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Abstract

This paper proposes a novel paradigm for building regression trees and ensemble learning in 

survival analysis. Generalizations of the CART and Random Forests algorithms for general loss 

functions, and in the latter case more general bootstrap procedures, are both introduced. These 

results, in combination with an extension of the theory of censoring unbiased transformations 

applicable to loss functions, underpin the development of two new classes of algorithms for 

constructing survival trees and survival forests: Censoring Unbiased Regression Trees and 

Censoring Unbiased Regression Ensembles. For a certain “doubly robust” censoring unbiased 

transformation of squared error loss, we further show how these new algorithms can be 

implemented using existing software (e.g., CART, random forests). Comparisons of these methods 

to existing ensemble procedures for predicting survival probabilities are provided in both 

simulated settings and through applications to four datasets. It is shown that these new methods 

either improve upon, or remain competitive with, existing implementations of random survival 

forests, conditional inference forests, and recursively imputed survival trees.

1. Introduction

Recursive partitioning methods for regression problems provide a useful nonparametric 

alternative to parametric and semiparametric methods. Methods based on the Classification 

and Regression Trees (CART; Breiman et al., 1984) algorithm are the most popular 

recursive partitioning procedures in use today. One of the most attractive features of CART 
is its focus on building a simple, interpretable tree-structured prediction model. In the 

original formulation of CART for regression, the resulting hierarchically structured predictor 

is determined by maximizing within-node homogeneity through loss minimization. 

However, a common criticism of CART is that the final predictor can suffer from instability, 

a phenomenon that usually occurs in settings where a small change in the loss can induce a 

large change in the form of the predictor (Breiman, 1996).
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Bagging is a general method for variance reduction that averages several prediction models 

derived from bootstrapping the original data. Bagging has been shown to work well with 

models with low bias and high variance (e.g., fully grown CART trees); see Breiman (1996). 

Breiman (2001) proposed the Random Forests (RF) algorithm as a way to further improve 

prediction accuracy, this being achieved by de-correlating the individual regression trees 

(i.e., built under squared error loss) using random feature selection at each split-point.

A survival tree (survival forest) is built when a suitably modified version of the CART (RF) 

algorithm is applied to data involving an outcome that can be right-censored. For building 

single trees, several variations of CART have been proposed and can be divided into two 

general categories: maximizing within-node homogeneity (e.g., Gordon and Olshen, 1985; 

Davis and Anderson, 1989; LeBlanc and Crowley, 1992; Molinaro et al., 2004; 

Steingrimsson et al., 2016) or maximizing between-node heterogeneity (e.g., Segal, 1988; 

Leblanc and Crowley, 1993). Ishwaran et al. (2008) proposed the Random Survival Forests 

(RSF) algorithm, modifying the RF algorithm for survival data through building the 

individual trees in the forest via maximizing the between-node log-rank statistic. Zhu and 

Kosorok (2012) proposed the recursively imputed survival trees (RIST) algorithm. Similarly 

to the RSF algorithm, RIST makes splitting decisions by maximizing a log-rank test statistic, 

but differs from RSF in several ways. In particular, in place of bagging, the RIST algorithm 

generates an ensemble of predictors by recursively imputing censored observations; second, 

it makes use of extremely randomized trees, replacing the search for optimal split points 

with a value that “is chosen fully at random” (i.e., splitting decisions are made on the basis 

of K randomly selected pairs of covariates and possible split points).

With the exception of Molinaro et al. (2004) and Steingrimsson et al. (2016), the afore-cited 

methods for survival trees and forests all use splitting rules specifically constructed to deal 

with the presence of censored outcome data. Such methods commonly share two features: (i) 

most use decision rules derived under a proportional hazards assumption; and, (ii) none 

reduce to a loss- based method that might ordinarily be used with “full data” (i.e., no 

censoring). For single trees, Molinaro et al. (2004) closed this gap between tree-based 

regression methods used for censored and uncensored data by using an inverse probability 

censoring weighted (IPCW) loss function that (i) reduces to the full data loss function that 

would be used by CART in the absence of right-censored outcome data and (ii) is an 

unbiased estimator of the corresponding risk. Based on similar principles, Hothorn et al. 

(2006a) proposed a RF-type algorithm. Steingrimsson et al. (2016) proposed doubly robust 

survival trees, generalizing the methods of Molinaro et al. (2004) by using augmentation to 

construct doubly robust loss functions that use more of the available information, thereby 

improving the efficiency and stability of the tree building process. However, they did not 

generalize these ideas to the problem of constructing an appropriate ensemble procedure.

The focus of this paper is on developing a new class of ensemble algorithms for building 

survival forests when outcomes can be censored (i.e., right censored). Section 2 first lays out 

the CART algorithm of Breiman et al. (1984) in the case where a general loss function is 

used for the purposes of making splitting and pruning decisions. We then propose a novel 

and general class of ensemble algorithms that extends the RF algorithm for use with an 

arbitrary loss function and permits the use of more general weighted bootstrap procedures, 
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such as the exchangeably weighted bootstrap (Prmstgaard and Wellner, 1993). Both of these 

algorithms are initially developed in the full data setting. Section 3 then introduces the 

framework needed for extending these two classes of algorithms for censored outcomes, 

respectively leading to the development of the Censoring Unbiased Regression Trees 

(CURT) and Censoring Unbiased Regression Ensembles (CURE) algorithms. These 

developments rely directly on an extension of the theory of censoring unbiased 

transformations (CUTs; e.g., Fan and Gijbels, 1996) that can be applied to loss functions. 

CUTs have long been of importance to survival analysis; notable examples include Buckley 

and James (1979), Koul et al. (1981), Leurgans (1987), Fan and Gijbels (1994), and Rubin 

and van der Laan (2007). The use of a CUT for a given full data loss function ensures that 

both CURT and CURE directly generalize an algorithm that would ordinarily be used if 

censoring were absent. The IPCW and the “doubly robust” survival tree methods 

respectively considered in Molinaro et al. (2004) and Steingrimsson et al. (2016) both have 

this property, and each is a special case of the class of CURT algorithms introduced here. 

CURE subsequently extends these methods to building ensemble predictors. Section 4 

provides a detailed development of CURT and CURE in the special case of squared error 

loss and shows, in particular, how response imputation can be used to implement each one 

using existing software for CART and RF (i.e., for uncensored outcomes). Simulation 

studies and applications to several datasets are respectively presented in Section 5 and 6. 

Section 7 contains a discussion and some general remarks on topics for future research. A 

Supplementary Web Appendix contains proofs, additional developments and further results.

2. Regression Trees and Ensembles for General Loss Functions

Regression procedures typically rely on the specification of a loss function (or related 

objective function) that quantifies performance. This includes, but is not limited to, 

algorithms like CART and RF, where the loss function plays a key role in all aspects of the 

model fitting process. In this section, we first review the basics of the CART algorithm, 

developing it for use with a general loss function in Section 2.1. Section 2.2 then introduces 

a new related class of ensemble learning algorithms that contains the algorithms of Breiman 

(1996) and Breiman (2001) for squared error loss as special cases. The algorithms in these 

two subsections are developed without reference to censoring or survival data.

As shown in Breiman et al. (1984), the use of a loss function in building a regression tree 

implies focusing on a prediction model that minimizes a corresponding measure of risk (i.e., 

expected loss). This correspondence between loss and risk will be especially important in 

the developments of Section 3, where it is shown how the algorithms of Sections 2.1 and 2.2 

can be extended to censored outcomes through a generalization of the theory of CUTs.

Throughout, we will let (Z, W’)’ represent a vector of data on a given subject, where the 

outcome Z is scalar-valued with support on some subset of the real line R, W ∈ 𝒮 ⊂ Rp is a 

bounded p-dimensional vector of covariates, and (Z, W’)’ has some non-degenerate joint 

probability distribution. Define ℱ = {(Zi, W i′)′, i = 1 … n} to be the corresponding data for an 

i.i.d. sample of data from this joint distribution.
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2.1. Regression Tree Algorithms for General Loss Functions

Let W = (W(1),..., W(p))’, where each W(j),j = 1,... ,p, is either continuous or ordinal; a 

modification of the methods to be described below is needed for any categorical covariate 

having at least 3 unordered levels. Define ψ: 𝒮 R to be a real-valued function of W, 

where ψ ∈ Ψ. A loss function L(Z,ψ(W)) defines a nonnegative measure of the distance 

between Z and its prediction ψ(Ψ’). A popular choice for continuous Z is the squared error 

loss L2(Z,ψ(W)) = (Z — ψ(W))2; the absolute deviation loss L1_(Z ψ(W)) = |Z — ψ(W)| is 

another possibility. In the case where Z is binary or a count, L(Z,ψ(W)) might correspond to 

the negative loglikelihood under a generalized linear model. When Z is binary, squared error 

loss is also a possible choice (e.g., Brier, 1950).

Suppose that ℱ is observed. In the case of a regression tree, the relevant prediction function 

ψ(·) can be viewed as a piecewise constant function on 𝒮. Specifically, we may write 

ψ(w) = ∑k = 1
K βkI{w ∈ 𝒩k} for any w ∈ 𝒮, where 𝒩1, … , 𝒩K form some finite partition of 𝒮. 

The CART algorithm of Breiman et al. (1984) is one of the most well-known statistical 

learning methods for estimating ψ(·) in this context. This predictive modeling method 

employs recursive binary partitioning, cost complexity pruning and cross validation in 

combination with squared error loss to estimate ψ(·), and in particular, adaptively 

determines {K, 𝒩1, … , 𝒩K}. The corresponding partition structure may be graphically 

represented as a hierarchically-structured tree, with each branch being formed on the basis 

of a binary split for some W(j).

