples quenched in

50% methanol were prepared for LC-MS/MS analysis of [4,5-13C2] glutamate enrichment and

GC/MS analysis of [13C3] alanine enrichment as we have described [35].

Absolute rates of glucose oxidation were determined in MC38 and YUMM1.7 cells by incu-

bating 5x105 cells in sealed flasks for 30 min in DMEM culture media (5 mM glucose, nones-

sential amino acids, 2 mM glutamine, 1 mM lactate, 1 mM palmitate, and 0.1 mM β-OHB)

containing 0.2 μCi [14C6] glucose. The [14CO2] produced was trapped on Whatman paper in a

holder suspending it in the air above the cells and, after 30 min of incubation in 14C media, the
14C activity was determined using a scintillation counter.

Assessment of lactate production

To measure lactate production, 105 cells were washed three times with warmed PBS and placed

in DMEM containing 5 mM glucose, nonessential amino acids, 2 mM glutamine, 1 mM palmi-

tate, and 1 mM β-OHB, but without lactate or pyruvate. After 120 min, the media was collected

and spiked with 13C3 lactate (3 ng). The concentration of lactate in the media was measured by

determining the ratio of 13C3 to 12C lactate by GC/MS using the same method as we have pre-

viously published to examine alanine concentrations/enrichment in plasma and tissues [35].

The rate of net lactate production was calculated by assuming linear accumulation of lactate in

the media over time, and assuming an unchanged concentration of lactate in the cells.

Measurement of Vβ-OHB-ox/VCS

Vβ-OHB-ox/VCS was measured by incubating cells in DMEM containing 1 mM [13C4] β-OHB, 5

mM glucose, nonessential amino acids, 2 mM glutamine, 1 mM lactate, and 1 mM palmitate.

Using this tracer, Vβ-OHB-ox/VCS is given as
Vb� OHB� ox

VCS
¼
½4;5� 13C2� glutamate
½13C4� b� OHB .

Cell samples quenched in 50% methanol were prepared for LC-MS/MS analysis of

[4,5-13C2] glutamate enrichment and GC/MS analysis of [13C3] alanine enrichment as

described above and in our previous report [35]; [13C4] β-OHB enrichment was measured

using the same GC/MS method as was used for [13C3] alanine.
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Assessment of insulin receptor expression and phosphorylation

Insulin receptor expression and pTyr1162 phosphorylation was measured by Western blot

using antibodies from Cell Signaling (catalog numbers 3025 and 3918, respectively) and nor-

malized to beta-actin expression (Cell Signaling #9457).

Statistical analysis

Statistical analysis was performed using Prism 7.0. Groups were compared by the 2-tailed

unpaired Student’s t-test (for comparisons of two groups) or by ANOVA with Bonferroni’s

multiple comparisons test (for comparisons of three or more groups) after verifying that the

data met the assumptions of the statistical test employed.

Results

Insulin activates the insulin receptor in all tumor cell lines

All cell lines employed in this study robustly expressed the insulin receptor, and differences in

insulin receptor expression between cell lines did not correlate with obesity association or lack

thereof (Fig 1A). Insulin activated the insulin receptor, as indicated by increased insulin recep-

tor Tyr1162 phosphorylation [47] in all cell lines regardless of their correlation, or lack thereof,

with obesity (Fig 1B).

Insulin increases glucose oxidation in obesity-related, but not obesity-

independent, cancer cell lines

To identify differences in tumor metabolism in obesity-related cancers, as opposed to obesity-

independent cancers, we investigated substrate preference in three cell lines from obesity-asso-

ciated cancer types, each of which exhibits accelerated tumor growth associated with obesity:

MC38, a colon adenocarcinoma [19, 30, 48–50], 4TI, a triple-negative breast cancer [51, 52],

and TRAMP-C3, a prostate adenocarcinoma [53]. These cell lines were compared with three

cancer cell lines from tumor types not associated with obesity: YUMM1.7, melanoma; BCL1

clone 5B1b, B-cell lymphoma; and NCI-H69, small-cell lung cancer. Insulin increased glucose

uptake in all cell lines, independent of their association, or lack thereof, with obesity (Fig 2A).

However, the ratio of pyruvate dehydrogenase flux to citrate synthase flux (VPDH/VCS, i.e. the

percent of total mitochondrial oxidation fueled by glucose oxidation, S1 Fig) increased in all

obesity-associated tumor types in the presence of insulin (100 nM); in contrast, all three obe-

sity-independent cell lines showed no increase in glucose oxidation in response to insulin (Fig

2B). Instead, YUMM1.7 and BCL cells increased and NCI-H69 tended to increase lactate pro-

duction after insulin treatment (S2A Fig), indicating that glucose taken up in response to insu-

lin is diverted into lactate production if it is not shuttled into mitochondrial oxidation in

response to insulin. Finally we confirmed the differential ability of insulin to stimulate glucose

oxidation in obesity-associated versus obesity-independent tumor cells in studies of absolute

glucose oxidation measured by trapping 14CO2 generated by oxidizing 14C6 glucose (Fig 2C):

incubation with insulin doubles colon cancer cell glucose oxidation, while melanoma cells

show no change in glucose oxidation rates when insulin is added to media.

