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Abstract

The simplest model of DNA mechanics describes the double helix as a continuous rod with twist 

and bend elasticity. Recent work has discussed the relevance of a little-studied coupling G between 

twisting and bending, known to arise from the groove asymmetry of the DNA double helix. Here, 

the effect of G on the statistical mechanics of long DNA molecules subject to applied forces and 

torques is investigated. We present a perturbative calculation of the effective torsional stiffness Ceff 

for small twist-bend coupling. We find that the “bare” G is “screened” by thermal fluctuations, in 

the sense that the low-force, long-molecule effective free energy is that of a model with G = 0, but 

with long-wavelength bending and twisting rigidities that are shifted by G-dependent amounts. 

Using results for torsional and bending rigidities for freely-fluctuating DNA, we show how our 

perturbative results can be extended to a non-perturbative regime. These results are in excellent 

agreement with numerical calculations for Monte Carlo “triad” and molecular dynamics “oxDNA” 

models, characterized by different degrees of coarse-graining, validating the perturbative and non-

perturbative analyses. While our theory is in generally-good quantitative agreement with 

experiment, the predicted torsional stiffness does systematically deviate from experimental data, 

suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics 

relevant to low-force, long-molecule mechanical response, which are not captured by widely-used 

coarse-grained models.

I. INTRODUCTION

In vivo, double-stranded DNA is typically found in a highly-deformed state, which is in part 

due to the interaction with the many proteins that bend and twist the double helix, but in part 

due to thermally-driven deformations. A substantial effort has been devoted to the study of 

many aspects of DNA mechanics, such as its response to applied twist and bending 

deformations [1]. These studies often rely on homogeneous elastic models, which, despite 

their simplicity, describe many aspects of single-molecule experiments [2–6], and are widely 

used to describe mechanical and statistical-mechanical properties of DNA (see e.g. Refs. [7–

11]).
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One of the simplest models describing DNA deformations is the twistable wormlike chain 

(TWLC), which describes the double helix as an inextensible rod, for which twist and bend 

deformations are independent. Symmetry arguments suggest that the TWLC is incomplete: 

The inherent asymmetry of the DNA molecular structure, with its major and minor grooves, 

gives rise to a coupling G between twisting and bending [12]. Only a limited number of 

studies have considered the effect of twist-bend coupling on DNA mechanics [13–16]. A 

systematic analysis of coarse-grained models with and without groove asymmetry has 

highlighted several effects associated with twist-bend coupling at long [15] and short [16] 

length scales. Here, we aim to clarify the role of G in the statistical mechanics of long DNA 

molecules, as analyzed in optical and magnetic tweezers.

We focus on analytical and numerical results for the stretching and torsional response of 

DNA with twist-bend coupling interaction G ≠ 0. We first present a perturbative expansion 

for the partition function of the molecule, in which G is treated as the small parameter. The 

lowest-order results show that twist-bend coupling softens the torsional and bending 

stiffnesses of the double helix, recovering prior results from entirely different calculations 

[14]. Our new calculations reveal the existence of a previously-unidentified large force scale 

f0; for forces below this scale, the bare elastic constants - including G - are not directly 

accessible in stretching and twisting experiments. Instead, for forces below f0, only 

renormalized bending and twisting stiffnesses - which do depend on G - are observed. 

Because f0 ≈ 600 pN, the renormalized elastic model - which is the G = 0 TWLC - will be 

observed in essentially all conceivable single-molecule experiments. Thus, G is “screened”, 

effectively renormalized to G = 0, in single-molecule DNA mechanics experiments.

Prior work [14] suggests a strategy to generalize our results beyond perturbation theory, to 

the regime where DNA is stretched by forces less than f0. We validate both the perturbative 

and non-perturbative results using numerical calculations corresponding to commonly-used 

coarse-grained DNA elasticity models; our results turn out to closely describe results of 

those numerical models. Given this validation, we turn to experimental data which are 

reasonably well described by the low-force model, but for which there remain discrepancies, 

suggesting effects beyond simple harmonic elastic models like the TWLC.

II. ELASTICITY MODELS OF DNA

To describe the conformation of a continuous, inextensible, twistable elastic rod, one can 

associate a local orthonormal frame of three unit vectors ei  (i = 1, 2, 3) with every point 

along the rod (Fig. 1). In a continuous representation of DNA, the common convention is to 

choose e3 tangent to the curve and e1 pointing to the DNA major groove. The frame is 

completed with a third vector, defined as e2 = e3 × e1. An unstressed B-form DNA 

corresponds to a straight, twisted rod, with the tangent e3 being constant, and with e1 and e2
rotating uniformly about it, with a full helical turn every l ≈ 3:6 nm, or equivalently every 

10.5 base pairs.
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Any deformation from this unstressed configuration can be described by a continuous set of 

rotation vectors Ω connecting adjacent local frames ei  along the rod, using the differential 

equation

dei
ds = Ω + ω0e3 × ei, (1)

where the internal parameter s denotes the arc-length coordinate (Fig. 1), and ω0 = 2π/l ≈ 
1.75 nm−1 is the intrinsic twist of DNA. Upon setting Ω = 0, one obtains the unstressed 

configuration mentioned above. Thus, a nonzero rotation vector Ω (s) ≠ 0 corresponds to a 

local deformation at s around this ground state. Defining Ωi ≡ ei ⋅ Ω, it follows that Ω1(s) 

and Ω2(s) describe local bending deformations, while Ω3(s) describes twist deformations. In 

the remainder of the paper the s-dependence of Ω will be implicit.

Symmetry analysis of the DNA molecule requires the energy functional E to be invariant 

under the transformation Ω1 → Ω1, with the consequence that [12]

βE = 1
2∫0

L
ds A1Ω1

2 + A2Ω2
2 + CΩ3

2 + 2GΩ2Ω3 , (2)

where β ≡ 1/kBT is the inverse temperature, A1 and A2 the bending stiffnesses, C the 

torsional stiffness and G the twist-bend coupling constant. These coefficients have 

dimensions of length, and can be interpreted as the contour distance along the double helix 

over which significant bending and twisting distortions can occur by thermal fluctuations. 

Our perturbative calculation will use the isotropic-bending version of this model (A1 = A2 = 

A), which is described by the following energy functional

βE = 1
2∫0

L
ds A

de3
ds

2
+ CΩ3

2 + 2GΩ2Ω3 . (3)

Here, we have used Eq. (1) to express the sum Ω1
2 + Ω2

2 as the derivative of the tangent 

vector. The TWLC is obtained by setting G = 0 in Eqs. (2) and (3), corresponding to the 

anisotropic and isotropic cases, respectively.

III. EFFECTIVE TORSIONAL STIFFNESS

In a typical magnetic tweezers experiment, a single DNA molecule of 103 − 104 bases is 

attached to a solid substrate and to a paramagnetic bead at its two ends (Fig. 2). The 

molecule can be stretched by a linear force f and over- or undertwisted by an angle θ. The 

resulting torque τ exerted by the bead, which can be experimentally measured [17–20], is 

linear in θ for small θ
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τ ≈
kBTCeff

L θ . (4)

Here Ceff is the effective torsional stiffness (in contrast to the intrinsic stiffness C), and 

represents the central quantity of interest here. It expresses the resistance of the DNA to a 

global torsional deformation, applied at its two ends.

As discussed in more detail below, Ceff is in general lower than its intrinsic equivalent C. 

More specifically, at low stretching forces the bending fluctuations can absorb a significant 

part of the applied torsional stress, leading to a globally-reduced torsional resistance Ceff < 
C. On the other hand, when the applied force is sufficiently large, bending fluctuations are 

mostly suppressed, and hence the effective torsional stiffness tends to approach the intrinsic 

one. As a consequence, Ceff is going to be a monotonically-increasing function of the 

stretching force.

Moroz and Nelson derived an expression of Ceff for the TWLC in the limit of high forces [4, 

21]. In spite of the good qualitative agreement between the theory and early experiments, 

more recent studies reported systematic deviations [14, 17, 20, 22]. For completeness we 

will first present in Sec. IIIA a short derivation of the TWLC-based theory by Moroz and 

Nelson. The pertubative calculation in small G is discussed in Sec. IIIB and generalized 

beyond perturbative expansion in Sec. IIID.

A. The TWLC limit (G = 0)

Moroz and Nelson [4, 21] mapped the twisted and stretched TWLC onto a quantum 

mechanical problem of a spinning top, and Ceff was obtained from the ground state of the 

associated Schrödinger equation. Here we present an alternative derivation, following the 

scheme illustrated in Ref. [1, 23], which proves to be more convenient for the perturbative 

calculation in small G. The starting point is the partition function of a TWLC under applied 

force f and torque τ. The latter induces a rotation by an angle θ on the end point of the 

molecule (Fig. 2). The excess linking number, which we will use throughout this work, is 

ΔLk = θ/2π.

