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Abstract

Experimental models of cardiac disease play a key role in understanding the pathophysiology of 

the disease and developing new therapies. The features of the experimental models should reflect 

the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review 

characteristics of commonly used experimental models of cardiac physiology and pathophysiology 

in all translational steps including in vitro, small animal, and large animal models. Understanding 

their characteristics and relevance to clinical disease is the key for successful translation to 

effective therapies.
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1. Introduction

Heart diseases represented by coronary artery disease and heart failure are increasing 

worldwide(1). Researchers devote intense efforts to prevent and cure heart diseases in both 

clinical and experimental research areas. Experimental research has played and will continue 

to play key roles in discovering disease mechanisms and developing new therapies. In this 

review, we provide characteristics of commonly used experimental models of cardiac 

physiology and pathophysiology by covering all translational steps from in vitro to large 

animal models (Table 1)

2. In Vitro models

First, we discuss in vitro models of cardiac disease. Although various types of cells compose 

the heart, cardiomyocytes account for a majority of heart mass and predominantly affect 

cardiac function(2,3). Since malfunction of cardiomyocytes is a causative mechanism in 

most heart diseases(4), a large amount of effort was spent to develop multiple in vitro 
cardiomyocyte models. The in vitro model system offers more precise control of 

experimental conditions and manipulations, which provide many advantages over the in vivo 
models in signaling pathway studies or high-throughput drug screenings (Table 2). For more 
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than three decades, several cell culture tools, including primary cells, immortalized cell 

lines, human embryonic- and induced pluripotent stem cell (ESC and iPSC, respectively) 

derived cardiomyocytes have been developed to study heart disease in various settings. 

Herein, we discuss different types of cells used to model heart disease and their essential 

characteristics.

2-1. Neonatal cardiomyocytes

Rodent neonatal cardiomyocytes are the most widely used in vitro models in cardiac 

research. Since the neonatal cardiomyocytes are isolated from 1~5-days old rats/mice, the 

cells are yet immature in morphology and transcriptional profiles(5–7). Despite this 

limitation, neonatal cardiomyocytes have been the workhorse of cardiac research, because of 

their relatively easy isolation, gene expression manipulation capabilities, and reliable 

physiologic microenvironment(8–10). Harary and Farley(11) first developed techniques for 

isolation of neonatal cardiomyocytes more than 50 years ago. Fundamental procedures to 

isolate and culture the cells have been optimized by many researchers over the years. Thanks 

to these efforts, commercially available kits now offer easy isolation of neonatal 

cardiomyocytes for researchers without extensive experiences. Rats are commonly used for 

their advantages over other species, including low cost, higher yields of viable cells and 

efficient transfection rates for gene manipulation(8–10). Meanwhile, because of a large 

number of transgenic lines, mice are also employed to study functional roles of specific 

genes and proteins(12).

Neonatal rat cardiomyocyte (NRCM) model offers great advantages for studying cardiac 

hypertrophy. In 1982, Simpson et al.(13) demonstrated induction of cardiac hypertrophy in 

NRCM culture by norepinephrine treatment. This study opened the door for using this 

model as a platform for studying hypertrophy in vitro. Since then, numerous compounds and 

growth factors have been tested in NRCM culture and number of molecules have been 

identified to induce pathological hypertrophy, including phenylephrine(14–16), angiotensin 

II(17,18), endothelin-1(17,19), and the diacylglycerol mimetic phorbol 12-myristate 12-

acetate(20). In response to these stimulations, NRCMs increase both volume and cell surface 

area, promote sarcomeric organization and reactivate fetal gene expression(13,16,20). 

Therefore, assessment of these profiles is central to evaluate cardiac hypertrophy in the 

NRCM model. Recent advances in fluorescence-based staining methods and image-

analyzing software enable accurate measurements of cell surface area(17). Staining with 

phalloidin-Rhodamine, cardiac troponin I or α-actinin is a widely-accepted method to assess 

sarcomeric organization(21,22). Reactivations of a fetal gene program, such as atrial 

natriuretic factor, brain natriuretic peptide, α-skeletal muscle actin, and β-myosin heavy 

chain can be evaluated by qRT-PCR(14).