In developing CART for regression, Breiman et al. (1984) focused on squared error loss as a 

homogeneity measure for a continuous response Z. However, as becomes quickly evident, 

the basic CART algorithm is agnostic to both the choice of loss function and continuity of Z. 

Algorithm 1 below provides pseudocode that summarizes the CART modeling process in the 

case of a general univariate response Z and a specified loss function L(Z,ψ(W)). To describe 

this algorithm, the notions of cost complexity and cross validation and their respective 

dependence on the loss function need to be formalized. Specifically, for a given tree ψ, 

define the cost complexity as 𝒦α(ψ) = ∑i = 1
n L(Zi, ψ(W i)) + α |ψ |, where α is a tuning 

parameter that penalizes the estimated loss by the size of the tree (i.e., by |ψ|, the number of 

terminal nodes). To describe cross-validation using a general loss function, assume that ℱ is 

split into V mutually exclusive subsets D1, ..., DV. For simplicity, suppose all of these 

subsets also contain the same number of observations and let ρ be the proportion of ℱ that 

falls into each subset D1,..., DV. For a given υ ∈ {1,..., V} let Si,υ be the indicator if 

observation i is in the subset Dυ. Let ψ trv
 be any tree built using only the data in the vth 

training set ℱ\Dv and define the cross-validated estimator of risk for ψ trv
 (e.g., Molinaro et 

al., 2004) as θ = (nρV)−1∑v = 1
V ∑i = 1

n I(Si, v = 1)L(Zi, ψ trv
(W i)), where ψ trv

(W i), (Zi, W i′)′ ∈ Dv

are the predictions obtained from the tree ψ trv
 for subjects in Dυ.

STEINGRIMSSON et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

CART Algorithm For General Loss Functions

1: Generate a maximal tree ψmax

    (a) Define the root node of the tree ψmax as consisting of all observations in ℱ.

    (b) In the current node, identify all possible binary splits of the form W(j) ≤c versus W(j) > c for j = 1,...,p.

    (c) Considering all such possible splits in (b), select the (covariate, split) combination that leads to the largest 
reduction in ∑i∈node L(Ziψ(Wi)) (i.e., the loss in the current, or parent, node) and divide it into two mutually exclusive 
subsets (i.e., daughter nodes).

    (d) Check predetermined stopping criterion; if met, exit, otherwise apply Step 1.(b)-(c) to subset of observations 
falling into each daughter node that hasn’t met stopping criterion.

2: Using cost-complexity pruning, generate a sequence of candidate trees from the (unpruned) tree ψmax. Specifically, 

setting ψ = ψmax in 𝒦α(ψ), let a vary from 0 to ∞ and define ψ (α)
 as the corresponding subtree of ψmax that 

minimizes 𝒦α(ψ). This generates a finite sequence of optimal subtrees ψ
(α1)

, … , ψ
(αl)

, each of which represents a 

candidate for the best tree.

3: Use cross-validation to select the “best” tree from ψ
(α1)

, … , ψ
(αl)

.

    (a) Re-run Step 1 using only the data in training set ℱ\Dv, υ = 1,..., V.

    (b) For each of the V maximal trees obtained in Step 3.(a), employ cost complexity pruning with α1, ..., αl from Step 

2 to find the subtrees ψ trv

(α𝓁)
, 𝓁 = 1 … l.

    (c) For 𝓁 = 1 … l, calculate θ  for the tree ψ trv

(α𝓁)
 and denote the value as θ (𝓁).

    (d) Select the final tree (i.e., best candidate tree) from ψmax as the subtree ψ
(α𝓁)

, where 𝓁 is the value of 𝓁 that 

minimizes θ (𝓁), 𝓁 ∈ {1, … , l}.

Algorithm 1 with L(Z,ψ(W)) = L2(Z,ψ(W)), hereafter referred to as CART-L2, corresponds 

to that developed in detail in Breiman et al. (1984).

2.2 Regression Ensemble Algorithms for General Loss Functions

Prediction accuracy is usually improved by averaging multiple bootstrapped trees. Breiman 

(1996) proposed bagging, which averages fully grown CART–L2 trees (i.e., see Step 1 of 

Algorithm 1) derived from many independent nonparametric bootstrap samples. These 

boostrapped trees, though conditionally independent of each other, are marginally correlated. 

Breiman (2001) proposed to reduce this correlation by additionally making use of random 

feature selection; that is, the original RF algorithm using squared error loss modifies the tree 

growing procedure so that only mtry ≤ p randomly selected covariates are considered for 

splitting at any given stage. The use of bootstrapping and/or random feature selection does 

not modify the loss-based decision making process that lies at the core of the RF algorithm. 

Therefore, it is possible to extend the RF algorithm to the case of more general bootstrap 

schemes, such as the exchangeably weighted bootstrap; see Prmstgaard and Wellner (1993). 

An extensive literature search revealed no examples of RF algorithms that use bootstrap 

procedures other than the nonparametric bootstrap.
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To develop this extension, consider a given full data loss L(Z,ψ(W)) for use with data ℱ and 

define ω1,... ,ωn to be a set of exchangeable, non-negative random variables such that E[ωi] 

= 1 and Var(ωi) = σ2 < ∞ for i = 1,…,n, ∑i = 1
n ωi = n, and ω1,... ,ωη are completely 

independent of ℱ. Define the weighted loss function

Lω(ℱ, ψ) = ∑
i = 1

n
ωiL(Zi, ψ(W i)) . (1)

The loss (1) evidently reduces to the empirical loss ∑i = 1
n L(Zi, ψ(W i)) if P(ω1 = · · · = ωn = 1) 

= 1; more generally, E[Lω(ℱ, ψ) |ℱ] = Lω(ℱ, ψ), implying that the weighted and empirical 

loss functions have the same marginal expectation. Replacing ∑i ∈ node L(Zi, ψ(W i)) in Step 1.

(c) of Algorithm 1 with ∑i ∈ nodeωiL(Zi, ψ(W i)) (i.e., its counterpart under (1)) leads to a 

general class of case-weighted CART algorithms that can be used to build ensemble 

predictors. Algorithm 2 below summarizes this procedure for a general set of bootstrap 

weights. The base learners used in Algorithm 2 are modified versions of fully grown CART 
trees that incorporate random feature selection.

The use of nonparametric bootstrap sampling (i.e., resampling observations with 

replacement) is equivalent to the multinomial sampling scheme (ω1,..., ωη) ~ Multinomial(n, 

(n−1,..., n−1)), with positive weights being placed on approximately 63% of the observations 

in any given bootstrap sample. In this case, Algorithm 2 with L(Zi, ψ(Wi)) = L2(Zi,ψ(Wi)), i 
= 1,..., n is just the RF algorithm of Breiman (2001) (hereafter, RF-L2); the bagging 

procedure of Breiman (1996) is obtained when mtry = p. The extension of these algorithms 

to the exchangeable bootstrap avoids generating additional ties in the data when P(∪i{ωi = 

0}) = 0; each observation then appears in every bootstrap sample (i.e., for every set of 

bootstrap weights) with a strictly positive weight.

Algorithm 2

Exchangeably Weighted Regression Ensembles

1: Generate M independent sets of exchangeable bootstrap weights ω1,... ,ωn.

2: For each set of bootstrap weights, build a fully grown CART tree using Step 1 of Algorithm 1 with the loss function 
∑i ∈ nodeωiL(Zi, ψ(W i)) where, at each stage of splitting, mtry covariates are randomly selected from the p 

available covariates for candidate splits.

3: For each tree in the forest, calculate an estimator at each terminal node and average over the results obtained for the 
M sets of bootstrap weights to get the final ensemble predictor.

3. Censoring Unbiased Regression Trees and Ensembles

When ℱ is observed, the use of a given loss function in Algorithms 1 or 2 results in a 

prediction model that intends to minimize the corresponding risk (i.e., expected loss). 

However, when outcomes can be censored, ℱ is not fully observed and the desired loss 

function must be modified in order to preserve one’s focus on the same measure of risk.
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As noted in the Introduction, several contributions to the problem of building regression 

trees for right-censored outcomes that focus on maximizing within-node homogeneity have 

been made over the past 30 years. Each one of these contributions can be viewed as a 

modified implementation of Algorithm 1, differing mainly in the type of loss function. In 

almost all cases, the loss function used has been adapted from methods specifically 

developed for right-censored outcomes. Related generalizations of RF have also been 

proposed for censored outcomes. These too can be viewed as a modified version of 

Algorithm 2, where unpruned versions of the censoring-modified CART trees are combined 

with nonparametric bootstrapping to construct ensemble predictors.

The goal of this section is to develop a framework that allows us to directly generalize 

Algorithms 1 and 2 for censored outcomes. To accomplish these extensions, we first extend 

the existing theory of censoring unbiased transformations for right-censored outcomes in a 

substantial way; we then show how this theory can be applied to construct loss functions for 

censored data that have several desirable properties. These developments allow us to directly 

generalize Algorithms 1 and 2 to the case of censored data, resulting in two new classes of 

statistical learning methods, respectively referred to as the CURT and CURE algorithms.

3.1 Full and Observed Data Structures

Our interest lies in modeling time-to-event (i.e., survival time) data. Let T > 0 denote the 

survival time of interest. In the notation of Section 2, let Z = h(T) where T is continuous and 

h(·) is a specified continuous, monotone increasing function (e.g., h(u) = u or h(u) = logu) 

that maps R+ to R* ⊆ R. Suppose (T, W’)’ have a joint distribution, where S0(t\w) = P(T > t
\W = w) denotes the conditional survivor function for T given W = w and 

ϑS0
= inf{t:S0(t |w) = 0} is assumed to be independent of w ∈ 𝒮. Then ℱ represents an i.i.d. 

sample of survival data in which the outcome of interest is the h—transformed survival time 

and all survival times are completely observed.