To calculate the partition function, we integrate over all possible configurations of the 

twistable rod, which can be parametrized by the tangent vector e3(s) and the twist density 

Ω3(s). The resulting path integral takes the form:

Z0 = ∫ 𝒟 e3, Ω3 e
−βE0 + βf ⋅ R + 2πβτΔLk

, (5)

where E0 is the energy of the TWLC, obtained from Eq. (3) by setting G = 0, and R the end-

to-end vector
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R = ∫
0

L
e3ds . (6)

We assume that the force is oriented along the z-direction, hence f = f z, with z a unit 

vector. Using a result due to Fuller [24], originally derived for closed curves, the linking 

number can be expressed as the sum of twist and writhe, i.e. ΔLk = Tw + Wr. The excess 

twist is obtained by integrating over the twist density

Tw = 1
2π∫0

L
Ω3(s)ds, (7)

while the writhe is given by [1]

Wr = 1
2π∫0

L z ⋅ e3 × de3/ds
1 + e3 ⋅ z ds . (8)

This representation of the writhe as a single integral (and not as a double, nonlocal integral) 

is correct modulo 1, with the integer portion equal to zero if the molecule is sufficiently 

stretched so that it is unlikely to loop back opposite to the direction of the applied force (the 

case of interest here). Under these conditions, the denominator 1 + e3 ⋅ z does not vanish, and 

the integral in Eq. (8) yields a finite value. The applicability of either Eq. (8) [or the double-

integral version of it, which does not require the mod 1 of Eq. (8)] for a highly-stretched 

open chain has been discussed and justified for extended polymers in prior works [4, 5, 21, 

25, 26].

Next, we insert Eqs. (6), (7) and (8) into Eq. (5), and consider the limit of strong forces and 

weak torques. The partition function [Eq. (5)] reduces to a Gaussian in this limit, and can be 

easily estimated (details can be found in Appendix A). To lowest order in τ and at large 

forces, one obtains the following free energy

F0( f , τ) = − f L +
f kBT

A L − βτ2L
2Ceff

+ …, (9)

where the dots denote constant or higher-order terms in τ. The effective torsional stiffness 

Ceff is given by (see Appendix A)

1
Ceff

= 1
C + 1

4A
kBT
f A + … (10)
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This equation was originally derived by Moroz and Nelson [4, 21] in the fixed-torque 

ensemble. The same expression can also be obtained in the fixed-linking-number ensemble 

[5, 27]. At high forces, Eq. (10) approaches the twisted-rod limit and Ceff → C, but, in 

general, bending fluctuations soften the DNA torsional stiffness, so that Ceff < C. The latter 

originates from a global coupling between torque and writhe (not to be confused with the 

local twist-bend coupling considered below). Note that the effect of bending fluctuations is 

governed by the dimensionless parameter kBT / f A, which is small at low temperatures or 

high forces.

B. Perturbative (small-G) expansion

We now construct a perturbation expansion for the partition function, using G as the small 

parameter (the length scale determining whether G is “small” will be made clear below). 

The full partition function is

Z = ∫ 𝒟 e3, Ω3 e−βE + βf ⋅ R + βτ2πΔLk, (11)

where now βE is given by Eq. (3) and contains a twist-bend coupling term. Assuming that G 
is small, we can expand the Boltzmann factor in powers of G, which gives to lowest order:

Z ≈ Z0 1 + G2

2 ∫
0

L
Ω2Ω3ds

2

0
+ … , (12)

where 〈.〉0 denotes the average with respect to the unperturbed (TWLC) partition function 

[Eq. (5)]. Note that in the perturbative expansion, the term linear in G vanishes by the Ω2 → 
Ω2 symmetry of the TWLC. The full calculation of the average in the right-hand side of Eq. 

(12) is given in Appendix C. The final expression for the free energy is of the form [Eq. 

(C38)]

F( f , τ) = − f L +
f kBT
A* L + ΓτL − βτ2L

2Ceff
+ …, (13)

where terms of negligible contribution were omitted (see Appendix C).

In the above, we have introduced the rescaled bending stiffness

1
A* = 1

A 1 + G2

2AC , (14)

together with the parameter
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Γ = G2d2( f )
8A2C2ω0

. (15)

The dimensionless, force-dependent scale factor d(f) will be discussed below; we note that it 

appears in the coefficient Γ [Eq. (15)], but not in A* [Eq. (14)]. Finally, the form of the 

effective torsional stiffness Ceff is

1
Ceff

= 1
C 1 + G2

AC d( f ) + 1
4A 1 + 3

4
G2

AC
kBT
f A . (16)

The scale factor d(f) is also present in Ceff.

Examination of these formulae indicate that the expansion is in powers of the dimensionless 

parameter G2/AC, which, given our current estimates for the stiffnesses (A ≈ 50 nm, C ≈ 
100 nm, G ≈ 30 nm), is less than 1, although we note that G2/AC < 1 is a stability 

requirement for the microscopic energy [12]. Our computation neglects terms beyond first 

order in G2/AC.

C. Effective torsional stiffness Ceff

Equation (16) is the central result of this paper, and extends the TWLC result by Moroz and 

Nelson [Eq. (10)], which is recovered in the limit G → 0. The perturbative corrections are 

governed by the dimensionless parameter G2/AC, and give rise to a further torsional 

softening of the molecule, i.e. Ceff (G ≠ 0) < Ceff (G = 0), as pointed out in Ref. [14]. 

Equation (16) contains also a force-dependent, crossover function, which can be 

approximated as (see Appendix C)

d( f ) ≈ 1
1 + f / f 0

, (17)

where f 0 = Aω0
2kBT is the characteristic force above which d(f) starts to significantly drop 

below its low-force limit of d(0) = 1. To understand this force scale, which has no 

counterpart in the Moroz and Nelson formula [Eq. (10)], we recall that the correlation length 

for a stretched wormlike chain is ξ = AkBT / f  [1]. Therefore, f0 is the force associated with 

a correlation length of the order of the distance between neighboring bases, i.e. ξ = 1/ω0.

For DNA (A ≈ 50 nm, ω0 = 1.75 nm−1, kBT = 4 pN·nm) we get f0 ≈ 600 pN, which is far 

above the force where the double helix starts to be itself stretched (≈ 20 pN), force-

denatured (≈ 60 pN), and is in fact comparable to where the covalently-bonded backbones 

will break. Hence, for forces relevant to experiments we are concerned with (f < 10 pN), one 

may simply set d(f) ≈ 1. We will refer to this limit as the “low-force limit”, but one should 

keep in mind that our perturbative theory is computed for the “well-stretched” limit, i.e. f > 
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kBT/A ≈ 0.1 pN. Therefore our perturbative theory is applicable in the force range of 

roughly 0.1 to 10 pN.

We emphasize that Eq. (16) can be written as

1
Ceff

= 1
C* + 1

4A*
kBT
f A*, (18)

where A* is defined in (14), and

1
C* ≡ 1

C 1 + G2

AC d( f ) + 𝒪 G2/AC . (19)

Equation (18) has exactly the same form as the Moroz and Nelson formula [Eq. (10)], with 

rescaled bending and torsional stiffnesses. The importance of this result is paramount: since 

d(f) = 1 in the range of experimentally relevant forces, the torsional stiffness (and in fact the 

partition function itself) depends only on the “renormalized” stiffnesses A* and C*, meaning 

that G by itself cannot be determined from fitting of Ceff(f) (or any other equilibrium 

quantity versus f); only the effective stiffnesses A* and C* can be determined from 

experiments in the low-force regime.

D. Non-perturbative result for Ceff valid for f < f0

Equation (16) has been derived on the basis of a systematic perturbation expansion in G 
(more formally, in the small parameter G2/AC < 1). When cast in the form of Eq. (18), it is 

apparent that there is a simple way to extend the results to a more general, non-perturbative 

case, where G may be large and the bending possibly anisotropic, i.e. A1 ≠ A2 in Eq. (2). 

The key physical idea here is that for forces below the gigantic force scale f0, thermal 

fluctuations at the helix scale where G correlates bending and twisting fluctuations are 

unperturbed (d(f) = 1), and therefore we might as well just consider DNA to have the 

effective twisting and bending stiffnesses that it has at zero force.

In absence of applied torques and forces (f, τ = 0), the partition function of Eq. (11) can be 

evaluated exactly [14]. Due to twist-bend coupling, the bending and torsional stiffnesses are 

renormalized as [14]:

κb = A
1 − ε2

A2 − G2
AC 1 + ε

A

1 − G2
2AC

, (20)
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κt = C
1 − ε

A − G2
AC

1 − ε
A

, (21)

where we have introduced the parameters A = (A1 + A2)/2 and ε = (A1 − A2)/2. Eqs. (20) 

and (21) quantify the energetic cost of bending and twisting deformations, respectively, in 

the same way A and C do within the TWLC. Note that, by setting G = 0 in these 

expressions, one recovers the TWLC limit, κt = C and κb = 2A1A2/(A1 + A2) i.e. the 

renormalized bending stiffness is the harmonic mean of A1 and A2, which is a known result 

(see e.g. Refs. [28, 29]). If G ≠ 0 one has κb < 2A1A2/(A1 + A2) and κt < C, i.e. twist-bend 

coupling “softens” the bending and twist deformations of the DNA molecule, already if f = 

0, τ = 0. Eq. (16) then describes two different effects: one is the thermally-induced torsional 

softening due to bending fluctuations [already present in the TWLC expression (10)] and the 

other is the G-induced softening, which is captured by the two factors between parentheses 

in Eq. (16).