Sustained increase in mechanical cardiac load is an important pathological factor that 

promotes cardiac diseases. The sustained stretch model using NRCMs enables in vitro 
replication of increased mechanical load in isolated cells. Komuro et al.(23,24) developed 

deformable culture dishes using silicone membrane to simulate the stretch-induced stress in 

1990. Currently, several apparatuses have been developed to provide computer-controlled 

sustained or cyclic stretch. Sustained stretch induces dynamic changes in gene expression in 
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time and stretch-dependent manner. These changes subsequently induce apoptosis, 

autophagy and hypertrophy in NRCMs(25–29). Fluorescence-based staining to detect 

hypertrophic, apoptotic or autophagic markers and evaluation of gene expression profiles 

related to these signaling is usually employed to determine stretch-induced pathology(25–

29).

The NRCM model is also a useful tool to study ischemia/reperfusion (I/R) injury. In 1977, 

Acosta and Puckett first reported effects of hypoxic environment on in vitro cell culture(30). 

Nowadays different levels of hypoxic environments can be generated by culturing cells in 

hypoxic chambers with different concentrations of gas mixtures, including anoxic condition 

(e.g. 5 % CO2 and 95 % N2)(31), and also by the treatment with oxygen-scavenging 

compounds (e.g., Na2S2O4) (32). Accumulation of reactive oxygen species (ROS), lipid 

peroxidation, increased membrane permeability and apoptosis represent the impacts of I/R 

injury(33–36). Staining of ROS by chemical indicator (e.g., MitoSOX)(31), measurement of 

SOD2 and catalase enzymatic activities(31), flow cytometry-based apoptosis 

detection(37,38) and western blotting with apoptotic markers (e.g., caspase 3, caspase 7, 

Bcl-2, Bcl-xl)(35) are used for evaluating impact of I/R injury.

Advantages of neonatal cardiomyocytes over adult cardiomyocytes include relatively ease of 

culture and high transfection efficiency with liposomal transfection methods. Nevertheless, 

they have some limitations. Most notably, neonatal cardiomyocytes lack a definitive t-

tubular subsystem(5). Some components of signaling pathways differ between neonatal and 

adult myocytes(39), implying less accurate reflection of Ca2+ dynamics and signaling 

compared to adult cardiomyocytes. Non-uniform cell shortening is another limitation for 

modeling of contractile measurements in these cells. Hence, neonatal cardiomyocytes are 

most powerful in quickly and easily determining the effects of the gene manipulation and 

screening lead compounds through high-throughput drug screening assays(40,41). Ideally, 

the results obtained from neonatal cardiomyocytes should be validated with similarly 

designed experiments using adult cardiomyocytes.

2-2. Adult cardiomyocytes

Adult cardiomyocytes best recapitulate the morphology and behavior of the cells in intact 

human heart. These cells are rod-shaped, binucleated, and have well-organized sarcomeres 

throughout the cell body. In 1895, Oscar Langendorff first developed a protocol to isolate 

adult cardiomyocytes by the retrograde perfusion of the heart with an enzymatic solution 

and current researchers follow protocols that are similar to the original in principle(42). The 

yield and quality of the isolated cardiomyocytes are affected considerably by the heart 

cannulation and perfusion. Despite the technical difficulty, however, their above and below 

mentioned advantages make adult cardiomyocytes as one of the most frequently-used 

models for in vitro research.