In follow-up studies, T may not be fully observed, and most commonly, may be censored as 

a result of loss to follow-up. Let the observed data on a given subject be denoted by 

O = (Z, Δ, W′)′, where Z = h(T), T = min(T , C) for a continuous censoring time C,and Δ = I(T≤ 

C) indicates whether T or C is observed. It is assumed that C is conditionally independent of 

T given W. Let G0(t\w) = P(C > t\W = w) be the conditional survivor function for C given W 
= w, where ϑG0

= inf{t : G0(t |w) = 0} is assumed to be independent of w ∈ 𝒮. Finally, let 

𝒪 = {(Zi, Δi, W i′)′, i = 1 … n} denote the censored data observed on an i.i.d. sample. In this 

case, ℱ represents the full data that one would have observed had no censoring occurred.

3.2 Censoring Unbiased Transformations: Review and Generalization

Let Y be a scalar function of (Z, W’)’ (i.e., the full data) and let Y*(O) be a function of 

(Z, Δ, W′)′ (i.e., the observed data). Then, we define Y*(O) to be a censoring unbiased 

transformation (CUT) for Y if E[Y*(O)|W = w] = E[Y|W = w] for every w ∈ 𝒮. The 

transformation
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Y * (O) = ΔT + (1 − Δ)E[T |T > t, W = w] (2)

is one of the earliest examples of a CUT (Buckley and James, 1979). Several other examples 

of CUTs in the case where Y = h(T) = Z are described in Fan and Gijbels (1996, Sec. 5.2.2). 

Motivated by the need to correctly specify the conditional expectation function in (2), Rubin 

and van der Laan (2007) later proposed a “doubly robust” version of the Buckley-James 

transformation (2). Below, we develop a substantial generalization of the doubly robust CUT 

introduced Rubin and van der Laan (2007) and establish a new result on the variance of this 

transformation function.

Let ϕ(r, w), (r, w) ∈ R * × 𝒮 be any known scalar function that is continuous for r ∈ R* except 

possibly at a finite number of points. Assume |ϕ(r,w)| <∞ TO whenever max{|r|, ||w||} < ∞, 

and suppose that E[ϕ(Ζ,W )| W = w] exists for each w ∈ 𝒮. In addition, let G(t |w) and S (t |

w) be two functions on R+ × 𝒮. For every w ∈ 𝒮, we assume throughout this section that 

G(0|w) = S(0|w) = 1 and that G(u|w) ≥ 0 and S(u|w) ≥ 0 are continuous, non-increasing 

functions for u ≥ 0 (e.g., proper survivor functions). Define 

ΛG(t |w) = − ∫ 0
t [G(u |w)]−1dG(u |w); note that ΛG(t\w) is just the cumulative hazard function 

corresponding to G(·|·) when G(·|·) is a proper survivor function. Finally, define 

mϕ(t, w; S) = [S(t |w)]−1 ∫ t
∞ϕ(h(u), w)dF(u |w) where F(u|w) = 1 — S(u|w) for any u ≥ 0; note 

that mϕ(t,w; S) is continuous as a function of t. When S(·|·) is a proper survivor function and 

t is such that mp(t, w; S) exists, mϕ(t, w; S) reduces to ES[ϕ(Ζ, W)|T > t, W = w], calculated 

assuming S(·|·) is the conditional survivor function for T.

With the above in place, consider the transformation

Yd*(O; G, S) = Δϕ(Z, W)
G(T |W) + 1 − Δ

G(T |W)mϕ(T , W; S) − ∫
0

T mϕ(u, W; S)
G(u |W) dΛG(u |W) . (3)

Suppose first that G(t|w) = 1 for all (t,w) ∈ R+ × 𝒮. Then, (3) reduces to

Yb*(O; S) = Δϕ(Z, W) + (1 − Δ)mϕ(T , W; S); (4)

setting ϕ(h(u),w) = u in (4) now gives (2). Hence, (3) with G(t|w) = 1 for all (t,w) ∈ R+ × 𝒮
generates a class of Buckley-James-type transformations that generalizes (2), and is 

necessarily a CUT when ϕ(h(u), w) = u and S(u|w) = S0(u|w) for (u,w) ∈ R+ × 𝒮. Now, 

suppose instead that no restrictions on G(·|·) or S(·|·) beyond those noted earlier are imposed. 

Then, setting ϕ(h(u), w) = u (i.e., ϕ(Z, W) = T) in (3) once again, we obtain the doubly robust 

CUT first studied in Rubin and van der Laan (2007, Eqn. 7). “Double robustness” in this 

specific context refers to the fact that (3) is a CUT for T if either S(t|w) = S0(t|w) for all (t,w) 

∈ R+ × 𝒮 or G(t|w) = G0(t|w) for all (t,w) ∈ R+ × 𝒮, but not necessarily both.
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The transformation (3) generalizes that in Rubin and van der Laan (2007, Eqn. 7) to a much 

wider class of functions. Two examples of particular relevance to the developments of this 

paper include ϕ(h(u),w) = h(u) and ϕ(h(u),w) = L(h(u), ψ(w)), where L(h(u),ψ(w)) is a 

specified loss function that measures the distance between h(u) and some corresponding 

prediction ψ(w) (e.g., L(h(u),ψ(w)) = (h(u) — ψ(w))2). Under certain conditions, Theorem 

3.1 below shows that the transformation (3) yields a CUT for Y = ϕ(Ζ, W) if either S(t|w) = 

S0(t|w) or G(t|w) = Go(t|w) for all (t,w) ∈ R+ × 𝒮. Moreover, if both of these functions are 

correctly specified, then it shows that Yd*(O; G0, S0) minimizes the variance among all 

transformations of the form Yd*(O; G0, S).

Theorem 3.1. Let φ(Λ,(·), ·), S(·|·) and G(·|·) be functions on (t,w) ∈ R+ × 𝒮 satisfying the 
regularity conditions given in Appendix S.5. Then, the transformations Yd*(O; G, S0), 

Yd*(O; G0, S) and Yd*(O; G0, S0) are each CUTs for Y; furthermore, 

Var Yd*(O; G0, S) W ≥ Var Yd*(O; G0, S0) W .

Theorem 3.1 is proved in Section S.5 of the Supplementary Web Appendix. This result 

shows Var Yd*(O; G0, S) W ≥ Var Yd*(O; G0, S0) W  for any suitable proper survivor function. 

One may also ask whether Var Yd*(O; G, S0) W ≥ Var Yd*(O; G0, S0) W  holds for all suitable 

choices of G(·|·). However, a general result in this direction is not available even for the 

interesting case where G(·|·) = 1 (i.e., for (4)). The challenge in establishling such a 

domination result reflects more general open questions surrounding the development of 

efficiency properties for doubly robust estimators under misspecification of the missing data 

mechanism; see Rotnitzky and Vansteelandt (2014, Sec. 9.6) for further discussion. 

However, for the specific case of G(·|·) = 1, a different type of optimality result can be 

established. In particular, provided mφ(t, w; S) exists with S(t|w) = S0(t|w), (t,w) ∈ R+ × 𝒮, 

it can be shown that Yb*(O; S0) is the best predictor of Y in the sense that it minimizes 

E[(Y*(O) — Y)2|W = w] among all possible CUTs Y*(O) (e.g., Fan and Gijbels, 1996).

The transformation (3) has other notable properties. First, it reduces to Δϕ(Z, W /G T W  if 

mφ(t,w; S) = 0 for all (t,w) ∈ R+ × 𝒮; this IPCW estimator is a CUT when G(t|w) = G0(t|w) 

for all (t, w) £ R+ x 𝒮. Second, it reduces to Y = φ(Ζ, W) regardless of £(·|·) when Δ = 1 and 

G0(t|W) = 1 for t ≤ T (i.e., with probability one); that is, when censoring cannot occur on 

0, T .

3.3 Using CUTs to Derive Unbiased Estimates of Risk with Censored Data

Let L(Z,ψ(W)) denote a given loss function for the full data (Z,W); the corresponding risk is 

then ℛ(ψ) = E L Z, ψ W . A ψ ∈ Ψ that minimizes ℛ(ψ), say ψ0, defines a target 

parameter of interest that is ideally uniquely specified. For example, the risk under the loss 

function L2(Z,ψ(W)) is ℛ(ψ) = E Z − ψ W 2  and is minimized at the target parameter 

ψ0(W) = E[Z|W]. Thus, in the context of Section 3.1, selecting h(s) = log s yields Z = logT 
and results in a (full data) L2 loss function whose corresponding risk is minimized at ψ0(W) 

= E[log T|W]. Alternatively, for a given t > 0, selecting h(s) = I(s > t) yields Z = I(T > t). The 
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resulting full data L2, or Brier, loss function leads to a risk function that is instead minimized 

at ψ0t(W) = S0(t|W).