Setting ε = 0 and expanding Eqs. (20) and (21), one finds κb = A* + 𝒪 G4  and 

κt = C* + 𝒪 G4 , which suggests the following, more general, non-perturbative result for Ceff, 

valid as long as f ≪ f0

1
Ceff

= 1
κt

+ 1
4κb

kBT
f κb

. (22)

This relation, similar to Eq. (18), has the same form as the Moroz and Nelson formula [Eq. 

(10)], with A and C replaced by κb and κt [much as our result for Ceff of Eq. (19) has the 

Moroz-Nelson form with A →A* and C → C*]. As we will show in the next Section, this 

new, non-perturbative result for the continuum model is in excellent agreement with 

numerical Monte Carlo (MC) and molecular dynamics (MD) calculations.

E. Twist-bend-coupling-induced DNA unwinding

An intriguing feature of the perturbative calculation is the appearance of a term linear in τ in 

the free energy [Eq. (13)], which induces an unwinding of the helix at zero torque. In 

particular, from Eqs. (11), (13) and (15) it follows that

ΔLk τ = 0 = − 1
2π

∂F
∂τ τ = 0

= − d2( f )
16πω0

G2L
A2C2 . (23)

The scale for this thermal unwinding is very small: using typical values of DNA parameters 

(A ≈ 50 nm, C ≈ 100 nm, G = 30 nm, ω0 = 1.75 nm−1 we find an unwinding angle per 

contour length of 2π 〈ΔLk〉/L = −G2/8ω0A2C2 ≈ −2.6 × 10−6 rad/nm (about −5 × 10−5 
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degrees per base pair). This G-generated shift in helix twisting is inconsequentially small, 

but it is worth noting that this term is present in the perturbation theory.

It has been long known that there is a gradual unwinding of the double helix as the 

temperature is increased [30, 31], and this effect has been recently observed at the single-

DNA level [32]. Although one might imagine an overall T2 dependence of this term (from 

the factors of β in the Boltzmann factor), this dependence can only generate a tiny fraction 

of the observed temperature-dependent unwinding of ≈ −1 × 10−2 degrees/K·bp. The 

experimentally observed unwinding is likely due to temperature-dependence DNA 

conformational changes [32], and is beyond the scope of being captured by the simple 

elastic models discussed here; in particular the observed unwinding of DNA with increasing 

temperature is not attributable to the twist-bend coupling G.

F. “Janus strip” limit (ω0 → 0)

Equation (22) is not generally valid for any arbitrary polymer with twist-bend coupling, but 

its validity is linked to the physical parameters characterizing DNA elasticity. These 

conspire to set forces encountered in typical experiments (below 10 pN) to be far below the 

characteristic force f 0 = kBT Aω0
2 ≈ 600 pN at which one starts to see effects at the helix 

repeat scale, i.e. force-driven unwinding of the double helix due to quenching of thermal 

fluctuations and the influence of G. In this sense, ω0 can be regarded as a “large” parameter: 

combinations of it and the elastic constants give dimensionless constants large compared to 

unity, e.g. Aω0, Cω0 ≈ 102 ≫ 1 and AkBT / f ω0 ≫ 1 for f < 10 pN).

For this reason, several ω0-dependent terms, which in principle would contribute to Ceff at 

order G2, can in practice be neglected in the application of the theory to DNA [see e.g. Eqs. 

(C30) and (C31) in Appendix]. The neglect of these terms leads to Ceff taking the simple 

form given by Eq. (18), in which A* and C* are the renormalized stiffnesses.

While not relevant to DNA, we might imagine other polymer structures for which ω0 is not 

so large, i.e. where ω0 is closer in size to 1/A or 1/C. In this case one cannot ignore these 

additional terms, and d(f) ≈ 1/(1+f/f0) might drop significantly over experimentally-relevant 

force ranges. Chiral proteins, lipid filaments, or even nanofabricated objects might comprise 

realizations of such situations.

As an example we consider the extreme limit ω0 → 0, corresponding to a “Janus strip”, an 

elastic strip with inequivalent faces (i.e. inequivalent major and minor “grooves”), and, thus, 

nonzero G. In this case, using the more complete and complicated results for the perturbative 

expansion given in the Appendix, we obtain to lowest order in G

1
Ceff

= 1
C + 1

4A 1 + 3
4 + 2A2

C2
G2

AC
kBT
f A . (24)

In this limit, compared to the large-ω0 case relevant to DNA, there is a more gradual shift of 

Ceff up to its high-force limit, and an inequivalence of the form of Ceff to the Moroz-Nelson 
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form. Physically, this is because the intrinsic chirality of the filament is now gone, 

eliminating the “screening” of effects of G at low forces, and the simple dependence of the 

low-force themodynamics on only the coarse-grained stiffnesses κt and κb. Experiments on 

such Janus strips, or on “soft-helix” objects where Aω0, Cω0 < 1 could provide realizations 

of this limit of the theory. Ref. [14] showed that Eq. (24) fits experimental data for DNA 

surprisingly well, despite not taking account of double helix chirality.

IV. NUMERICAL CALCULATIONS

To check the validity of the analytical results presented above, we performed numerical 

simulations of two different models. The first model, referred to as the triad model, is 

obtained from the discretization of the continuum elastic energy (2) and treated using MC 

computations. The second model is oxDNA, a coarse-grained model of nucleic acids [33], 

treated using MD calculations.

A. Triad model

The triad model is comprised of a series of N orthonormal vectors ei(k)  with i = 1, 2, 3 and 

k = 0, 1, 2 … N, each representing a single base pair, interacting with its neighbors 

according to Eq. (2). The total length of the molecule is L = Na, with a = 0.34 nm the base 

pair distance. The ground state of this model is a twisted, straight rod, with e3 being aligned 

with the direction of the stretching force, and the vectors e1, e2 rotating about e3 with an 

angular frequency ω0. A cluster move consisted of a rotation of the whole subsystem beyond 

a randomly-selected triad by a random angle. The new rotation vector Ω was calculated 

based on Rodrigues’ rotation formula (see e.g. Supplementary Material of Ref. [15]), then 

the energy was updated from a discretized version of Eq. (2), with the addition of a force 

term [see Eq. (5)]. The move was accepted or rejected according to the Metropolis 

algorithm. The stiffness constants A1, A2, C and G are input parameters for the model, and 

may, therefore, be arbitrarily chosen, provided the stability condition G2 < A2C is met [for 

which the quadratic form in Eq. (2) is positive definite]

The effective torsional stiffness was calculated at zero torque from linking number 

fluctuations:

Ceff = L
4π2 (ΔLk − ΔLk )2 , (25)

The variance of linking number in the denominator was evaluated from the topological 

relation ΔLk = ΔTw + Wr, with twist and writhe obtained from the discretization of Eqs. (7) 

and (8), respectively. To check the validity of our results, the writhe was also evaluated from 

the double-integral formula, following the method of Ref. [34], and no significant 

differences were found for forces > 0.25 pN. In all simulations, the size of the system was 

600 triads (base pairs), above which the results remained identical within that force range.
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1. Isotropic bending—Figure 3 shows the results of Monte Carlo calculations for the 

isotropic model of Eq. (3), with A = 50 nm, C = 100 nm and G = 0, 20, 40 nm (top to 

bottom). The data are plotted as a function of the dimensionless parameter kBT / f A. The 

numerical errors are smaller than the symbol sizes, and hence not shown.

In absence of twist-bend coupling (G = 0, upper panel), the Monte Carlo data are in 

excellent agreement with the Moroz-Nelson theory. We compare them both to Eq. (10) 

(dashed line) and the following expression (solid line)

Ceff = C 1 − C
4A

kBT
f A . (26)

The latter is obtained from the lowest-order expansion of Eq. (10) in kBT / f A, and is a 

straight line when plotted as a function of the rescaled variable of Fig. 3. Eqs. (10) and (26) 

coincide to leading order in 1/ f , and any differences in the two expressions only occur at 

low force scales, where higher-order corrections become relevant. Eq. (26) fits the Monte 

Carlo data over the whole range of forces analyzed (f ≥ 0.25 pN), while Eq. (10) deviates at 

low forces [35]

The middle panel of Fig. 3 shows Monte Carlo results for G = 20 nm (points), which we 

compare both to the results for the perturbative expansion for 1/Ceff, Eq. (18) (dashed line) 

and the following similar expansion result for Ceff (solid line)

Ceff = C

1 + G2
AC d( f )

1 − C
4A

1 + 3G2
4AC

1 + G2
AC d( f )

kBT
f A , (27)

obtained by expanding Eq. (16) to lowest order in 1/f. The latter is in excellent agreement 

with Monte Carlo data in the whole range of forces considered, indicating that G = 20 nm 

falls within the range of validity of the perturbative calculation (G2/AC = 0.08 in this case). 