Utilization of glutamine and ketones is minimal in MC38 and YUMM1.7

cells

To ensure that physiologic levels of glutamine do not significantly affect our measurements of

VPDH/VCS by dilution of glutamate, MC38 and YUMM1.7 cells were incubated in increasing
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Fig 1. Insulin receptor expression and insulin-stimulated insulin receptor phosphorylation do not correlate with tumor cell lines’ association with

obesity. (A) Insulin receptor expression. The data are the mean ± S.E.M. of six replicates from each cell line, including cells with and without insulin.
��P<0.01 by ANOVA with Bonferroni’s multiple comparisons test. (B) Insulin receptor Tyr1162 phosphorylation. The data are presented as fold change from

baseline, representing cells from the same cell line without insulin. �P<0.05, ��P<0.01, ���P<0.001 by the 2-tailed unpaired Student’s t-test. Data are the

mean ± S.E.M. of n = 3 per condition.

https://doi.org/10.1371/journal.pone.0218126.g001
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Fig 2. Tumor types associated with obesity, but not those not associated with obesity, increase mitochondrial

glucose oxidation in the presence of insulin. (A) Glucose uptake. (B) VPDH/VCS. (C) Absolute rates of glucose

oxidation. In all panels, data are the mean ± S.E.M. of n = 5–9 replicates per condition, with cells from the same

line ± insulin compared using the 2-tailed unpaired Student’s t-test.

https://doi.org/10.1371/journal.pone.0218126.g002
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levels of glutamine. No significant change in VPDH/VCS was found between within the physio-

logic range of glutamine (Fig 3A), indicating that glutamine utilization has minimal impact on

the measured VPDH/VCS ratio.

Next, to determine the potential contribution of ketone oxidation to tumor metabolism, we

incubated both MC38 and YUMM1.7 cells in low and high concentrations of β-hydroxybuty-

rate (β-OHB) and found that increased β-OHB concentrations have no impact upon VPDH/

VCS (Fig 3B). To confirm this, we measured the contribution of ketone oxidation to total mito-

chondrial oxidation, Vβ-OHB/VCS (S1 Fig), and found that ketone oxidation is minimal in both

MC38 and YUMM1.7 cells in vitro (Fig 3C). These findings indicate a central role for glucose

oxidation and, to a lesser extent, fatty acid oxidation in cancer metabolism, in the absence of a

key role for ketone oxidation.

VPDH/VCS is altered as expected with pharmacologic manipulation of fatty

acid and glucose oxidation

To validate the sensitivity of our method to detect differences in VPDH/VCS, we employed

three pharmacologic agents to alter substrate oxidation: etomoxir, an inhibitor of fatty acid

oxidation; dichloroacetate, a PDH activator, and 6,8-bis(benzylthio)octanoic acid, a PDH

inhibitor (Fig 3D). Inhibition of fatty acid oxidation led to a relative increase in VPDH/VCS in

both MC38 and YUMM1.7 cells, reflecting a decrease in fatty acid oxidation relative to citrate

synthase flux. As expected, activation of PDH with dichloroacetate increased the measured

VPDH/VCS ratio in both cell lines, whereas PDH inhibition with 6,8-bis(benzylthio)octanoic

acid reduced this ratio. The response of MC38 and YUMM1.7 cells to each small molecule glu-

cose or fat oxidation modulator was similar, demonstrating that the differing responses of the

cell lines to insulin was not attributable to inherent alterations in mitochondrial function.

Taken together, these data demonstrate that our stable isotope method has the necessary sensi-

tivity to detect expected differences in glucose or fatty acid oxidation under these conditions in
vitro.

Insulin increases cell division in obesity-associated, but not obesity-

independent, tumor cell types

To determine whether the observed increases in VPDH/VCS in response to insulin affected cell

division, we incubated all cell types in insulin (0.1 and 100 nM) and found that insulin

increased rates of cell division in all three obesity-associated cell lines, but in none of the cell

lines from tumors not associated with obesity (Fig 4A). By examining two additional colon

cancer cell lines and two additional melanoma cell lines, we then confirmed that the insulin

response is conserved across tumor types: all three colon cancer cell lines increased cell divi-

sion in response to incubation in 0.1 nM insulin, whereas none of the melanoma cell lines

exhibited this response (S2B Fig). However, inhibition of PDH using 6,8-bis(benzylthio)octa-

noic acid reduced cell division in both obesity-associated and -independent cell lines. Con-

versely, activation of PDH with DCA promoted tumor cell division in all cell lines (Fig 4B).