In the case where Z can be censored, it is not generally true that E L Z, ψ W = ℛ(ψ) and 

hence one cannot simply use L Z, ψ W  in place of L(Z,ψ(W)). However, as shown in 

Molinaro et al. (2004), it is still possible to construct an observed data loss function that has 

the same risk ℛ(ψ). Specifically, assuming ℛ(ψ) exists and that P(G(T|W) > ϵ) = 1 for some 

ϵ > 0, the inverse probability of censoring weighted (IPCW) loss function

Lipcw(O, ψ ; G) = ΔL(Z, ψ(W))
G(T |W) = ΔL(Z, ψ(W))

G(T |W) (5)

satisfies E[Lipcw(O,ψ;G0)] = E[L(Z,ψ(W))] = ℛ(ψ). That is, Lipcw(O,ψ; G0) is an unbiased 

estimator of the desired risk ℛ(ψ) when G(t|w) = G0(t|w) for all (t,w) ∈ R+ × 𝒮. In fact, 

given any ψ(·), E[Lipcw(Ο,ψ; G0)|W] = E[L(Z,ψ(W))|W] under the same regularity 

conditions. Consequently, Lipcw (Ο,ψ; G0) is also a CUT for θ(Z,W) = L(Z,”(W)); see 

Section 3.2. By applying the theory for augmented estimators in missing data problems as 

developed in Tsiatis (2007, Ch. 9 & 10), Steingrimsson et al. (2016) derived a doubly robust 

estimator for ℛ(ψ). Specifically, the observed data estimator used in Steingrimsson et al. 

(2016) is given by

Ld(O, ψ ; G, S) = ΔL(Z, ψ(W))
G(T |W) = 1 − Δ

G(T |W)mL(T , W; S) − ∫
0

T mL(u, W; S)
G(u |W) dΛG(u |W), (6)

where mL (u, w; S) = ES [L(h(u), ψ(w))|T > u,W = w] for any u > 0 and w ∈ 𝒮 and the 

expectation is calculated assuming T|W = w has survivor function S(-|w). Under certain 

regularity conditions (e.g., boundedness), the double robustness property of (6) as an 

augmented estimator implies that the marginal expectation of (6) is ℛ(ψ) if either G(·|·) = 

Go(·|·) or S(·|·) = So(·|·). For a fixed ψ(·), (6) can evidently be obtained directly from (3) 

upon setting φ(Ζ, W) = L(Z,ψ(W)), where mL(⋅,w;S) depends on ψ(·). Under regularity 

conditions that permit the application of Theorem 3.1, the observed data estimator (6) 

satisfies E[Ld(O, ψ; G0,S0)|W] = E[Ld(O,ψ; G0,S)|W] = E[Ld(Oψ; G,S0)|W] = E[L(Z, 

■0(W))|W]. Hence, (6) is a doubly robust CUT for L(Zψ(W)) that estimates ℛ(ψ). 
Following Section 3.2, the observed data loss function

Lb(O, ψ ; S) = ΔL(Z, ψ(W)) + (1 − Δ)mL(T , W; S) (7)

is also obtained as a special case of (6) upon setting G(t|w) = 1 for all (t, w) ∈ R+ × 𝒮. This 

observed data estimator, hereafter referred to as the Buckley-James loss function, is a CUT 

of the form (4) for L(Z,ψ(W)) when S(t|w) = S0(t|w) for all (t,w) ∈ R+ × 𝒮.
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By Theorem 3.1, for any fixed ψ(·) and under sufficient regularity conditions, Ld(O, ψ; G0, 

S0) has a smaller conditional variance for estimating ℛ ψ  in comparison to Lipcw(O,ψ; G0). 

Estimators derived under Ld(O, ψ; G0,S0) are expected to be more efficient than those 

derived under Lipcw(O, ψ; G0). However, it does not seem possible to determine in general 

whether the conditional variance of Lb(O, ψ; S0) exceeds that of Ld(O, ψ; G0, S0); hence, 

estimators derived under these two loss functions can be expected to exhibit different 

efficiencies in different settings.

3.4 The CURT and CURE Algorithms

The developments of Sections 3.2 and 3.3, combined with Algorithms 1 or 2, can be used to 

devise new statistical learning methods for censored outcomes. An extension of Algorithm 1 

to the case where Z is censored is immediately obtained by replacing any desired full data 

loss L(Z,ψ(W)) with an observed data estimator for ℛ ψ , where ψ(w) = ∑k = 1
K βkI w ∈ 𝒩k

is a piecewise constant function on 𝒮. For example, one can replace L(Z,ψ(W)) with either 

(5) or (6); the Buckley-James CUT Lb(O,ψ;S) could instead be used in place of 

Ld(O,ψ;G,S). Each generates a new example of a Censoring Unbiased Regression Tree 

(CURT) algorithm, the desired (but unobservable) full data loss function used in Algorithm 

1 being replaced with a corresponding CUT of the form (6) (i.e., see Section 3.3). For a 

specified general full data loss function, any CURT algorithm can be implemented using the 

customization capabilities provided through rpart (Therneau et al., 2014).

Algorithm 2 extends Algorithm 1 to the construction of ensemble predictors. One can 

therefore extend the CURT algorithm by replacing the full data loss function in Algorithm 2 

with an estimated CUT of the form (6), each time generating a new example of a Censoring 

Unbiased Regression Ensemble (CURE) algorithm. However, unlike CURT, the 

implementation of CURE for a general observed data loss function that employs random 

feature selection is not as straightforward because the prevailing RF software packages lack 

the customization capabilities of rpart. In the important special case L(Z,ψ(W)) = 

L2(Z,ψ(W)), existing software for CART-L2 and RF-L2 can be used in combination with 

response imputation to implement both CURT and CURE using (6) for making decisions; 

detailed developments are provided in the next section.

Hereafter, CURT and CURE will respectively be used to describe any implementation of 

Algorithms 1 or 2 that employ a CUT of the form (6) for a given full data loss L(Z,ψ(W)). 

The restriction to CUTs of the form (6) ensures that the resulting CURT and CURE 
algorithms reduce to their corresponding full data versions when censoring is absent. As 

written, (6) depends on the functions G(·|·) and S(·|·). In practice, both must typically be 

estimated from the observed data 𝒪, and the indicated algorithms will employ estimated 

CUTs. We discuss these algorithms further in Section 4. The double robustness property 

suggests that an estimated CUT for the loss function should behave as a CUT in large 

samples if at least one of the plug-in estimators G · ·  and/or S · ·  are respectively 

consistent for G0(·|·) and S0(·|·). Theorem 3.1 further implies that a doubly robust CUT for 

the full data loss calculated for one observation will reduce variance compared to the 

corresponding IPCW CUT for the same full data loss. However, the implication for variance 

reduction using estimated CUTs is less clear cut. Theorem 3.1 is developed for a 

STEINGRIMSSON et al. Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transformation calculated at the level of an individual observation (e.g., as opposed to an 

average) and it is challenging to characterize the effects on efficiency when substituting in 

an arbitrary consistent estimator G · ·  and/or S · ·  into either (3) or (6).

4 Implementing CURT and CURE With Squared Error Loss

Specific examples of both CURT and CURE that employ a CUT of the form (6) for the full 

data loss function L(Z,ψ(W)) = L2(Z,ψ(W)) already exist in the literature. For example, as 

suggested in Molinaro et al. (2004), one can replace the loss function L2(Z,ψ(W)) with 

L2,ipcw(Ο,ψ;Ĝ) throughout Algorithm 1; here, L2,ipcw(Ο,ψ;Ĝ) is (5), calculated by replacing 

L(Z,ψ(W)) with L2(Z,ψ(W)) for Z = logT and substituting Ĝ(·|·), an estimator for G0(·|·), in 

for G(·|·). This algorithm is easily implemented via the rpart package using the case weights 

Δi/G T i W i , i = 1,... ,n. The doubly robust survival trees algorithm of Steingrimsson et al. 

(2016) is another example of CURT. In this algorithm, one can replace the general full data 

loss function L(Z, ψ(W)) throughout Algorithm 1 with Ld(O, ψ; Ĝ, Ŝ) in (6); here, 

estimators Ĝ(·|·) and Ŝ(·|·) for both G0(·|·) and S0(·|·) respectively replace G(·|·) and S(·|·) in 

(6). Implementation for a specified full data loss L(Z, ψ(W)) is again possible using rpart, 

though requires that one takes advantage of its ability to incorporate customized decision 

and evaluation functions (Therneau et al., 2014). Similarly to Molinaro et al. (2004), 

Steingrimsson et al. (2016) implemented this algorithm for L(Z,(ψ(W)) = L2(Z,ψ(W)) for Z 
= log T. Consistent with expectations, their extensive simulation study demonstrates 

important performance gains compared to the IPCW loss L2,ipcw(O,ψ; Ĝ), despite the fact 

that (possibly inconsistent) estimates for both G0(·|·) and S0(·|·) are used. We refer the reader 

to Steingrimsson et al. (2016) for additional details on this particular implementation of 

CURT, including methods used to construct the estimators Ĝ(·|·) and S(·|·). Although not 

specifically considered in the literature, the Buckley-James CUT Lb(O,ψ;Ŝ) could be 

similarly implemented.

For the case of L2, ipcw(O, ψ ; G), Hothorn et al. (2006a, Sec. 3.1, p. 359) proposed an example 

of CURE that used a multinomial bootstrap with sampling weights wi/∑ j = 1
n w j, i = 1,...,n 

where wi = Δi[G(T i |W i)]
−1. This ensemble algorithm resamples only uncensored 

observations and uses fully grown CART trees combined with random feature selection to 

estimate E[Z|W]. Implementation of this algorithm is possible using rfsrc (Ishwaran and 

Kogalur, 2016) because this R function accepts general multinomial sampling weights.