We note that the two perturbative expansion results converge together at high forces ([kBT/
(Af)]1/2 → 0 and also show the upturn at the very highest forces associated with the force-

dependence of d(f).

Finally, the lower panel of Fig. 3 shows the results of Monte Carlo simulations for G = 40 

nm. The numerical data deviate substantially from Eq. (16) (dotted line), indicating that G is 

leaving the range of validity of the perturbative calculation (G2/AC = 0.32). The remaining 

curves show the nonperturbative result for 1/Ceff Eq. (22) (dashed line), together with the 

following non-perturbative expression for Ceff (solid line)

Ceff = κt 1 −
κt

4κb

kBT
f κb

, (28)
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the latter being in excellent agreement with Monte Carlo data for f < f0, validating the non-

perturbative result (note that [kBT/(f0A)]1/2 ≈ 0.01). For f > f0, the up turn of Ceff towards 

the bare value of C is apparent; this effect, while not given by the non-perturbative results, is 

present in the perturbation expansion results. We conclude that our non-perturbative result 

indeed provides a quantitative account of Ceff for f < f0, where we expect it to be valid.

2. Anisotropic bending—While the perturbative calculation [Eq. (16)] was restricted to 

the isotropic case (A1 = A2), the non-perturbative result [Eq. (28)] has a broader range of 

applicability, and is able to describe the anisotropic case as well. Figure 4 shows the results 

of Monte Carlo calculations of Ceff for various values of the anisotropy parameter ε = (A1 − 
A2)/2 and a fixed value of the force f = 1 pN. The Monte Carlo data are in very good 

agreement with Eq. (28), plotted with solid lines. The differences are within 5%, and are 

probably due to higher order corrections in 1/f (recall that all analytical results are based on 

a large-force expansion). In absence of twist-bend coupling (G = 0), Eq. (28) is symmetric in 

ε, as in this case Eqs. (20) and (21) give κb = (A2 − ε2)/A and κt = C, respectively. A 

nonzero G induces nonvanishing terms, which are linear in ε both in κb and κt [Eqs. (20) 

and (21)], leading to a breaking of the ε → −ε symmetry.

B. oxDNA

oxDNA is a coarse-grained model describing DNA as two intertwined strings of rigid 

nucleotides [33]. It has been used for the study of a variety of DNA properties, ranging from 

single molecules to large-scale complexes [15, 16, 33, 36–38]. To date, two versions of 

oxDNA exist: one with symmetric grooves (oxDNA1) [33] and one with asymmetric 

grooves (oxDNA2) [37]. Comparing the torsional response of the two versions will allow us 

to infer the effect of the groove asymmetry on Ceff. Differently from the triad model, in 

which the stiffness constants A1, A2, C and G are input parameters, in oxDNA they are 

determined by the molecular force fields used. These force fields were accurately tuned so 

that the experimental DNA structural, mechanical and thermodynamic properties (as 

persistence length, melting temperatures and torque-induced supercoiling) are well 

reproduced [33]. As for real DNA, for oxDNA the elastic constants are emergent via coarse-

graining of fluctuations of smaller-scale, molecular motion degrees of freedom.

The stiffness parameters of oxDNA were recently estimated from the analysis of the 

equilibrium fluctuations of an unconstrained molecule [15], and are shown in Table I (the 

values of the elastic constants for oxDNA2 shown are the result of transformation of the 

values obtained in Ref. [15] for the helical coordinate system used in that paper, to the non-

helical coordinate system of this paper; see Appendix D). In line with the symmetry 

arguments of Ref. [12], twist-bend coupling is absent in oxDNA1 (symmetric grooves), 

while its magnitude is comparable to that of the elastic constants A1, A2 and C in oxDNA2 

(asymmetric grooves). Table I also reports the values of κb and κt, which can be obtained in 

two different, yet consistent, ways [15]: either indirectly from Eqs. (20) and (21), by 

plugging in A1, A2, C and G of Table I, or directly from the analysis of the corresponding 

correlation functions in simulations (κb and 2κt are, respecively, the bending and twist 

stiffnesses [14]).
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Figure 5 shows a plot of the effective torsional stiffness as a function of the applied force, 

both for oxDNA1 (circles) and oxDNA2 (triangles). Ceff was evaluated using twist 

fluctuations via Eq. (25). At large forces, and in agreement with the experimental evidence, 

oxDNA undergoes a structural transition, hence the simulations were restricted to f ≤ 10 pN. 

The solid and dotted lines of Fig. 5 are plots of Eq. (28) using κb and κt from Table I. For 

both oxDNA1 and oxDNA2 there is an excellent agreement between the non-perturbative 

theory and simulations. In the case of oxDNA1 the non-perturbative theory reduces to the 

Moroz-Nelson result, with κt = C and κb = A(1 − ϵ2/A2); the good account of oxDNA1 Ceff 

by this formula was noted previously (see Ref. [39], Fig. S7). We note that in the light of our 

present results, this good agreement validates the use of the values of the stiffness 

parameters obtained in Ref. [15].

V. DISCUSSION

We have investigated the effect of the twist-bend coupling G on the statistical-mechanical 

properties of the twistable-wormlike-chain model of a stretched DNA molecule, using 

analytical and numerical methods. Our major analytical results are based on a perturbative 

calculation of the effective torsional stiffness Ceff, the torsional resistance of a long DNA 

molecule stretched by an applied force f. The calculation is valid for small values of G, and 

generalizes the expression derived by Moroz and Nelson, which was obtained for G = 0 [4].

A. Screening effect for f < f0

A striking feature of our theory is the appearance of a large force scale, 

f 0 = kBT Aω0
2 ≈ 600 pN. For forces well below this gargantuan force level (essentially all 

single-DNA mechanical experiments concern forces far below this value) the effect of G 
becomes solely renormalization of the bending and twisting stiffnesses κb and κt; direct 

effects of twist-bend coupling are “screened” at lower force scales. Only at forces f ≫ f0 do 

the bare elastic constants start to reveal themselves: in this regime Ceff finally approaches its 

intrinsic value C. Note that the large force regime f ≫ f0 is experimentally inaccessible, as it 

corresponds to forces beyond those where DNA rapidly breaks.

This “screening” feature of the perturbative theory suggested to us that we could consider 

DNA for f < f0 to be described by a TWLC with persistence lengths set to the zero-force 

long-molecule stiffnesses κb and κt. Combining formulae for the stiffnesses for freely 

fluctuating DNA [14] with the Ceff formula of Moroz and Nelson [4] gave us a non-

perturbative formula for Ceff in terms of the elastic constants A1, A2, C and G. MC 

calculations for the triad model which discretizes the continuum elasticity theory (3) were 

found to be in excellent agreement both with the perturbative (i.e., small G) and non-

perturbative (for larger G) expressions of Ceff. We note that, despite being inaccessible 

experimentally, in MC simulations we observed the very high force behavior of the 

perturbative theory - namely the increase of Ceff from its low-force Moroz-Nelson behavior, 

towards its “naked” value of C in the triad MC calculations.

The screening discussed here applies to single-molecule measurements sampling the 

torsional response of a kilobase-long molecule. Locally, at the distance of few base-pairs, 
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twist-bend coupling has directly-observable effects, as discussed recently [16, 40]. For 

instance, in DNA minicircles, the twist oscillates as a response to pure bending 

deformations, as seen in X-ray structures of nucleosomal DNA [16].

B. oxDNA under moderate forces is described by the TWLC plus twist-bend coupling

To test whether our analytical results describe the coarse-grained behavior of a more realistic 

molecular model of DNA, we carried out MD simulations of oxDNA, a coarse-grained 

model describing DNA as two intertwined strings of rigid nucleotides [33]. Ceff for 

oxDNA1, a DNA model with symmetric grooves, was determined in previous work [39] and 

found to be in agreement with the (G = 0) Moroz-Nelson theory.

For the more realistic oxDNA2, which has the asymmetric grooves of real DNA and hence 

twist-bend coupling (G ≠ 0) [15], we found that Ceff is in excellent agreement with the non-

perturbative theory Eq. (28) without any adjustable parameters, as the elastic constants were 

determined in previous work [15]. oxDNA2 appears to be precisely described by our non-

perturbative theory for forces f ≪ f0 (recall that oxDNA undergoes internal structural 

transitions for forces of a few tens of pN, providing a more stringent contraint on force than 

the giant force scale f0). Put another way, the “TWLC plus G” is the “correct” low-force, 

long-fluctuation wavelength description of oxDNA2.