Taken together, these data demonstrate that PDH-mediated glucose oxidation, which

increases in response to insulin in obesity-associated but not obesity-independent tumor cell

lines, drives cell division in these six tumor models, at least in in vitro culture.

Discussion

Hyperinsulinemia has been discussed as a potential mediator of obesity-related cancer growth:

activating mutations in the PI3K/Akt pathway are common (10–30% incidence) and confer a
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poorer prognosis in humans with colon cancer [54, 55], breast cancer [56, 57], and prostate

cancer [58, 59]. Activating mutations in the PI3K/Akt pathway have also been observed–albeit

at a lower incidence (2–9%)–in melanoma [60, 61] and small cell lung cancer [62, 63],

although, to our knowledge, they have not been observed in B cell lymphoma [64, 65]. Muta-

tions in this pathway do not divide as clearly along obesity-associated versus independent lines

in the cell lines examined in this study: whereas mutations in this pathway have been described

in 4T1 [66] and NCI-H69 cells [67], they have not been described in the other obesity-associ-

ated or -independent cell lines studied here. Evidence for a critical role for insulin in directly

promoting tumor cell division is provided by data showing that while insulin promotes tumor

cell division in vivo [30, 68–71], pharmacologic agents which reverse hyperinsulinemia slow

tumor growth unless exogenous insulin replacement is provided [30]. However, the mecha-

nisms undergirding insulin’s effect upon certain tumors have remained unclear, in part due to

a lack of methods to assess tumor substrate preference and the impact of variations in hor-

mones and substrates on tumor fuel preference. To that end, we adapted a stable isotope

method which we have previously applied in vivo for tissue-specific measurements of glucose

Fig 3. The stable isotope method applied in this study is sensitive to detect the expected differences in VPDH/VCS with physiologic alterations in these fluxes, and

is not affected by physiologically relevant glutamine or ketone concentrations. (A) Glutamine in the physiologic range (0–10 mM) does not significantly affect the

measured VPDH/VCS in MC38 or YUMM1.7 cells. n = 4 replicates per condition, with comparisons by ANOVA with Bonferroni’s multiple comparisons test. (B) β-

OHB in the physiologic range (0–2 mM) does not significantly alter the measured VPDH/VCS in MC38 or YUMM1.7 cells. Conditions were compared by the 2-tailed

unpaired Student’s t-test. In panels (B)-(D), n = 6–9 replicates per condition. (C) Vβ-OHB-ox/VCS is minimal in MC38 and YUMM1.7 cells. (D) VPDH/VCS is increased

with inhibition of fatty acid oxidation (etomoxir) or stimulation of PDH (dichloroacetate), and decreased with inhibition of PDH (6,8-bis(benzylthio)octanoic acid).

Groups were compared by ANOVA with Bonferroni’s multiple comparisons test. In all panels, data are the mean ± S.E.M.

https://doi.org/10.1371/journal.pone.0218126.g003
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Fig 4. PDH activity promotes tumor growth in both obesity-associated and obesity-independent tumor cell lines. (A) Cell division in tumor

cell lines incubated with or without insulin, with or without a PDH inhibitor. (B) Cell division in tumor cell lines incubated with or without the

PDH activator dichloroacetate. In both panels, n = 6 replicates per condition, normalized to controls from the same cell line. �P<0.05, ��P<0.01,
���P<0.001, ����P<0.0001 by ANOVA with Bonferroni’s multiple comparisons test (panel (A)) or by the 2-tailed unpaired Student’s t-test (panel

(B)). Data are the mean± S.E.M.

https://doi.org/10.1371/journal.pone.0218126.g004
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oxidation via pyruvate dehydrogenase relative to total citrate synthase flux [30, 35]. Validation

studies demonstrate the sensitivity of this method to alterations in glucose and fatty acid oxida-

tion, and further demonstrate that glucose oxidation is not maximized under these conditions;

therefore the lack of an oxidative response to insulin in obesity-independent cell lines does not

reflect an inherent limitation in mitochondrial glucose utilization in these cells (Fig 3D).

Somewhat unexpectedly, we found that VPDH/VCS measured as the ratio of [4,5-13C2] gluta-

mate/[13C3] alanine was unaltered by the presence or absence of physiologic (2 and 10 mM)

concentrations of glutamine. These data stand in contrast to studies, which have previously

been extensively reviewed [72–74], indicating that glutamine metabolism plays a critical role

in cancer cell metabolism. It is possible that glutamine may be used preferentially for nucleo-

tide synthesis rather than mitochondrial oxidation when the preferred glycolytic metabolites

(glucose, lactate, pyruvate) are available, and may be required for oxidative metabolism only

when substrate supply is limiting due to inadequate vascularization. Future tracer studies uti-

lizing 13C glutamate as a surrogate for 13C acetyl-CoA, the immediate product of PDH, would

need to confirm a minimal contribution of glutamine to oxidative metabolism; otherwise,

[13C2] acetyl-CoA would need to replace [4,5-13C2] glutamate in the numerator of this ratio.