Below, we introduce an easy way to implement both CURT and CURE when using a CUT 

of the form (6) for the full data loss function L(Z, ψ(W)) = L2(Z, ψ(W)). In particular, 

Section 4.1 shows how response imputation can be used to implement this special case of 

CURT, hereafter referred to as CURT-L2, given some implementation of CART-L2 (e.g., 

rpart). These results allow, for example, the methods of Steingrimsson et al. (2016) to 

instead be implemented using response imputation, resulting in an algorithm that is both 

easy to implement and fast. Importantly, these developments also provide the necessary 

framework for implementing the corresponding CURE-L2 algorithm using any 

implementation of RF-L2,such as the R functions randomForest(Liaw and Wiener, 2002) 
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and rfsrc (Ishwaran and Kogalur, 2016). These extensions are summarized in Section 4.2, 

where it is further shown how to generalize CURE-L2 to more general weighted bootstrap 

schemes provided that one has available an implementation of RF that incorporates case 

weights directly into the loss function calculation. For reasons that will be explained more 

fully in the next section, versions of these algorithms that use the loss function (5) are not 

covered by these results. However, in general, such algorithms are easily implemented using 

other approaches.

CART–L2 and RF–L2 respectively denote specific implementations of Algorithms 1 or 2 

because the loss function and bootstrapping scheme are both fully specified. The CURT–L2 

and CURE–L2 algorithms considered here specify the form of the CUT to be (6). Specific 

implementations of CURT–L2 and CURE–L2 are obtained by specifying/estimating both 

G(·|·) and S(·|·) and, in the case of CURE–L2, the particular bootstrap scheme. The results to 

be developed in the next two sections assume both G(·|·) and S(·|·) are given; thus, when 

estimated from O, it is explicitly assumed that such calculations are done outside of the 

CURT and CURE algorithms (i.e., these estimates are not updated dynamically).

4.1 Implementing a CURT-L2 Algorithm using Response Imputation

Define L2,d(O, ψ;G,S) as (6) calculated using the full data loss L(Z,ψ(W)) = L2(Z,ψ(W)). 

In this section, we establish how an existing implementation of CART-L2 can be used to 

implement a CURT-L2 algorithm, that is, Algorithm 1 implemented using L2,d(O, ψ; G, S) 

in place of L2(Z,ψ(W)). As noted previously, the algorithm developed in Steingrimsson et 

al. (2016) for squared error loss is an important example; a second important example is 

obtained using the Buckley-James loss Lb(O, ψ ; S), this immediately being seen upon 

recalling that Lb(O,ψ; S) = Ld(Oψ;1,S) for any choice of S(·|·) satisfying the conditions of 

Section 3.2. Below, we demonstrate the desired equivalence for L2,d(O, ψ; G, S) for general 

choices of G(·|·) and S(·|·). For reasons to be explained later, the results to be developed 

below do not extend to L2,ipcw(O,ψ; G), despite the fact that it can also be recovered as a 

special case of L2,d(Oi, ψ; G, S).

The CURT-L2, d algorithm substitutes L2,d (Oi, ψ; G, S) in for L2(Zi, ψ(Wi)), i = 1,…, n 
throughout Algorithm 1. As shown below, this same algorithm can also be implemented 

using the original CART-L2 algorithm by employing a related CUT of the form (3) for the 

response variable. We begin by establishing an equivalent representation for L2,d(Oi, ψ; 

G,S). Let

Aki(G) =
ΔiZi

k

G(Ti |Wi)
, Bki(G, S) =

(1 − Δi)mk(Ti, Wi; S)
G(Ti |Wi)

, Cki(G, S) = ∫0

Ti mk(u, Wi; S)dΛG(u |Wi)
G(u |Wi)

,

for k = 0,1,2, where mk(t, w; S) = [S(t w)]−1 ∫ t
∞[h(u)]kdF(u w), k = 1, 2 and we have defined 

m0(t,w; S) = 1 for each (t, w) ϵ R+ × 𝒮. Straightforward algebra gives

L2, d(Oi, ψ ; G, S) = Q(1)(Oi; G, S) − 2Z(Oi; G, S)ψ(W i) + K(Oi; G)ψ2(W i), (8)
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where K(Oi;G) = A0i(G) + B0i(G) − C0i(G), Z(Oi; G, S) = A1i(G) + B1i(G,S) − C1i(G,S), and 

Q(1)(Oi;G,S)=A2i(G)+B2i(G,S)-C2i(G,S)for every i.That K(Oi;G)does not depend on S(·|

·)follows from (i) the definition of A0i(G); and, (ii) the assumption m0(t,w; S) — 1, which 

implies B0i(G,S) and C0i(G,S) are each independent of S(·|·) for every i. In fact, we have for 

every i under weak conditions on G(·|·) that K(Oi; G) = 1; this follows immediately from 

TheoremS.6.1, presented and proved in the Supplementary Web Appendix (Section S.6).

The observed data quantity Z(Oi; G, S) is an example of (3), hence a CUT. Define the 

modified loss function L2, d* (Oi, ψ ; G, S) = Z(Oi; G, S) − ψ W i
2; then, expanding the square in 

L2, d* (Oi, ψ ; G, S) and simplifying the resulting expression gives

L2, d* (Oi, ψ ; G, S) = Q(2)(Oi, G, S) − 2Z(Oi; G, S)ψ(W i) + ψ2(W i), (9)

where Q(2)(Oi, G, S) = [Z(Oi; G, S)]2 for each i. For any G(·|·) satisfying the regularity 

conditions of Theorem S.6.1, we have K(Oi; G) = 1 for every i in (8); as a result, (8) and (9) 

are identical up to a term that does not involve ψ(·).

The arguments above show that each of L2,d(Oi-ψ; G, S) and L2, d* (Oi, ψ ; G, S) takes the form 

L2(Oi,ψ; G,S,Q) = ψ(Wi)2 + H(Oi; G,S)ψ(Wi) + Q(Oi; G,S) and the losses differ only in the 

specification of Q(Oi; G,S). Theorem 4.1, given below and proved in the Supplementary 

Web Appendix (Section S.7), demonstrates that the decisions made by the CART algorithm 

on the basis of L2(Oi, ψ; G,S,Q),i = 1,..., n do not depend on Q(Oi; G,S),i = 1,..., n.

Theorem 4.1. For each i = l,...,n, define the loss function L2(Oi, ψ;G,S,Q) = ψ(Wi)2 + H(Oi; 

G,S)ψ(Wi+ Q(Oi; G,S) and assume maxi=1,...,n{|H(Oi; G,S)|, |Q(Oi; G,S)|} < ∞. Then, the 
CART algorithm that uses the loss L2(O, ψ; G,S, Q) does not depend on Q(O; G,S).

Theorem 4.1 implies that one can implement CURT-L2 with loss function (8) by applying 

any (full data) CART-L2 algorithm to the imputed dataset {Z(Oi; G, S), W i; i = 1, … , n}. This 

works because all decisions made by the algorithm depend on either changes in loss or loss 

minimization, neither of which is affected by terms in the loss function that are independent 

of ψ(·). This equivalence result does not depend on the specific nature of Z (i.e., except that 

it is univariate).

As remarked earlier, the equivalences just established do not extend to the loss function (5), 

that is, where L2,ipcw(Oi, ψ; G) is used in place of L2,d(Oi, ψ; G, S), i = l,..., n. The 

equivalence results for L2,d(Oi, ψ; G,S) and L2,b(Oi, ψ; G,S) rely heavily on the fact that 

m0(t,w; S) = l for every (t, w) and hence that K(Oi; G) = l for every i. These identities fail in 

the case of L2,ipcw(Oi, ψ; G) because this loss function can only be treated as a special case 

of L2,d(Oi, ψ; G, S) in the event that m0(t,w; S) = 0 for every (t, w). Under this assumption, 

the loss function (8) is still appropriate; however, because K(Oi; G) = Δi/G(T i |W i) ≠ 1 for any 

i, equations (8) and (9) are no longer equivalent up to terms that do not depend on ψ(W).
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4.2 Implementing a CURE-L2 Algorithm using Response Imputation

Algorithm 2 implemented using nonparametric bootstrap sampling in combination with one 

of L2,ipcw(O, ψ; G), L2,d(O,ψ; G,S), or L2,b(O,ψ; G,S) generalizes Breiman’s original RF 
algorithm to the case of censored outcomes. The nonparametric bootstrap is a particular 

example of the multinomial bootstrap, where observations are sampled with replacement 

with possibly unequal probability weights (e.g., Hothorn et al., 2006a). In Algorithm 2, the 

loss function only comes into consideration in Step 2, where it governs the process of 

growing the unpruned regression trees used to create the ensemble predictor. Hence, in view 

of the equivalences established in Section

4.l, Theorem 4.l implies that CURE-L2 using either L2,d(O, ψ; G,S), or L2,b(O,ψ; G, S) can 

be implemented for a general multinomial bootstrap scheme by (i) constructing the relevant 

imputed dataset {(Z(Oi; G, S), W i′)′; i = 1, … , n} (ii) resampling observations with 

replacement using the desired multinomial bootstrap method; and, (iii) applying RF-L2 (e.g., 

randomForest or rfsrc) to build a single unpruned tree using random feature selection 

for each such bootstrap sample. The resulting trees are then processed as desired to construct 

the desired ensemble predictor. The use of random feature selection in growing each 

unpruned tree in the forest does not affect the applicability of Theorem 4.1 in justifying the 

needed equivalence. Imputation also continues to work because a multinomial bootstrap 

allows for sampling weights that are exactly zero: each set of boostrap weights merely 

modifies the input dataset and not the actual decision process used for building trees. 

Implicit here is the assumption that G(·|·) and S(·|·) are held fixed; hence, when estimated 

from the observed data, neither is recalculated for each bootstrap sample. Importantly, in the 

case of the nonparametric bootstrap, steps (ii) and (iii) are combined and carried out by 

default as part of the RF-L2 algorithm, further simplifying implementation.