C. Experimental data

We finally compare the analytical results with experimental magnetic tweezers data of Refs. 

[14, 22]. Figure 6 shows experimental data (symbols) together with plots of Eq. (28) for two 

sets of parameters κb and κt (lines). The latter are identical to the solid and dashed lines of 

Fig. 5, which are numerically precise descriptions of oxDNA1 and oxDNA2, respectively. 

Since the force fields in oxDNA were carefully tuned to reproduce several mechanical and 

thermodynamic properties of DNA [33], it is sensible to directly compare our non-

perturbative theory to experimental data (Fig. 6).

As reported in previous papers [14, 17] the experimental Ceff data are systematically lower 

than the prediction of the Moroz and Nelson theory, which precisely matches the oxDNA1 

results (solid line in Fig. 6). The oxDNA2/nonperturbative theory (dashed curve) is closer to 

the experimental data, especially in the low force regime f < 1 pN. However, some 

systematic deviations are noticeable at higher forces, where theory appears to underestimate 

the experimental Ceff. In addition, measurements at f = 15 pN (albeit for a slightly different 

assay) yield Ceff = 110 nm [41], well above the oxDNA2 value of Ceff = 92 nm.

We conclude by noting that oxDNA2 - which has the realistic features of groove asymmetry 

and G ≠ 0 - produces data in reasonable agreement with experiments. We have also shown 

that in the force range where we expect that coarse-graining of oxDNA2 should agree with 

our analytical results, it does. In that same force range (f < 10 pN), oxDNA2 and our 

analytical results show some systematic deviations from experiments that suggest that 

physics beyond simple harmonic elasticity may be in play at intermediate forces (1 to 10 

pN), generating torsional stiffening of DNA. A possible mechanism of cooperative structural 

transition in a two-state model with different base-pair rise (separation) was recently 

discussed in Ref. [42]. The next generation of coarse-grained DNA models likely will have 
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to consider this kind of additional, internal degree of freedom to properly describe severe 

distortion of DNA by proteins, or similar situations where strong forces are applied at short 

length scales.

D. The value of the intrinsic torsional stiffness C

Experiments probing torsional properties of DNA, performed since the 80’s, have provided 

estimates of C ranging from 40 nm to 120 nm, depending on the technique used [6, 43–47]. 

All these experiments were analyzed within the framework of the standard TWLC, with no 

twist-bend coupling (G = 0). In the model discussed in this paper with G ≠ 0, the bare 

torsional stiffness C, being screened by a large force scale, should not be accessible to 

magnetic tweezers experiments. A main point of this paper is that all the experiments ought 

to measure kt instead. We point out that Eq. (22) holds for measurements at zero force where 

torsional deformations are governed by the renormalized stiffness kt (21) and not by the bare 

C [14, 40]. If DNA were to follow the model (2), torsional measurements at a given force 

should provide a single estimate of the torsional constant kt, regardless of whether the DNA 

is under tension or not (provided that f ≪ f0, which is always the case in experiments).

Deviations of experiments from Eq. (22), observed for f > 1 pN, indicate that DNA is 

torsionally stiffer for forces in the 1–10 pN range than expected from model (2). One 

possibility is that there is an additional intrinsic torsional stiffness C’ in this regime of 

forces, as postulated by Schurr [42]. This explains the large spread in the values of the 

torsional stiffness in earlier experiments: at very weak f < 1 pN or zero forces the torsional 

behavior is governed by kt and larger forces by a novel torsional constant C’. Measurements 

of torsional stiffness from DNA under tension provide systematically higher values 

compared to the zero-tension data (see Table I of Supplemental of Ref. [14]), suggesting that 

there are different torsional constants in different force ranges. A similar effect was 

discussed in Ref. [14], where it was argued that earlier torsional DNA experiments identified 

two different stiffnesses: kt at low/zero tension and C, the intrinsic stiffness, at high tension. 

The present paper argues against this conclusion of Ref. [14], since the intrinsic torsional 

stiffness is screened at all experimentally-accessible forces (f < f0).

E. Effects beyond the TWLC model

The TWLC with G ≠ 0 is still a highly-simplified model of DNA molecular mechanics. One 

might argue that there are degrees of freedom or other features of DNA relevant to Ceff 

measurements, which are just not captured by the TWLC. The basic TWLC (with G ≠ 0) 

Hamiltonian has been obtained at the single-base-pair level by coarse-graining detailed 

molecular MD simulations [28, 48], indicating that the basic symmetry features of the 

TWLC with G ≠ 0 are present in real DNA, or at least in chemical models of real DNA. In 

addition to the symmetry properties of base-pair-level deformations, the TWLC model also 

assumes a straight “zero-temperature” (non-fluctuating) ground state, while real DNA has a 

sequence-dependent non-straight intrinsic shape; evidence for this comes from 

crystallography of DNA crystals and detailed chemical-structural calculations. Recent work 

of the latter sort suggests that DNA has an appreciable contribution to its effective 

persistence length by sequence-dependent bends [49].
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This leads to the question of whether DNA intrinsic shape might contribute appreciably to 

experimental discrepancies between Ceff and the predictions of TWLC-type models. Prior 

work argues against this, showing that small-scale random intrinsic bends generate only a 

simple renormalization of the bending modulus (captured in the TWLC model by shifting 

the value of A) [50] and no renormalization of the twisting modulus [51].

These theoretical results for small-scale shape disorder nonwithstanding, large-scale 

nonrandom chiral shape of the molecule (say a coiled shape at a length scale 𝓁0) could give 

chiral responses at zero temperature associated with removal of those coils. At finite 

temperature, effects of such coiling would be relevant for forces < kBT A/𝓁0
2, where the 

correlation length for bending fluctuations is large enough to allow fluctuations to be 

affected by 𝓁0. Taking 𝓁0 ≈ 10 nm (30 bp) sets this force scale to ≾ 2 pN, not far from the 

force range where experiment and TWLC disagree, suggesting that this permanent chiral 

shape might contribute to the discrepancy between TWLC and experimental Ceff values. 

Future oxDNA-like models, which incorporate sequence-shape detail, might be able to 

observe e_ects of nonrandom chiral structure. From the experimental side, high-precision 

measurements using DNA molecules of different sequence composition (perhaps tuned to 

have nonrandom chiral intrinsic shape) might be able to determine how likely it is that 

sequence is responsible for the discrepancies in Ceff between experiments and the TWLC 

theory.
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Appendix A:: TWLC at strong stretching

We will first consider the simple case of the TWLC (G = 0), following closely the approach 

of Ref. [1]. At high forces, the molecule is strongly oriented along the force direction, which 

is chosen to be parallel to z. It proves convenient to decompose the tangent vector as

e3 = tzz + u, (A1)

where the vector u is orthogonal to z, i.e. u = uxx + uyy. Using the identity 

e3 = 1 = tz
2 + u2 and expanding to lowest order in u we get

e3 = 1 − u2

2 + 𝒪 u4 z + u, (A2)

while its derivative is found to be
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de3
ds = du

ds + 𝒪 u2 z . (A3)

Combining this with Eq. (1), we find

Ω1
2 + Ω2

2 =
de3
ds

2
= du

ds
2

+ 𝒪 u3 . (A4)

Introducing the Fourier transform uq = ∫ 0
Lds e−iqsu(s), and neglecting higher-order terms, we 

write the bending and stretching contribution to the energy as follows

A
2 ∫

0

L
ds

de3
ds

2
− βf ⋅ R = 1

2L ∑
q

Aq2 + β f uq
2 − β f L, (A5)

where we expressed the force as f = f z, while the end-to-end vector R = ∫ 0
Lds e3 was 

approximated based on Eq. (A2).

The torque in Eq. (5) is coupled to the linking number, which is the sum of twist and writhe 

[Eqs. (7) and (8), respectively]. In the high-force limit, Eq. (8) becomes

2πWr = 1
2∫0

L
u × du

ds ⋅ z ds + 𝒪 u4

= 1
2L ∑

q
uq

T 0 −iq
iq 0 uq* + 𝒪 u4 ,

(A6)

where we have rewritten the cross product as a matrix multiplication. Thus, the writhe 

couples the x and y components of the two-dimensional vector uq.