The key advantage of adult cardiomyocytes for in vitro studies may be the wide-applicability 

of the isolation protocol to various types of animals, in contrast to the neonatal 

cardiomyocytes. The animals of all ages can be used to study the effects of aging(43). Adult 

cardiomyocytes isolated from male versus females allow probing the effects of sex 

difference on cardiac function, which is not possible with neonatal cardiomyocytes or 
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immortalized cell lines(44). Furthermore, animals with diverse disease conditions can be 

utilized for this model. For example, the heart after surgical disease induction or cardio-toxic 

chemicals can be used to isolate cells, and studied for their structural and functional 

properties at cellular levels(45–48). A large number of genetic models also make this model 

attractive. Indeed, isolated cardiomyocytes from transgenic mice were utilized to 

characterize the roles of genetic mutations found in familial dilated cardiomyopathy 

patients(49–51).

Another advantage of adult cardiomyocyte is a wide-spectrum of applicable experimental 

assays. Since adult cardiomyocytes have a mature sarcomeric structure and ion channels, 

different methods including patch-clamp(52), contractility measurements(53), and Ca2+ 

imaging studies(54,55) can be applied. These methods provide in depth analysis of 

contractility, sarcoplasmic reticulum Ca2+ load, diastolic Ca2+ levels and myofilament Ca2+ 

sensitivity. For example, Kerr et al.(56) showed disruption of Ca2+ signaling using several 

methods such as measurements of contractility, Ca2+ transient, stretch-induced ROS 

production, stretch-induced Ca2+ influx and Ca2+ sparks in isolated cardiomyocytes from a 

mouse model of Duchenne muscular dystrophy (MDX mice). Through this study, the 

authors elucidated how post-translational modification of α-tubulin affects Ca2+ signaling 

that underlies Duchenne muscular dystrophy pathologies.

Adult cardiomyocytes are also a useful model to study cardiac hypertrophy. Hypertrophy is 

induced in adult cardiomyocytes in response to many different triggers, including 

norepinephrine(57), phenylephrine(58), angiotensin II(59) and isoproterenol(60). Similar to 

neonatal cardiomyocytes, these stimulations activate fetal gene program and increase the 

abundance of myosin heavy chain protein, the rate of protein synthesis and total protein 

levels. Neonatal cardiomyocytes show dramatic changes in cell size (~150%) and sarcomeric 

organization within 48h of treatment of the triggers(13). However, this is not always the case 

in adult cardiomyocytes, and the shape of cardiomyocytes is closely related to the contractile 

function and cell condition. Therefore, instead of the image-based morphometric analysis, 

qRTPCR and western blotting of fetal genes are widely-accepted methods to detect 

hypertrophic features in adult cardiomyocytes. [3H] phenylalanine incorporation and 

colorimetric protein quantitation (e.g., Bradford assay, bicinchoninic acid assay) are also 

employed to verify the changes in the rate of protein synthesis and total protein levels by 

hypertrophic stimulations(58,61).

Similar to the neonatal cardiomyocytes, adult cardiomyocytes are also able to be utilized for 

mimicking mechanical overload or I/R injury by the sustained stretch or hypoxic 

environments. These stresses turn on the similar signaling pathways with neonatal 

cardiomyocytes including hypertrophic, apoptotic and autophagic responses, but also induce 

sarcoplasmic reticulum Ca2+ leak and cardiac dysfunction(62,63). Overall, adult 

cardiomyocytes offer very reliable and efficient models in studying cardiac pathologies.

2-3. Immortalized cell lines

As discussed above, primary cells (adult cardiomyocytes, neonatal cardiomyocytes) are the 

most accepted in vitro models for studying cardiac diseases. However, these cells have some 

practical problems that make them challenging to use. Since the majority of cardiomyocytes 
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differentiate terminally in vivo in the perinatal period, they cannot be passaged in culture. 

These cells are fragile and difficult to maintain in culture for long periods. Especially, 

cultures of primary cardiomyocytes maintained for several weeks undergo morphological 

and functional changes over time and yield a heterogeneous population of cells(64,65). The 

difficulties to transfect and recover from frozen stocks are also considerable issues in these 

cells. In addition, animal sacrifice is necessary for the use of primary cells, which leads to 

practical and ethical limitations. To address these issues, many attempts have been made to 

establish immortalized cardiac cell lines. Various groups have developed suitable cell culture 

systems including H9C2(66), ANT-T-antigen(67), AT-1cells(68), MC29(69), HL-1(70), and 

AC16(71). Since immortalized cell lines retain similar gene expression profiles and 

phenotypic features of the cardiomyocytes, these cell lines have commonly served as an 

alternative to primary cells.