As an example of a more general exchangeably weighted bootstrap scheme satisfying the 

conditions needed to use Algorithm 2, let A1, ..., An be i.i.d. positive random variables with 

finite variance that are completely independent of the observed data and define the weights 

ωi = Ai/∑ j = 1
n A j for i = 1,…,n. In contrast to the nonparametric or multinomial bootstrap, 

this i.i.d. weighted bootstrap (Prmstgaard and Wellner, 1993) puts a positive weight on every 

observation in every bootstrap sample. The Bayesian bootstrap (Rubin, 1981) is obtained 

when A1,...,An are standard exponential; in this case (ω1,... ,ωi) follow a uniform Dirichlet 

distribution, having the same expected value and correlation as the nonparametric bootstrap 

weights but a variance that is smaller by a factor of n/(n + 1). In contrast to the multinomial 

boostrap, it is not possible to implement CURE-L2 using a simple resampling scheme when 

P(ωi> 0, i = 1,...,n) = 1, that is, when all case weights are strictly positive. In this case, the 

resulting decision making processes need to incorporate these case weights directly. The 

corresponding version of CURE-L2 is therefore easily implemented given an 

implementation of RF-L2 that allows for case weights when calculating the loss function. 

Specifically, consider

L2, d, w(Oi, ψ ; G, S) = ωi[Q
(1)(Oi; G, S) − 2Z Oi; G, S ψ(W i) + ψ2(W i)], (10)
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the case-weighted version of (8), for i = 1,..., n. Because ω1,..., ωn are generated 

independently of the observed data and each has unit mean, (8) and (10) have the same 

expectation. Now, consider the comparably weighted version of loss function (9), that is,

L2, d* (Oi, ψ ; G, S) = ωi[Q
(2)(Oi; G, S) − 2Z Oi; G, S ψ(W i) + ψ2(W i)], (11)

where Q(2)(Oi; G, S) = [Z(Oi; G, S)]2. It follows that (9) and (11) also have the same 

expectation and, in addition, that the weighted losses (10) and (11) are equal up to terms that 

do not involve ψ(·). These results hold as stated even when G(·|·) and/or S(·|·) are estimated, 

provided neither depends on ωι,...,ωη. An easy generalization of the arguments in Section 

4.1 now shows that CURE-L2 can be implemented using the imputed dataset 

{(Z(Oi; G, S), W i′)′; i = 1, … , n} with case weights ωι,..., ωη. We are not currently aware of an 

implementation of the RF-L2 algorithm that accepts case weights in the manner required 

above. For the simulation study of Section 5, we have therefore extended the 

randomForest package to permit case weights in the calculation of the loss function (and 

associated estimators). This modified algorithm is used to implement CURE-L2 for the 

weighted bootstrap for the loss functions L2,b(O, ψ; S) and L2,d(O, ψ; G, S) when G(·|·) 

and/or S(·|·) are estimated from the data 𝒪.

5 Simulations

In this section, we use simulation to compare the performance of two CURE-L2 algorithms 

to that of several available implementations of survival forests. The following subsections 

describe the simulation settings used (Section 5.1) and the choices made for implementing 

each CURE-L2 algorithm (Sections 5.2 and 5.3). Section 5.4 summarizes the results; further 

results for other censoring rates and different covariate dimensions are provided in the 

Supplementary Web Appendix, where we also revisit the simulation study conducted in 

Steingrimsson et al. (2016) and compare the performance of the CURT-L2 algorithms 

respectively using the doubly robust and Buckley-James loss functions, with both 

implemented using the imputation approach described in Section 4.1.

5.1 Simulation Parameters

The simulation settings reported here are very similar to Settings 1 — 4 in Zhu and Kosorok 

(2012). The four settings considered are respectively described below:

1. Each simulated dataset is created using 300 independent observations where the 

covariate vector (W1..., W25) is multivariate normal with mean zero and a 

covariance matrix having elements (i, j) equal to 0.9|j-j|. Survival times are 

simulated from an exponential distribution with mean μ = e
0.1∑i = 11

20 Wi (i.e., a 

proportional hazards model) and the censoring distribution is exponential with 

mean chosen to get approximately 30% censoring.

2. Each simulated dataset is created using 200 independent observations where the 

covariate vector (W1,..., W25) consists of 25 i.i.d. uniform random variables on 
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the interval [0,1]. The survival times follow an exponential distribution with 

mean μ = sin(W1π) + 2 |W2 − 0.5 | + W3
3. Censoring is uniform on [0, 6] which 

results in approximately 24% censoring. Here, the proportional hazards 

assumption is mildly violated.

3. Each simulated dataset is created using 300 independent observations where the 

covariates (W1,..., W25) are multivariate normal with mean zero and a covariance 

matrix having elements (i, j) equal to 0.75|i-j|. Survival times are gamma 

distributed with shape parameter μ = 0.5 + 0.3 ∑i = 11
15 W i  and scale parameter 2. 

Censoring times are uniform on [0,15] which results in approximately 20% 

censoring. Here, the proportional hazards assumption is strongly violated.

4. Each simulated dataset is created using 300 independent observations where the 

covariates (W1,..., W25) are multivariate normal with mean zero and a covariance 

matrix having elements (i,j) equal to 0.75|j-j|. Survival times are simulated 

according to a log-normal distribution with mean 

μ = 0.1 ∑i = 1
5 W i + 0.1 ∑i = 21

25 W i . Censoring times are log-normal with mean μ 

+ 0.5 and scale parameter one, and the censoring rate is approximately 32%. 

Here, the underlying censoring distribution depends on covariates.

Simulations for other settings, respectively considering variations on the above in which the 

total covariate dimension is increased to 50 or 100 and also when the censoring rate is 

increased, are summarized in the Supplementary Web Appendix.

5.2 Squared Error Loss Functions

With uncensored data and a continuous outcome, the most common loss function used in 

connection with the CART and RF algorithms is the L2 loss. With Z = log T, the relevant full 

data loss function is L2(Z, ψ(W))=(log T – ψ(W))2 and the nominal estimation focus 

becomes ψ0(W) = E[log T|W] whether CURT—L2 or CURE—L2 is used. Equation (8) 

gives the corresponding doubly robust loss L2,d(O, ψ; G,S) for suitable choices of G(·|·) and 

S(·|·); the Buckley-James loss is given by L2,d(O,-ψ; G,S). Further details on the calculation 

of L2,d(O,−0; G,S) for Z = logT in the case of building a single CART tree may be found in 

Steingrimsson et al. (2016).

With time-to-event data, a survival probability of the form S0(t|W) = P(T = t\W) is typically 

of interest. The output from any CURT or CURE algorithm can be post-processed to 

generate estimators for S0(t|W) derived from 𝒪. For example, rather than computing a 

restricted mean (log) lifetime, one can instead estimate S0(t|W) by using Kaplan-Meier 

estimators in each terminal node. This flexibility will be used in constructing an ensemble 

estimator for S0(t|W) using Algorithm 2 in Section 5.4.

Alternatively, the loss function used by the CURE—L2 algorithm can be chosen to focus on 

directly estimating S0(t|W) for a fixed t >, 0 e.g., using the Brier loss function. Algorithm 2 

calculated using (8) with Z = I(T > t) is referred to as the doubly robust Brier CURE—L2 

algorithm, and Algorithm 2 calculated using (8) with G(t|w) = 1 and Z = I(T > t) is referred 
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to as the Buckley-James Brier CURE—L2 algorithm. Supplementary Web Appendix S.1 

gives further details on development and implementation of these two algorithms.

5.3 Specifying S(·|·) and G(·|·)

Algorithms that use the loss function (6) or (8) require specifying the functions S(·|·) and 

G(·|·). In general, this requires using estimators S(t |w) and/or G(t |w) derived from the 

observed data. These estimators are also needed for deriving the imputed dataset 

{(Z(Oi; G, S), W i′)′; i = 1, … , n}.

Many methods are available for estimating a conditional survivor function. Preserving the 

spirit of double robustness suggests avoidance of IPCW estimators. In building survival trees 

using a special case of the CURT algorithm based on (8), Steingrimsson et al. (2016) 

considered estimators S(t |w) respectively derived from Cox regression, survival regression 

tree models, random survival forests, and parametric accelerated failure time (AFT) models 

for calculating the augmented loss function. Although the performance of the doubly robust 

methods gave noticeable improvement over those using IPCW loss, the choice of estimator 

S(t |w) used in calculating the doubly robust loss generally made little difference in the 

chosen performance measures. Consequently, in this study, we use m1(u, w; S) with 

S(t |W i), i = 1, … , n estimated using the random survival forests (RSF) procedure as proposed 

by Ishwaran et al. (2008) and implemented in rfsrc.

For all four simulation settings, we calculate G(t |w) using the survival tree algorithm 

proposed by LeBlanc and Crowley (1992), with the minimum number of observations in 

each terminal node set to 30. In practice, use of (8), equivalently (9), requires that the 

empirical positivity condition G(T i |W i) ≥ ϵ > 0 holds. To ensure that the estimated (possibly 

covariate dependent) censoring probabilities remain bounded away from zero, within each 

terminal node a sample-dependent truncation time ϑ is set such that the proportion of 

observed times in the terminal node exceeding ϑ is 10%; “Method 2” truncation as described 

in Steingrimsson et al. (2016) is then used. In short, times T i exceeding ϑ are designated as 

failures and G(T i |W i) and G(u |W i) are respectively replaced by G(ϑ ∧ T i |W i) and G(ϑ ∧ u |W i)

in calculating Z(Oi; G, S) above, but survival times are not otherwise modified in the 

remainder of the calculations. As shown in Steingrimsson et al. (2016), this typically 

performs better than the standard approach to truncation (i.e., truncating all follow-up times 

that exceed ϑ and treating each as uncensored).