Adding up all terms, and with the help of simple algebraic manipulations, we obtain the 

following energy for the TWLC to lowest order in u

βE0 − βf ⋅ R − βτ2πΔLk = 1
2L ∑

g
uq

TMquq* + C
2 ∫

0

L
dsω3

2 − β2τ2L
2C − β f L, (A7)

where we introduced the matrix

Mq = Aq2 + β f −iqβτ

iqβτ Aq2 + β f
. (A8)
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We have also introduced the shifted twist density

ω3(s) ≡ Ω3(s) − βτ
C , (A9)

which allowed us to eliminate linear terms in Ω3. Thus, in the high-force limit, the TWLC 

under applied torque reduces, to lowest order, to a Gaussian model, where bending (uq) and 

twist (ω3) are independent variables. The torque τ couples to the bending degrees of 

freedom through the off-diagonal terms of the matrix Mq. The eigenvalues of Mq are easily 

found to be

λq
± = Aq2 + β f ± qβτ, (A10)

and the corresponding eigenvectors are (x ± iy)/ 2 Eq. (A7) on this basis allows us to 

calculate the partition function, from which the free energy is found to be

F0 = − f L − βτ2L
2C +

kBT
2 ∑

q
log λq

+λq
− , (A11)

where we have neglected additive constants. Expanding to quadratic order in τ

log λq
+λq

− ≈ log Aq2 + β f 2 − qβτ
Aq2 + β f

2
, (A12)

and replacing the sum over momenta with an integral ∑q (L/2π) ∫ dq,, we obtain

F0( f , τ) = F0( f , 0) − βτ2L
2C − βτ2L

8A
kBT
f A

= F0( f , 0) − βτ2L
2Ceff

.

(A13)

Combining the two last terms in the right-hand side, one obtains the Moroz and Nelson 

relation [Eq. (10)]. F0(f, τ = 0) is the zero-torque free energy, and is obtained by integrating 

the first term at the right-hand side of Eq. (A12). Although the integral is divergent, it can be 

regularized by introducing a momentum cutoff Λ ≈ 2π/a, where a = 0.34 nm is the 

separation between neighboring base pairs. As it turns out, however, this cuto does not affect 

any force-dependent terms, and one has
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F0( f , 0) = F0(0, 0) − f L +
f kBT

A L, (A14)

where F0(0, 0) is cutoff-dependent. Interestingly, from Eq. (5) one finds to lowest order in τ

2πΔLk = −
∂F0( f , τ)

∂τ = βτL
Ceff

, (A15)

which quantifies the induced over- or undertwisting upon the application of a torque. Using 

this expression, one obtains the force-extension relation at fixed linking number [4, 21]

z
L = − 1

L
∂F0
∂ f = 1 −

kBT
4 f A − C2

2
kBT
4A f

3/2 2πΔLk
L

2
, (A16)

which shows a characteristic parabolic profile for the extension of an over- or undertwisted, 

stretched molecule.

Appendix B:: Ω2 at strong stretching

The thermal average in Eq. (12) contains Ω2, which needs to be expressed in terms of uq and 

ω3, the degrees of freedom of the system [Eq. (A7)]. For this purpose, we use the relation

Ω2 = e1 ⋅
de3
ds , (B1)

which can be easily obtained from Eq. (1). In the highforce limit, where the tangent be e3
points predominantly along the force direction, z, one has

e1 = cosψ + 𝒪 u2  x + sinψ + 𝒪 u2 y + 𝒪(u) z . (B2)

Here we have introduced the twist angle

ψ(s) = ∫
0

s
Ω3(t)dt + ω0s = ∫

0

s
ω3(t)dt + ω0 + βτ

C  s, (B3)

and used Eq. (A9) to express it in terms of the variable ω3. Equation (B2) can be obtained 

by considering an arbitrary rotation that maps a fixed lab frame triad, e.g. x, y, z , onto the 

material frame triad e1, e2, e3  at position s, requiring that e3 remains predominantly 
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oriented along the force direction, as in Eq. (A1). Combining Eqs. (B1) and (B2), it follows 

that

Ω2 = Ψ(s) ⋅ du
ds + 𝒪 u3 , (B4)

where we have defined the unit vector

Ψ(s) ≡ cosψ(s) x + sinψ(s) y . (B5)

Therefore, in the high-force limit, Ω2 can be written as a scalar product between a unit vector 

Ψ(s), depending exclusively on twist variables, and a vector du=ds, involving only the 

bending degrees of freedom. Finally, from Eq. (B4) it follows that

Ω2, q = 1
L ∑

q′
−iq′ Ψq − q′ ⋅ uq′ . (B6)

The remainder of the calculation, presented below, will be based upon Eqs. (B4) and (B6).

Appendix C:: Details of the perturbative calculation

To calculate the average appearing in Eq. (12), it first needs to be rewritten as a function of 

the integration variable ω3 [see Eq. (A9)]. This can be performed as follows

∫
0

L
dsΩ2Ω3

2

0
= β2τ2

C2 ∫
0

L
dsΩ2

2
+ ∫

0

L
dsΩ2ω3

2

= β2τ2

C2 Ω2, 0
2 + 1

L2 ∑
q, k

Ω2, qΩ2, kω3, − qω3, − k ,

(C1)

where Ω2, q and ω3, q denote the Fourier components of Ω2 and ω3, respectively. Note that we 

have neglected a linear term in ω3, which vanishes due to the symmetry ω3 ↔ -ω3. 

Moreover, in order to simplify the notation, we have dropped the subscript from all averages 

h:i0, which will be always calculated within the TWLC model, i.e. for G = 0.

Before proceeding to the calculation of Eq. (C1), it will prove useful to first present some 

properties. In particular, we are going to use the following expressions, obtained from the 

correlation functions in the TWLC model [Eq. (A7)]

uq ⋅ uk =
2L Aq2 + β f

Aq2 + β f 2 − (qβτ)2
δq, − k (C2)
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and

uq ⊗ uk = −2iLqβτ

Aq2 + β f 2 − (qβτ)2
δq, − k . (C3)

For convenience, we have introduced the shorthand notation

a ⊗ b ≡ z ⋅ (a × b) = axby − aybx, (C4)

which is antisymmetric with respect to the interchange of a and b. From Eq. (C3) it follows 

that uq ⊗ uk = 0, when τ = 0 (in this case the matrix Mq is diagonal, hence the cross-

correlations uq
xu−q

y = 0) Moreover, for τ = 0 and q = -k, Eq. (C2) reduces to:

uq
2

τ = 0
= 2L

Aq2 + β f
, (C5)

which can be easily obtained from equipartition [12]. We are also going to use the following 

symmetries

uq
xuk

x = uq
yuk

y , (C6)

uq
xuk

y = − uq
yuk

x , (C7)

which allow us to rearrange scalar products as follows

Ψ−q ⋅ uqΨ−k ⋅ uk = uq
xuk

x Ψ−q
x Ψ−k

x + Ψ−q
y Ψ−k

y + uq
xuk

y Ψ−q
x Ψ−k

y − Ψ−q
y Ψ−k

x

= 1
2 uq ⋅ uk Ψ−q ⋅ Ψ−k + uq ⊗ uk Ψ−q ⊗ Ψ−k ,

(C8)

where we have used the fact that the bending (u) and twisting (ψ) degrees of freedom are 

independent, within the TWLC. We are now ready to proceed to the calculation of Eq. (C1). 

We will need to evaluate two distinct terms, which will be treated separately.
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1. First term in Eq. (C1)

The first term in Eq. (C1) already contains a factor of order 𝒪 τ2 , which means that up to 

quadratic order in τ it is sufficient to evaluate the corresponding average for τ = 0

Ω2, 0
2

τ = 0 = 1
L2 ∑

qk
( − qk) Ψ−q ⋅ uqΨ−k ⋅ uk τ = 0

= 1
2L2 ∑

q
q2 uq

2
τ = 0

Ψq
2

τ = 0
,

(C9)

where we have used Eqs. (B6) and (C8), together with the property uq ⊗ uk τ = 0 = 0 [see 

Eq. (C3)]. Next, we need to calculate the following quantity

Ψq
2

τ = 0
= ∫

0

L
dsds′eiq s − s′ Ψ(s) ⋅ Ψ s′ τ = 0 . (C10)

From Eqs. (B3) and (B5) one finds

Ψ(s) ⋅ Ψ s′ τ = 0 = cos ψ(s) − ψ s′

= e
iω0 s′ − s

2 exp i∫
s

s′
ω3(t)dt + c . c . ,

(C11)

where c.c. denotes the complex conjugate. To proceed, we perform a Fourier transform of 

the exponent

∫
s

s′
ω3(t)dt = 1

L ∑
q

hqω3, q, (C12)

where we have introduced the complex variable

hq = e−iqs′ − e−iqs

−iq . (C13)

Performing Gaussian integration in ω3, q, one finds
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exp ± i
L ∑

q
hqω3, q = exp − 1

LC ∑
q > 0

hqh−q

= exp − s′ − s
2C .

(C14)

As expected, the decay of the twist correlation function is governed by 2C, i.e. the twist 

persistence length in the TWLC. Combining Eqs. (C11), (C12) and (C14), we obtain

Ψ(s) ⋅ Ψ s′ τ = 0 = cos ω0 s′ − s e− s′ − s /2C . (C15)

Inserting this in Eq. (C10) yields

Ψq
2

τ = 0
= L

2
1

i q − ω0 + 1
2C

+ 1
i q + ω0 + 1

2C

+ 1
i −q + ω0 + 1

2C

+ 1
i −q − ω0 + 1

2C

= L
2C

1
q + ω0

2 + 1
4C2

+ 1
q − ω0

2 + 1
4C2

.