2-3a. H9C2—The H9c2 cells, myoblast cell line, were first isolated from embryonic 

BDIX rat ventricular tissue in 1976(66). At this stage, cells were not sufficiently 

differentiated into adult cardiomyocytes yet and lacked a clear cardiac phenotype. However, 

Menard et al.(72) established a protocol to differentiate them from mono-nucleated 

myoblasts to cardiac-like myotubes by the addition of all-trans retinoic acid (RA) to a 1% 

serum media. According to previous total genome microarray study, transcriptome 

alterations during H9c2 cell differentiation promote the cells to express cardiac-specific 

proteins, including cardiac troponins, calsequestrin, ryanodine receptor and sarco (endo) 

plasmic reticulum calcium ATPase(73). Therefore, H9c2 cells need to undergo the 

differentiation procedure for proper use of this cell. H9c2 cells lack the ability to contract 

but shows many similarities to primary cardiomyocytes, and thus have been used for 

investigating the molecular and cellular processes involved in cardiac hypertrophy(74), 

apoptosis(75), I/R injury(76), and toxicology(77). Notably, in the parallel comparison with 

NRCMs, H9c2 cells showed a more robust increase in cell surface area and similar levels of 

fetal gene activation to NRCM(74). Moreover, in another comparison study, H9c2 cells 

showed more similarity to primary cardiomyocytes than HL-1 cells with regard to energy 

metabolism patterns, such as cellular ATP levels, bioenergetics, metabolism, function and 

morphology of mitochondria(76). Based on these data, H9c2 cells are widely accepted as a 

valid in vitro system to study cardiac disease.

2-3b. HL-1—The HL-1 cell line originated from AT-1 cardiac myocytes. AT-1 cells are 

immortalized atrial cardiomyocytes derived from an atrial tumor growing transgenic mice 

with the simian virus 40 (SV40) large T antigen expression(68). Although AT-1 cells 

maintained a cardiomyocyte phenotype and ability to contract, they could not be serially 

passaged and revived from cryopreserved stocks. In 1998, Claycomb et al.(70) established 

the HL-1cell line to improve the limitations of AT-1 cells. The author reported that HL-1 

cells maintain cardiac morphological, biochemical, and electrophysiological properties and 

solves the problems in AT-1 cells. HL-1 cells express numerous signaling receptors 

expressed in adult cardiomyocytes, and respond similarly to their agonists in 

pharmacological studies, which suggest that HL-1 cells exhibit an adult cardiomyocyte-like 

gene expression profile(70,78,79). Indeed, in the proteomic analysis of HL-1 cells in 

comparison with patient cardiac samples, HL-1 cells exerted similar alterations in the 
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proteome to the biopsy samples taken from patients with ischemic cardiomyopathy, 

including cell death pathways and oxidative stress response(80). Another important feature 

of HL-1 cells is the ability to spontaneously contract. HL-1 cells contain highly organized 

sarcomeres and express the necessary ion channels required for generating action potentials 

characteristic of primary cardiomyocytes(70,81). Sartiani et al.(82) reported that the 

electrophysiological properties of HL-1 cells are sufficiently similar to those of primary 

cardiomyocytes for testing pharmacological drugs acting on ion currents. Meanwhile, HL-1 

cells need to be maintained in medium containing adenosine, retinoic acid, and 

norepinephrine to maintain a differentiated phenotype and stimulate beating(70). These 

requirements may limit their usefulness in developing models of cardiac disease. Moreover, 

atrial cell-like gene profiles somewhat limit their utility for studying ventricular failure(83). 

Nevertheless, HL-1 cells have been used in various in vitro settings(76,84–86), and are an 

efficient alternative for primary cells.