5.4 Simulation Results

In what follows, we focus on estimating S0 (t|W) for a given fixed time-point t. Settings 1 — 

4 are used to compare the performance of two CURE—L2 algorithms to other 

implementations of survival forests. Both CURE—L2 algorithms are a version of Algorithm 

2 implemented using response imputation as described in Sections 4.1 and 4.2. To be more 

specific, we use L2 to denote the CURE-L2 algorithm that uses the loss (8) with Z = logT 
and estimates S0 (t|W) by calculating Kaplan-Meier estimators in each terminal node (see 
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Step 3 of Algorithm 2). Here, G(·|·) and S(·|·) are replaced by the estimates described in 

Section 5.3. Similarly, we use L2 BJ to denote this same CURE-L2 algorithm, but where G(t|
w) = 1 everywhere. We focus on versions of these two algorithms that use the nonparametric 

bootstrap as these have the advantage of being easily implemented using existing RF-L2 

software with uncensored outcomes. Results for other bootstrap schemes and also two 

additional CURE-L2 algorithms derived from the loss (8) with Z = I(T > t) (i.e., the Brier 

loss) are discussed at the end of this section.

We will compare the results of L2, and L2 BJ to three available ensemble algorithms for 

survivor function estimation: the default method for censored data in the party package 

(CI; Hothorn et al., 2010); the default method for censored data in the randomForestSRC 

package (RSF; Ishwaran and Kogalur, 2016); and, recursively imputed survival trees (RIST; 

Zhu and Kosorok, 2012). The CI algorithm constructs a survival ensemble where conditional 

inference trees based on the two sample log-rank statistic are used in place of CART trees as 

the base learner (Hothorn et al., 2006b). The RSF algorithm in the randomForestSRC 

package implements that proposed in Ishwaran et al. (2008) and relies on the log-rank 

statistic for splitting decisions. The RIST algorithm is currently available from https://

sites.google.com/site/teazrq/software.

All of these algorithms require specifying several tuning parameters. The tuning parameters 

for the RIST algorithm are chosen as in the example code provided by the authors with the 

exception that the length of the study parameter is chosen larger than the largest survival 

time. This includes using two-fold recursively imputed survival trees with 50 trees in each 

fold, mtry = [ p], and a minimum of 6 cases in each terminal node. To make the tuning 

parameters more comparable to the rfsrc function, we also include a version of RIST that 

sets the minimum number of cases in each terminal node to 3. For all other methods, 

including the CURE-L2 algorithms, mtry = [ p] and the number of trees used in the 

ensemble is set to 1000. The remaining tuning parameters are respectively selected as the 

default in the corresponding R functions. At the request of a referee, we also implement and 

include a version of the RSF algorithm where the number of cases in each terminal node 

(nodesize parameter in the rfsrc function) is tuned rather than set at the default value of 

3. In particular, for each of the four simulation settings, the RSF algorithm is fit using the 

default value along with three different values of nodesize, respectively corresponding to 

1%, 5%, and 10% of the expected number of events rounded up to the nearest integer. The 

final (i.e., tuned) value of nodesize is set as the value which gives the smallest out-of-bag 

(OOB) error rate reported from the rfsrc function, calculated using the C-index (e.g., 

Mogensen et al., 2012).

Each survival forest procedure predicts S0(t|W) on an independent test set consisting of 1000 

observations simulated from the full data distribution with t respectively chosen as the 25th, 

50th and 75th quantile of the marginal failure time distribution. For all four simulation 

settings the mean squared estimation error (MSE) is calculated as 

0.001 × ∑i = 1
1000 (S(t |W i) − S0(T |W i))

2, where S(t |W) is the prediction from the algorithm and 

S0(t|W) is the true conditional survival curve. Boxplots from 1000 simulations for t equal to 

the median of the marginal survival distribution for the four different simulation settings are 
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shown in Figure 1. The corresponding plots for t equal to the 25 and 75th quantile of the 

marginal survival distributions are given in Figures S-1 and S-3 in Supplementary Web 

Appendix S.2. The labels used in all plots correspond to the methods as described above. 

The main results from Figure 1 are summarized below:

• Overall, the CURE—L2 algorithms L2 and L2 BJ show the best performance. 

The RIST algorithm is also a strong performer, doing the best in Setting 1 and 

remaining competitive in all others. Using currently available software, the 

CURE—L2 algorithms run considerably faster when compared to RIST, even 

when accounting for the calculations needed to compute the augmentation terms 

needed for the Buckley-James and doubly robust loss functions.

• Settings 1 — 3 are used to illustrate the performance under different degrees of 

misspecification of the proportional hazards assumption (correctly specified, 

mildly misspecified, and severely misspecified). Figure 1 shows that as the 

severity of the misspecification increases the relative performance of the methods 

not utilizing log-rank based splitting statistics (i.e., the CURE—L2 algorithms) 

becomes better compared to the algorithms where splitting decisions utilize such 

statistics (i.e., RSF, CI, RIST 3, RIST 6, RSF Opt).

The Supplementary Web Appendix contains several additional results that follow the four 

main settings considered in this section. We respectively review these results below.

1. All of the results presented in Figures S-1 through S-14 in Supplementary Web 

Appendix S.2 include comparisons to the doubly robust and Buckley-James 

Brier CURE algorithms described earlier and presented in greater detail in 

Supplementary Web Appendix S.1. The results show that the CURE algorithms 

based on the Brier loss perform either similarly or worse than the CURE 
algorithms implemented using the L2 loss. We conjecture that this occurs 

because the L2 loss function for Z = log T can be viewed as making use of 

information across time (i.e., a type of composite loss for the survivor function), 

whereas the Brier loss that uses Z = I(T > t) makes more limited use of the 

available data. The use of a composite Brier loss function incorporating 

information for estimating S0(t\W) using several different choices for t is likely 

to improve performance further. However, it is unclear whether one can use 

imputation methods like those introduced earlier in combination with existing 

software to implement such methods; we intend to explore this in future work.

2. Section S.2.2 presents comparisons of the CURE-L2 algorithms that use the non-

parametric bootstrap to CURE-L2 algorithms that respectively use the Bayesian 

bootstrap and the i.i.d. weighted bootstrap with weights A1,... ,An simulated from 

a Gamma(4,1) distribution. The Bayesian and Gamma(4,1) bootstrap CURE-L2 

procedures are fit by extending the capabilities of randomForest (Liaw and 

Wiener, 2002) to handle arbitrary nonnegative case weights in calculating the 

loss function; the code for implementing these methods can be obtained from the 

first author. Figures S-4 - S-9 in Supplementary Web Appendix S.2.2 

demonstrate comparable performance between the three bootstraps in all settings 

at all quantiles for all combinations of loss functions and CUTs.
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3. Section S.2.3 shows results both when S( ⋅ | ⋅ ) is calculated using a parametric 

accelerated failure time model with error distribution that is assumed to follow 

an Weibull distribution and also when G( ⋅ | ⋅ ) is obtained using a Kaplan-Meier 

estimator. Section S.2.4 summarizes results when the total covariate dimension is 

respectively increased to 50 and 100 and Section S.2.5 summarizes results when 

the censoring rate is increased to 50%. In these sections, and in view of the 

similar performance of bootstrap methods observed in Section S.2.2, only 

CURE-L2 algorithms that use the nonparametric bootstrap are considered in 

these simulations, and all results show similar trends to those seen in Figure 1.

A disadvantage of the nonparametric bootstrap is the tendency of this methodology to create 

heavy ties (i.e., on average, only 63% of any given bootstrap sample consists of distinct 

observations). An advantage of using the nonparametric bootstrap is the existence of an 

OOB sample. The OOB sample consists of observations that are not selected into a given 

bootstrap sample and it is commonly used to evaluate prediction accuracy and the 

importance of variables in the RF algorithm; see Section 6 for more detailed discussion on 

variable importance measures. The lack of an OOB sample for the exchangeably weighted 

bootstraps with positive weights on all observations, combined with the comparative ease of 

implementation for the nonparametric bootstrap and the absence of significant differences in 

prediction error suggested by our simulation results, suggest that the nonparametric 

bootstrap may be preferred when implementing a CURE-L2 algorithm.

6 Applications to Public-Use Datasets

In this section we evaluate the performance of the CURE-L2 algorithms on two datasets; 

results for two additional datasets, the Netherlands and R-Chop data, are provided in Section 

S.4.1 in the Supplementary Web Appendix. The two datasets analyzed in this section are:

1. TRACE Study Group Data: This dataset consists of 1878 subjects that were 

randomly sampled from 6600 patients and is included in the R package 

timereg. The event of interest is death from acute myocardial infarction (AMI). 

Subjects that died from other causes or were alive when they left the study were 

considered censored. Information on gender, age, diabetes status, if clinical heart 

pump failure (CHF) was present, and if the patient had ventricular fibrillation are 

used here. As in Steingrimsson et al. (2016), who analyzed the dataset using 

doubly robust survival trees (i.e., an example of CURT-L2), we focus on the 

subset of patients surviving past 30 days. Two such observations having an 

undefined censoring status were removed from the dataset, leaving 1689 patients 

and a 53.8% censoring rate.