(C16)

Finally, combining Eqs. (C9), (C5) and (C16) we find

Ω2, 0
2

τ = 0 = 1
2π∫−∞

+∞ dqq2

Aq2 + β f
Ψq

2

= L
A 1 − β f

A

β f
A + 1

2C
β f
A + 1

2C
2

+ ω0
2

≡ L
Ad( f ),

(C17)

where we introduced a force-dependent scale factor d(f). Note that 0 ≤ d(f) ≤ 1, with d(f) → 
1 at small forces and d(f) → 0 at high forces. Commonly accepted estimates of the DNA 

elastic constants put them in the viccinity of C = 100 nm and A = 50 nm, while the applied 

forces in typical experiments are in the range 0:1 pN ≾ f ≾ 10 pN. Recalling that room 

temperature corresponds to kBT ≈ 4 pN nm, it follows that βf=A is at least one order of 

magnitude larger than 1/4C2. This allows for the following simplification
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d( f ) ≈ 1
1 + f / f 0

, (C18)

neglecting higher-order terms in C−1 A/β f . We have also introduced a characteristic force

f 0 = AkBTω0
2 ≈ 600 pN, (C19)

whose value greatly exceeds those at which the double helix breaks. Thus, for the force 

range of interest, we may set d(f) = 1 in Eq. (C17). Summarizing, this first term of Eq. (C1) 

provides the following contribution to the free energy

ΔF(1) = − G2

2
βτ2

C2 Ω2, 0
2 = − βτ2L

2C
G2

AC d( f ) . (C20)

As a final remark, we note that we could have obtained Eq. (C18) using the approximation

Ψq
2 ≈ πL δ q + ω0 + δ q − ω0 . (C21)

∑
q, k

Ω2, qω3, − qΩ2, kω3, − k = 1
L2 ∑

q, k, q′, k′
−q′k′ Ψq − q′ ⋅ uq′Ψk − k′ ⋅ uk′ω3, − qω3, − k

= 1
2L2 ∑

q, k, q′, k′
−q′k′ uq′ ⋅ uk′ Ψq − q′ ⋅ Ψk − k′ω3, − qω3, − k

+ uq′ ⊗ uk′ Ψq − q′ ⊗ Ψk − k′ω3, − qω3, − k

1
2L2 ∑

q′
q′2 uq′

2 Is q′, τ + uq′ ⊗ u−q′ Ia q′, τ ,

(C22)

where we used the fact that the u correlators are diagonal in momentum space, hence k’ = 

−q’ [see Eqs. (C2) and (C3)]. We have also introduced the symmetric

Is q′, τ = ∑
q, k

Ψq − q′ ⋅ Ψk + q′ω3, − qω3, − k , (C23)

and antisymmetric products
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Ia q′, τ = ∑
q, k

Ψq − q′ ⊗ Ψk + q′ω3, − qω3, − k . (C24)

In what follows, we are going to compute the contribution of Is and Ia to the free energy 

separately.

a. Symmetric products

For the evaluation of Eq. (C23), we will first focus on the average inside the summation, 

which may be written in the following way

Ψq − q′ ⋅ Ψk + q′ω3, − qω3, − k = ∫
0

L
dsds′ei q − q′ s + i k + q′ s′ Ψ(s) ⋅ Ψ s′ ω3, − qω3, − k .

(C25)

Formally, this corresponds to taking the limit C → ∞ in Eq. (C16), i.e. approximating the 

Lorentzian distributions 1/[2c(q±ω0)2+1/2c] with delta functions. This is a valid 

approximation as long as ω0 ≫ 1=2C, making the Lorentzians sharply-peaked at large 

momenta q = ±ω0, where the integrand in Eq. (C17) varies slowly.

2. Second term in Eq. (C1)

Using the same decomposition as in Eq. (C8), the second term in Eq. (C1) can be written as

We may now use Eqs. (C11)–(C14) so as to obtain

Ψ(s) ⋅ Ψ s′ ω3, − qω3, − k = − L2

2 e
iω0 s′ − s ∂2

∂h−q∂h−k
exp i

L ∑
p

hpω3, p

+ e
−iω0 s′ − s ∂2

∂h−q∂h−k
exp − i

L ∑
p

hpω3, p

= − L2cos ω0 s′ − s ∂2e
− 1

LC ∑p > 0hph− p

∂h−q∂h−k

= L
C cos ω0 s′ − s δq, − k − 1

LC hqhk e− s′ − s /2C,

(C26)

where we have introduced the shifted intrinsic twist
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ω0 ≡ ω0 + βτ
C . (C27)

Differently from the calculation of Ω2, 0
2  in Eq. (C9), we can no longer ignore the torque 

dependence of ψ [see Eq. (B3)]. Plugging Eq. (C26) back in Eq. (C25), integrating in s and 

s0 and summing over q and k, we obtain

Is q′, τ = L3

C − L3

4C2∫−∞

+∞
dr cos q′r  cos ω0r e− r /2C

= L3

C − L3

8C3
1

q′ + ω0
2 + 1

4C2
+ 1

q′ − ω0
2 + 1

4C2

≈ L3

C − πL3

4C2 δ q + ω0 + δ q − ω0 .

(C28)

Throughout the calculation we introduced the variable r ≡ s’-s in the double integral. Similar 

to Eq. (C21), we also approximated the two Lorentzians with delta functions. Note that Is 

depends on the torque τ through ω0, as indicated by Eq. (C27). Combining Eqs. (C2) and 

(C28), one finds

1
2L2 ∑

q
q2 uq ⋅ u−q Is(q, τ)

= 1
L ∑

q

Aq2 + β f

Aq2 + β f 2 − (qβτ)2
q2Is(q, τ)

= 1
L ∑

q

q2Is(q, τ)
Aq2 + β f

+ β2τ2

L ∑
q

q4Is(q, 0)

Aq2 + β f 3 + 𝒪 τ4 ,

(C29)

We are interested in terms proportional to τ2. There are two such contributions, the first one 

being
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1
L ∑

q

q2Is(q, τ)
Aq2 + β f

= −L3

AC
β f
4A + 1

4C
ω0

2

Aω0
2 + β f

+ …

= − L3

AC
β f
4A − L3d( f )

4AC2 × × 1 + βτ
Cω0

d( f ) + β2τ2

C2ω0
2d( f )[4d( f ) − 1] + …

= − L3

AC
β f
4A + …,

(C30)

where we defined d( f ) ≡ 1 − d( f ), with d(f) the scale factor given in Eq. (C18), and where 

the dots indicate omitted terms, which do not significantly contribute to the result. These 

terms are either independent of the torque and force, or are of higher order than τ2. We note 

that d( f ) ≪ 1, i.e. it is negligibly small for the experimentally-accessible forces f ≪ f0 600 

pN. The only surviving term in Eq. (C30) is independent of τ and proportional to f , hence 

contributing to the force-extension response. The remaining term to evaluate in Eq. (C29) is

β2τ2

L ∑
q

q4Is(q, 0)

Aq2 + β f 3 = β2τ2

4π
∂2

∂A2∫ dq
Aq2 + β f

Is(q, 0)

= β2τ2L3

C
3

16A2
kBT
f A − 2d3( f )

CA3ω0
2

≈ 3β2τ2L3

16A2C

kBT
f A .

(C31)

Note that terms containing ω0
−2 are always multiplied by A−2 or C−2, hence forming 

dimensionless constants. Typical values for the case of DNA are (Aω0)−2 ≈10−4 and (Cω0)−2 

≈ 3 × 10−5, which provide negligible contributions to the free energy, compared to other 

terms of the same order in τ. Therefore, the term proportional to d3 in Eq. (C31) can be 

safely neglected. Combining Eqs. (C29)–(C31), we find that the relevant contribution of the 

symmetric term in Eq. (C22) to the free energy is

ΔF(2) = G2L
4AC

f kBT
A − βτ2L

2C
3G2

16A2
kBT
f A . (C32)

b. Antisymmetric products

The final part of the derivation is devoted to the calculation of the antisymmetric product in 

Eq. (C22). We start by expanding Eq. (C3) as follows
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uq ⊗ u−q = −2iLqβτ

Aq2 + β f 2 + 𝒪 τ3 . (C33)

The calculation of the twist correlator is performed in a similar fashion as above, which 

yields

Ψ(s) ⊗ Ψ s′ ω3, − qω3, − k = L
C sin ω0 s′ − s δq, − k − 1

LC hqhk e− s′ − s /2C . (C34)

We may take the Fourier transform of this expression, and plug it back into Eq. (C24), so as 

to obtain

Ia q′, τ = − iL3

8C3
1

q′ + ω0
2 + 1

4C2
− 1

q′ − ω0
2 + 1

4C2

≈ − iπL3

4C2 δ q′ + ω0 − δ q′ − ω0 .