2-3c. AC16—AC16 cells are the cell line that is established most recently. Since this cell 

line is derived from human ventricular tissues by fusion with SV40 transformed human 

fibroblasts, it is expected to recapitulate human cardiomyocytes more similarly than other 

cell types. Dividson et al.(71) reported that AC16 cells express cardiomyocyte-specific 

markers, such as transcription factors, contractile proteins, muscle-specific intermediate 

filament protein and the cardiomyocyte-specific peptide hormones. Moreover, these cells 

appear to express functional gap junctions and myofibrils, which indicate high similarity to 

adult cardiomyocytes. AC16 cells have been tested in many in vitro disease studies, 

including cardiac hypertrophy, I/R injury, oxidative stress and toxicology studies(87–91). 

Although many studies support the usefulness of AC16 cells as an in vitro model system for 

cardiac research, no study has compared AC16 cells to primary cells yet. Thus, one should 

use with caution when interpreting data obtained from AC16 cells.

2-4. ESC and iPSC derived cardiomyocytes

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity 

to self-renew by dividing and pluripotency to differentiate to all cell types. While ESCs are 

derived from different sources of blastocysts that are already pluripotent(92–94), iPSCs are 

generated from somatic cells by the introduction of defined transcription factors, such as 

OCT4, SOX1, KLF4, and c-MYC(95). ESC or iPSC-derived cardiomyocytes are the cells 

that are induced to differentiate to cardiomyocytes from these pluripotent stem cells. The 

research using these stem cells has grown dramatically in recent years to develop an efficient 

in vitro assay using human cells for personalized medicine. For example, stem cell-derived 

cardiomyocytes enable prediction of cardiotoxicity in respective patient to increase the 

safety of novel drugs. Peters et al.(96) introduced a novel assay to predict embryotoxicity by 

the automatic record of contraction of ESC-derived cardiomyocytes. Recently, this assay 

system was applied for screening embryotoxicity of commonly-used compounds in food and 

cosmetic production(97). Patients with certain genetic backgrounds exhibit increased 

cardiotoxic sensitivity to treatment with doxorubicin, and this susceptibility was 

recapitulated in iPSC-derived cardiomyocyte cultures(98,99). However, these stem cell-

based models are not well suited for cardiac physiology applications at the moment. 

Compared to other model systems, the cultures of ESCs or iPSCs are technically challenging 
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and cost ineffective. The efficiency of proliferation and differentiation remains low and long-

term culture as well as several supplements to induce differentiation makes this system 

technically difficult and expensive. Moreover, although the spontaneously beating ESC or 

iPSC-derived cardiomyocytes expressed early cardiomyocyte lineage markers, they 

remained phenotypically immature and were more similar to neonatal cardiomyocytes than 

adult cardiomyocytes(100–102). In addition, stem cell-derived cardiomyocytes are not able 

to be maintained as a cell line and hence they are dependent on new isolations, which cause 

batch-to-batch-variations. For these reasons, the stem cell-based models have not yet 

replaced animal-based models in cardiac physiology research. Nevertheless, their ability to 

study patient unique genetic disorder on dish is a significant advantage. ESC and iPSC can 

be derived from patients suffering specific genetic diseases, and differentiated into 

cardiomyocytes that retain those disease-specific traits. Unlike other models, genetic 

manipulations are not required and even the causative mutation does not have to be known 

for generating a model. For example, a number of genetic mutations behind hypertrophic 

cardiomyopathy, the most common inheritable heart disease, have been identified using 

these models. Carvajal-Vergara et al.(103) generated iPSC from patients with LEOPARD 

syndrome (Lentigines, Electrocardiographic abnormalities, Ocular hypertelorism, 

Pulmonary valve stenosis, Abnormal genitalia, Retardation of growth and Deafness), a kind 

of HCM, that have a mutation at Thr468 in the PTPN11 gene. The cells retained the 

phenotype in patients with LEOPARD syndrome, such as increase in cell size, sarcomeric 