Using our stable isotope method, which we have now validated in multiple tumor cell types,

we show here that three obesity-associated tumor cell lines respond to insulin by increasing

glucose oxidation relative to total mitochondrial oxidation. This effect suggests that the mecha-

nism by which obesity-related tumors capitalize upon their hyperinsulinemic environment is

conserved across tumor types. These data were validated by use of an entirely independent

method, trapping [14CO2] generated by the oxidation of [14C] glucose, which showed that

rates of absolute glucose oxidation increase similarly to the change in VPDH/VCS upon insulin

stimulation in MC38 colon cancer, 4T1 breast cancer, and TRAMPC3 prostate cancer cells,

but are unaltered by insulin in YUMM1.7 melanoma, BCL B cell lymphoma, and NCI-H69

small cell lung cancer cells. This method of measuring absolute rates of glucose oxidation,

which has been applied extensively in various cell types including neurons and astroglia [75,

76], oocytes [77], hepatocytes [78], intestine [79], and heart [80, 81], as well as tumor cells [82,

83], relies upon a set of assumptions that differ significantly from those of the VPDH/VCS

method; the similar impact of insulin upon absolute glucose oxidation and VPDH/VCS lends

further credence to the latter method. In contrast to the three obesity-associated tumor types,

melanoma, B cell lymphoma, and small cell lung cancer cell lines showed no mitochondrial

oxidative response to insulin. The oxidative response to insulin did not correlate with insulin

receptor expression or activation: insulin receptor expression did not differ between cell types.

However while insulin-stimulated glucose uptake correlated with insulin receptor activation,

neither parameter was associated with the oxidative response to insulin: insulin increased both

insulin receptor phosphorylation (Fig 1B) and glucose uptake (Fig 2A) in all cell lines to vary-

ing degrees, insulin promoted glucose oxidation only in obesity-associated tumors (Fig 2B and

2C). However, insulin did not decrease lactate production in obesity-associated cells, consis-

tent with the fact that while the insulin-stimulated increase in glucose uptake outpaced insu-

lin-stimulated increases in mitochondrial oxidation in all cells, excess glucose may be used for

a variety of synthetic pathways (including glycogen synthesis and/or the energetic require-

ments of cell division) as well as lactate production. These increases in tumor glucose oxida-

tion correlated with accelerated cell division in response to insulin: whereas there was no

difference in cell division whether or not melanoma, small cell lung cancer, or B cell lym-

phoma cells were incubated in insulin, the three obesity-associated tumor types each showed a

dose-dependent increase in cell division with insulin (Fig 4A, S2B Fig). Importantly, due to

their differing doubling times, the magnitude of the impact of insulin on cell division should

not be compared across different tumor types; however, this study does show that insulin
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promotes cell division in each of five obesity-associated tumor types, but not in any of the five

obesity-independent tumor cell lines studied. However, activation of PDH increased and inhi-

bition of PDH inhibited cell division in all six cell lines tested, regardless of their association,

or lack thereof, with obesity (Fig 4B). These data indicate that the idea that a switch from gly-

colytic to oxidative glucose metabolism will slow tumor cell proliferation may be an oversim-

plification and that under conditions in which substrate limitation is not present, oxidative

metabolism may actually promote tumor cell division. Taken together, this study underscores

the possibility that upregulated glucose oxidation and increased VPDH/VCS under conditions

of hyperinsulinemia may constitute a metabolic signature of obesity-related cancer and recom-

mends further studies to explore the link between hyperinsulinemia, increased glucose uptake,

and tumor cell division in vivo.
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S1 Fig. Tracer labeling scheme. (A) Isotopomers generated on the first turn (solid red circles)

and second turn (dashed red circles) of the tricarboxylic acid cycle during incubation in [13C6]

glucose. VPDH, pyruvate dehydrogenase flux. VPC, pyruvate carboxylase flux. VCS, citrate

synthase flux. OAA, oxaloacetate. α-KG, alpha-ketoglutarate. (B) Isotopomers generated on
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cycle during incubation in [13C4] β-hydroxybutyrate. Vβ-OHB-ox, ketone (β-hydroxybutyrate)

oxidation.

(PDF)

S2 Fig. Insulin promotes glucose oxidation but not lactate production and cell division in

obesity-associated associated but not obesity-independent tumor cell lines. (A) Rate of lac-

tate production. (B) Impact of insulin (0.1 nM) on cell division. Data for MC38 and

YUMM1.7 cells are duplicated from Fig 4A. In both panels, n = 6 replicates per condition.
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