(C35)

Finally, plugging Eqs. (C33) and (C35) into the second term of Eq. (C22), transforming the 

sum into an integral and performing the remaining integration, we find

1
2L2 ∑

q
q2 uq ⊗ u−q Ia(q, τ)

≈ − i
L ∑

q

qβτ

Aq2 + β f 2q2Ia(q, τ)

= iβτ
2π

∂
∂A∫ dqqIa(q, τ)

Aq2 + β f
= βτL3

4C2
∂

∂A
∂

Aω0
2 + β f

= − βτL3

4C2
ω0

3

Aω0
2 + β f 2 ≈ − βτd2( f )L3

4A2C2ω0
,

(C36)

where we have omitted terms, which are either higher order in τ, or negligibly small 

compared to other terms of the same order [recall (Cω0)−2 ≈ 3× 10−5]. Summarizing, the 

contribution of the antisymmetric product to the free energy is

ΔF(3) = G2d2( f )τL
8A2C2ω0

. (C37)
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Throughout the derivation we found three distinct contributions to the free energy, coming 

from Eqs. (C20), (C32) and (C37). Adding these to Eq. (A13), i.e. the free energy of the 

TWLC, we find

1
LF( f , τ) ≈ − f +

f kBT
Aeff

+ Γτ − βτ2

2Ceff
, (C38)

where we have omitted both terms independent of f and τ and higher-order corrections in τ 
and G. We have also introduced the effective bending stiffness

1
Aeff

= 1
A 1 + G2

4AC ≈ 1
A 1 + G2

2AC , (C39)

together with the proportionality constant

Γ = G2d2( f )
8A2C2ω0

. (C40)

Finally, we reach the following expression for the effective torsional stiffness

1
Ceff

= 1
C 1 + G2

AC d( f ) + 1
4A 1 + 3G2

4AC
kBT
f A , (C41)

corresponding to Eq. (16) of the main text, and the central result of this work.

Appendix D:: Intrinsic bending

The analysis above is based on description of the ground-state configuration of DNA relative 

to a straight molecular axis [Ω = 0 in Eq. (1)], i.e., for a molecular axis which is straight in 

the ground state. However, one can also choose coordinates where the ground state of the 

double helix is a helix while still respecting the symmetry of the elastic model. In fact, this is 

a rather natural outcome for most choices of DNA deformation which are based on 

molecular modeling, where coordinates are usually chosen relative to the orientations of the 

base pairs (e.g., using the vector connecting the junctions of the bases to the sugar-phosphate 

backbone as a reference), due to the groove asymmetry of DNA. Most relevant here, our 

previous determination of the elastic constants of oxDNA2 [15] analyzed deformations 

relative to a helical coordinate system. We now show how to transform the elastic constants 

in such a helical coordinate system to the straight-line coordinates relevant to our 

calculations.
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Intrinsic bending consistent with groove asymmetry, usually reported in the DNA literature 

as a nonzero value of the average roll [52], can be described using the following 

modification of Eq. (1)

dei
ds = Ω + l2e2 + l3e3 × ei, (D1)

where l2 and l3 correspond to the intrinsic bending and twisting densities, respectively, with 

l2 ≪ l3. A nonzero l1 is incompatible with the symmetry of the double helix.

Solving Eq. (D1) for Ω = 0, one finds that the ground-state configuration is a helix, with a 

linking number equal to Lk0 = ω0L/2π, where

ω0 = l2
2 + l3

2 . (D2)

Furthermore, from the solution of Eq. (D1), it follows that the rotation matrix transforming 

the helical ground state of Eq. (D1) to the straight one of Eq. (1) is

R =
1 0 0
0 l3/ω0 l2/ω0
0 −l2/ω0 l3/ω0

, (D3)

expressed on the body frame e1, e2, e3  of the former.

The total elastic free energy should not depend on the coordinate system used to describe it, 

so the energy in the helical coordinates (l2, l3 ≠ 0) should equal that found in non-helical 

coordinates (l2 = 0 and l3 = ω0) The deformations in the “straight” model are given by Ω’= 

RT Ω, where Ω are the deformation parameters of the helical model. From the condition that 

the integrand of Eq. (2) has to remain invariant under this transformation, one obtains the 

following relations mapping the elastic constants from the helical coordinates to the straight 

ones:

A1, s = A1, (D4)

A2, s = A2 −
2xG − x2 C − A2

1 + x2 , (D5)
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Cs = C +
2xG − x2 C − A2

1 + x2 , (D6)

Gs = G −
x C − A2 + 2x2G

1 + x2 , (D7)

where x ≡ l2/l3 ≪ 1, and where the subscript s indicates the “straight” frame result. The 

transformation (D3) mixes A2, G and C, changing their values, but conserves the symmetry 

of the elastic constant matrix. These formulae allow one to measure elastic constants using 

arbitrarily chosen helical reference coordinates, and then convert them to elastic constants 

suitable for using strains defined relative to a straight-line ground state.

For unconstrained (zero force and torque) oxDNA2 simulations, we measured reference 

helix parameters l2 =0.1349 nm−1 and l3 = 1.774 nm−1, giving ω0 = 1.779 nm−1 and x = 

0.076. Elastic constants reported in Ref. [15] (A1 = 85 nm, A2 = 39 nm, C = 105 nm, and G 
= 30 nm) were measured in reference to helical coordinates; for use in our analytical theory 

we transform them to the straight coordinates using (D4)–(D7) to obtain the oxDNA2 values 

in Table 1.
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FIG. 1. 
Bottom: The configuration of a twistable elastic rod can be mathematically described with 

an orthonormal set of vectors e1, e2, e3  assigned to every point s along the rod. The vector 

be e3 is the tangent to the curve, and describes the bending uctuations along the rod. Top: 

Cross-section of the rod, indicating how the remaining vectors e1 and e2 which describe the 

torsional state, may be chosen in the particular case of DNA.
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FIG. 2. 
Typical setup of a magnetic tweezers experiment. A DNA molecule is covalently bound to a 

substrate at one end and to a paramagnetic bead at the other end. An applied force f stretches 

the molecule, while an applied rotation θ twists it. The effective torsional stiffness Ceff is the 

proportionality constant connecting the applied rotation with the exerted torque [Eq. (4)]. 

Ceff increases with the force, hence it is higher in (a) than in (b).

Nomidis et al. Page 36

Phys Rev E. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
Comparison of Monte Carlo simulations of the triad model (points) with various analytical 

expressions of Ceff (lines) for A = 50 nm, C = 100 nm and (a) G = 0, (b) G = 20 nm] and (c) 

G = 40 nm. The data are plotted as a function of kBT / f A and correspond to f ≥ 0.25 pN. 

The numerical results are in excellent agreement with the analytical expressions, both in the 

perturbative and nonperturbative regimes (see text). Error bars of Monte Carlo data are 

smaller than symbol sizes.
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FIG. 4. 
Effect of bending anisotropy (A1 ≠ A2) on the effectorsional stiffness at a fixed force f = 1 

pN with (a) G = 0 and (b) G = 30 nm. Numerical data from Monte Carlo simulations of the 

triad model (points) are in good agreement with the analytical, nonperturbative predictions 

of Eq. (28) (solid lines). The vertical dashed lines indicate the isotropic case (ε = 0). A 

nonvanishing twist-bend coupling (lower panel) induces a ε → −ε symmetry breaking. 

Error of MonteCarlo data are smaller than symbol sizes.
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FIG. 5. 
Comparison of oxDNA simulations to Eq. (28). Solid and dashed lines show the 

nonperturbative result for Ceff for oxDNA1 and oxDNA2 values of Table I, respectively. 

Error bars for the oxDNA data are smaller than symbol sizes.
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FIG. 6. 
Comparison of the theory from Eq. (28) (lines) with Magnetic Tweezer experiments 

(symbols) for Ceff vs. force. The lines have the same parametrization of the solid and dashed 

lines of Fig. 5, which fit oxDNA and oxDNA2 data, respectively. Two sets of experiments 

are shown: the freely-orbiting magnetic tweezers [22] (circles) and magnetic torque tweezers 

[14] (triangles).
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TABLE I.

Values of the stiffness coefficients for oxDNA1 and oxDNA2 (expressed in nm), derived from MD data of Ref. 

[15]. oxDNA1, which has symmetric grooves, is characterized by a negligible twist-bend coupling constant, 

while G = 25 nm for oxDNA2, which has asymmetric grooves. The values of κb and κt are obtained from Eqs. 

(20) and (21), respectively, and were found to agree with direct computations of those quantities [15]. Note 

that the oxDNA2 stiffness coefficients have been transformed to coordinates compatible with this paper, see 

Appendix D).

A1 A2 C G κb κt

oxDNA1 84(14) 29(2) 118(1) <0.3 43 118

oxDNA2 85(10) 35(2) 109(1) 25(1) 44 92
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