organization and preferential localization of NFATc4 in the nucleus. Using these cells, the 

authors discovered RAS-MAPK signal transduction as a novel signaling pathways that 

promote the disease phenotype. Besides, the stem cell-based model has been applied to 

study various genetic disorders, including familial dilated cardiomyopathy(104), Duchenne 

muscular dystrophy(105), Friedreich’s ataxia(106) and catecholaminergic polymorphic 

ventricular tachycardia(107). In summary, stem cell-based models are promising, but some 

improvements are yet necessary in the proliferation, differentiation, and maturation of the 

cells. Current use mostly focuses on personalized screening of the drugs and studies on 

specific gene mutations.

Supplementation of functional cardiomyocytes for dysfunctional hearts by trans-

differentiated ESC or iPSC is an attractive therapeutic option. As of 2018, 29 clinical trials 

involving hESC-derived stem cell products and three trials that involve hiPSC derivatives 

have been approved(108). Nevertheless, there seem to be several hurdles for these 

approaches to become a daily clinical practice. Common to both ESC and iPSC are potential 

risks of teratoma originating from residual pluripotent cells, the occurrence of arrhythmias 

and alloimmunization. Moreover, the efficiency of cardiomyogenic differentiation remains a 

challenge for both cell types. The key advantage of iPSC is the potential autologous 

application, whereas ESC lines are better standardized at the moment. Understanding the 

detailed characteristics as well as fine-tuning the trans-differentiation of ESC and iPSC 

cardiomyocytes is of paramount importance for therapeutic application.

2-5. Engineered cardiac tissues

While individual cell models provide important insights in cardiomyocytes pathophysiology, 

they do not account for cell-to-cell interactions, particularly those through direct contacts. In 
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vitro tissue culture models incorporate multi-cellular component and three-dimensional 

structure of the heart muscle in the model system, allowing assessment of more complex 

interactions between the cells in cardiac tissue. Engineered cardiac tissues are produced by 

culturing cardiomyocytes together with other cell types. These cultured engineered tissues 

are attached to microsensors that measure forces generated by the tissue. Effects of drugs or 

biological substances on cardiac tissue contraction can be evaluated using this 

system(109,110), and tissue-on-chip tools are developed to enable high-throughput drug 

screening using engineered cardiac tissues(111). Efforts to create engineered tissues with 

pumping function are also being made(112,113).

3. Ex Vivo models

Assessment of the heart function as a pump system cannot be examined in in vitro system at 

the moment. Explanted heart allows detailed characterizations of cardiac pump function and 

electrophysiology in a well-controlled manner. Langendorff perfusion is the most common 

method employed and uses retrograde perfusion of oxygenate physiological buffer(114). 

Hearts from various species have been studied using this approach including that from 

humans(115). Pressure and volume of the heart chambers are measured by inserting a sensor 

inside the cavity and the impact of ischemia and/or drug effects can be evaluated. Detailed 

electrophysiological properties can be studied by applying electrodes and also by imaging 

the fluorescent probes that are sensitive to ion fluxes(116). The advantage of this method is 

that it avoids interference from the autonomic nerve system and inter-organ 

communications, which allows examination of pure cardiac response against various 

interventions. Cross-circulation method is another ex-vivo model system(117). By 

circulating the heart through the blood circulation from another animal, it avoids potential 

interference from the artificial perfusate, while more closely mimicking the pulsatile 

perfusion in in vivo setting.

4. In Vivo models

In contrast to the controlled and cardiac specific in vitro and ex vivo model systems, in vivo 
models offer studies in more complex biological system. In vivo heart function is regulated 

by multiple inputs including autonomic nervous system, secreted hormones, and immune 

systems. Thus, to understand the effects of pathological stimuli, genes, and drugs on the 

heart in a whole biological system, in vivo models are essential. Cardiac diseases have been 

modeled in drosophila(118), zebra fish(119), and xenopus(120) with a focus on gene 

regulation and development, but these models are beyond the scope of this review. We will 

review commonly used small and large animal models of cardiac disease in below.