2. Copenhagen Stroke Study: This dataset consists of 518 patients admitted to 

hospital with stroke. The event of interest is time from admission to death and 

the censoring rate is 22%. There are 13 covariates, which are listed in Table S-2 

in Supplementary Web Appendix S.4. These publicly available data are available 

from the R package pec.
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3. We first compare the prediction performance of the CURE-L2 algorithms (i.e., 

using the nonparametric bootstrap and for Z = log T) to the default methods in 

the randomForestSRC and party package as well as the two versions of the 

RIST method described in Section 5. A tuned version of the RSF algorithm, with 

the node size chosen in the same way as described in Section 5, is also included 

at a request from a referee. We also include tuned versions of the CURE-L2 

algorithm. Each tuned CURE-L2 algorithm first fits four corresponding CURE-
L2 algorithms with the node size respectively chosen as the default value, 1%, 

5%, and 10% of the number of observations. The final node size is chosen as that 

which minimizes the OOB prediction error calculated using the L2, d* (O, ψ ; G, S)

loss; see (11). Because the CURE-L2 algorithms that use the Brier loss function 

were observed to be somewhat inferior to the CURE-L2 implemented using Z = 

log T in our simulation study, we do not include the former in our comparisons.

All algorithms are used to predict S0(t|W), where t is set equal to 3 years; respectively, the 

corresponding marginal survival probabilities (i.e., estimated using a Kaplan Meier curve) 

are 0.73 and 0.65 for the TRACE and Copenhagen datasets. The estimator S( ⋅ | ⋅ ) used in 

calculating the augmentation terms in the CURE-L2 algorithms is obtained using the RSF 
procedure; the doubly robust methods use the Kaplan-Meier estimator G( ⋅ ) and Method 2 

truncation as described in Section 5.3. Prediction performance is evaluated using a cross-

validated version of the censored data Brier score of Graf et al. (1999, Sec. 6); this MSE-

type measure is calculated using a 10-fold cross-validation procedure that approximately 

balances censoring rates in the training and test sets.

Figure 2 shows boxplots of the censored data Brier score for 200 different splits into test and 

training sets for the two datasets; lower values indicate better performance. Figure S-17 in 

Supplementary Web Appendix S.4.1 shows the corresponding results for the Netherlands 

and R-Chop data. Figures S-19 and S-20 in Supplementary Web Appendix S.4.3 show 

results for six other time points. Overall, the results show that L2 and L2 BJ have the best 

performance, performing either similarly to or better than all other methods for all datasets 

and time points.

Variable importance measures (VIMPs) are commonly used to evaluate the importance of 

each variable in the predictions generated by an ensemble algorithm. The method of 

Breiman (2001) (see also Ishwaran et al., 2008) involves permuting the observed values of 

covariate j in each OOB sample and then evaluating the associated increase in prediction 

error compared to that for the original forest; see Section S.3 for further details on the 

calculation of this OOB prediction error measure for the case of L2 loss and the 

corresponding VIMP. Theorem S.3.1 in Supplementary Web Appendix S.3 shows that 

calculating the VIMP of Breiman (2001) using {(Z(Oi; G, S), W i′)′; i = 1, … , n} is identical to 

the version that would be calculated if the (unobserved full data) L2 loss were replaced by 

the CUT for this loss function that corresponds to Z(Oi; G, S), i = 1,…,n.

Ishwaran et al. (2010) proposed an alternative VIMP measure based on the intuitively 

sensible idea that splits made earlier in the individual trees in the forest are more likely to be 
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important predictors. In particular, if the depth of a given node in a given tree is defined as 

the number of splits that are made between this node and the root node, then one can 

determine the minimal observed depth for any given variable by calculating the depth for all 

nodes that split on this particular variable. This calculation can be done for each variable in 

each tree in the ensemble; the resulting minimal depth VIMP for each variable is then 

calculated as the average of the minimal observed depths for that variable over all trees. 

Variables with lower average minimal depth are considered more influential. Because the 

minimal depth VIMPs do not require the presence of an OOB sample, such measures can be 

calculated for CURE-L2 algorithms using more general bootstrap schemes, such as the i.i.d.-

weighted or Bayesian bootstrap.

Below, we illustrate the use of the minimal depth VIMP measure for the TRACE data. Table 

1 shows these measures calculated using the L2 and L2 BJ algorithms and the RSF method. 

One of the main findings in Jensen et al. (1997) was that the effect of ventricular fibrillation 

(VF), an acute emergency condition, vanished when analyzing the data consisting of 

subjects surviving beyond 30 days. The results in Table 1 support this conclusion as VF has 

the highest minimal depth VIMP of all variables for all algorithms (i.e., judged as the least 

important). Age and CHF have the two lowest VIMP measures for all methods, a result 

consistent with those in Steingrimsson et al. (2016), where all trees are observed to split on 

age and (with one exception) also on CHF. The corresponding results for the OOB 

prediction error VIMPs are presented in Supplementary Web Appendix S.4 and lead to the 

same conclusions. VIMPs for the Copenhagen study are also presented in Supplementary 

Web Appendix S.4, Tables S-2 and S-3 show that well-known risk factors for the overall 

survival of stroke patients are identified as being the most influential.

7 Discussion

This paper makes several contributions to the literature. We extend the theory of censoring 

unbiased transformations in a substantial way and establish some useful efficiency results. 

This theory is applied to the problem of risk estimation, resulting in a class of censoring 

unbiased loss functions. These results are subsequently used to extend versions of the CART 
and RF algorithms for general (full data) loss functions to the case of censored outcomes by 

replacing the full data loss with a CUT. For the special case of the L2 loss function, we show 

that a certain form of response imputation can be used to implement these new algorithms 

using standard software for uncensored responses. The proposed methods are shown to 

perform well compared to several existing ensemble methods both in simulations and when 

predicting risk using several public-use datasets.

The use of the L2 loss function for predicting E(log T| W) may have certain advantages over 

methods that focus on survival differences. For example, in the absence of censoring, 

Ishwaran (2015) studied the effect of different splitting statistics used in the RF algorithm. 

The author showed that using reduction in L2 loss as a splitting criteria results in splitting 

rules that split near the edges for noise variables and split in a region where the curvature of 

the underlying regression function is the steepest for signal variables. This property of 

simultaneously adapting to both signal and noise may contribute to the strong MSE 

performance of the CURE-L2 algorithms considered here (i.e., L2 and L2 BJ).
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Potentially interesting future research directions include: extensions to more complex data- 

structures such as multivariate outcomes, competing risks, missing covariate data and more 

complex sampling schemes (i.e. case-cohort or nested case-control designs); studying the 

performance of iterated versions of this algorithm, where the conditional expectations 

required for computing the doubly robust and Buckley James loss functions are updated 

using the latest ensemble predictor (or possibly updated dynamically in batches); and, 

deriving asymptotic properties of the CURE algorithm (or certain special cases, such as 

CURE-L2), possibly by extending the consistency results in Scornet et al. (2015) or 

developing methods to calculate asymptotically valid confidence intervals for the predictions 

from the CURE algorithm (e.g. Mentch and Hooker, 2016).

As discussed in Section 5, the CURE-L2 algorithms that used the non-parametric bootstrap 

showed similar prediction accuracy to those using two versions of the exchangeable 

weighted bootstrap. This similarity is interesting since it is not known whether Breiman’s 

original RF-L2 algorithm, which uses the nonparametric bootstrap, is consistent. Scornet et 

al. (2015) proves consistency for a RF algorithm that uses subsampling without replacement 

in place of the nonparametric bootstrap. The main role of subsampling is to preserve 

independence among the observations in each subsample. A weighted bootstrap that uses 

strictly positive weights also preserves the independence of the observations within each 

bootstrap sample. Although outside the scope of this work, it would be interesting to 

investigate whether a weighted bootstrap sampling with continuous, strictly positive weights 

would permit one to use arguments similar to those in Scornet et al. (2015) to prove 

consistency.

The theory justifying the use of censoring unbiased loss functions is not restricted to the 

CART algorithm or to ensemble methods that use CART trees as building blocks. For 

example, it is possible to use the results in this paper in connection with other recursive 

partitioning methods (e.g., the partDSA algorithm; see Lostritto et al., 2012), which builds a 

predictor by recursively partitioning the covariate space using both ‘and’ and ‘or’ 

statements. Implementation using imputed response data as done here in the case of L2 loss 

remains possible more generally in cases where model building decisions do not depend on 

the absolute level of loss (e.g., relative change, loss minimization, etcetera).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Boxplots of MSE estimated at the 50th quantile of the marginal failure time distribution for 

the four simulation settings described in Section 5.1. L2 and L2 BJ are the CURE-L2 

algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are the 

default methods for rfsrc and cforest functions. RSF Opt is the default method for 

rfsrc with the nodesize parameter tuned. RIST is the recursively imputed survival trees 

algorithm, and 3 and 6 stand for the minimum number of observed failure times in a 

terminal node.
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Figure 2: 
Censored data Brier Score at t = 3 years for the TRACE and Copenhagen Stroke studies; 

lower values indicate better prediction accuracy. L2 and L2 BJ are the CURE-L2 algorithms, 

with BJ referring to the use of the Buckley-James CUT. Opt refers to tuning the nodesize 

parameter. RSF and CI are the default methods for the rfsrc and cforest functions in R. 

RIST is the recursively imputed survival trees algorithm, where 3 and 6 denote the minimum 

number of cases in a terminal node.
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Table 1:

Minimal depth variable importance measures for the TRACE data; lower values indicate more influential 

variables. BJ refers to the Buckley-James transformation. RSF is the default method in the 

randomForestSRC package.

L2 L2 BJ RSF

Age 0.90 1.13 0.82

Clinical Heart Pump Failure 1.02 0.96 1.11

Diabetes 1.67 2.04 1.45

Gender 1.99 1.15 2.02

Ventricular Fibrillation 2.14 2.17 2.43
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