4-1. Rodent models of cardiac diseases

Rodent models play central roles in the experimental cardiac research in the laboratories. 

They have 4-chamber cardiac anatomy similar to humans with high similarity in genomic 

sequences(121), and are relatively easy to handle, require smaller space and less costly 

compared to more advanced species. Mouse models have become the most popular owing to 

widely available genetically modified lines and established techniques to manipulate 

expression of genes. Rats are also commonly used in the laboratories and offer better 
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surgical manipulations and imaging capabilities compared to mice. Genetically modified rat 

models are also increasingly used(122). Three major approaches to induce cardiac disease in 

rodents are surgical, pharmacological, and gene manipulation. Here, we summarize these 

models in below sections.

4-1a. Surgically induced models—Myocardial ischemia induced by surgical ligation 

or ischemic reperfusion of the coronary artery represents one of the most common surgical 

methods to model cardiac disease in rodents. Left anterior descending artery is usually 

targeted and a very thin suture is placed around the coronary artery. The coronary artery is 

ligated for inducing transmural infarction, whereas it is temporarily ligated and later released 

for ischemic reperfusion injury(123). Generally, 30 minutes of ischemia is sufficient to 

induce infarction, but the longer duration of ischemia and longer reperfusion time is 

associated with larger acute myocardial infarction(124). Successful induction of myocardial 

ischemia will result in tissue necrosis and apoptosis acutely, and leads to scar formation at 

the chronic stage. Degree of systolic dysfunction depends on size of the myocardial area 

perfused by the occluded coronary artery and ligation time until reperfusion(125). 

Challenges remain in inducing reproducible infarct size and cardiac dysfunction due to the 

inter-animal differences in coronary anatomy and difficulties in visualizing coronary arteries 

in some of the animals(126). Another commonly used surgically induced model is the aortic 

constriction. Aortic constriction increases cardiac afterload and the heart initially develops 

hypertrophy. Systolic function is usually maintained at this stage(127). However, after this 

adaptive hypertrophy phase, the heart gradually dilates and systolic function decreases(128). 

Degree of stenosis and the location of the constriction are the key factors that determine the 

speed of this process. Ascending aortic constriction generally results in more severe and 

rapid progression of heart failure, whereas it is slower with transverse aortic constriction. 

Commonly, 26 to 27 gauge needles are used to set the degree of stenosis for mouse 

transaortic constriction, while more variety of needle sizes are used for rat aortic 

constrictions. Type of sutures used can also affect the model phenotype as the sutures that 

swell (e.g. silk sutures) can expand and tighten the stenosis after surgery. Systolic 

dysfunction may not always develop in rat aortic constriction model and only part of the 

animals with severe ascending aortic constriction show decreased ejection fraction(129). 

Even using same tools and techniques, the speed of disease progression is sometimes 

operator dependent. Thus, prior characterization of operator-dependent disease progression 

is one of the key elements for designing the experimental study using this model. For 

inducing volume-overload heart failure, needle disruption of aortic(130) or mitral 

valve(131), and creation of aorto-venous fistula(132) are employed and result in dilation of 

the cardiac chambers with different cardiac remodeling pattern compared to pressure 

overload models as described later in the large animal model section(133).

4-1b. Pharmacologically induced models—Pharmacological approaches are also 

common in inducing cardiac diseases in rodents. Cardio toxins such as doxorubicin and 

trastuzumab are known to induce cardiac dysfunction in dose dependent manner. In addition 

to decreased cardiac contraction, interstitial fibrosis and increased cell death are found(134). 

Myocarditis are induced by injection of Coxsackievirus(135)or auto-antibodies against 

cardiomyocyte structures such as myosine(136) and troponin I(137). Myocarditis leads to 
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dilated cardiomyopathy at chronic stages in these models(135). Continuous infusion of 

isoproterenol using implantable osmotic pump can induce hypertrophy and eventually 

systolic dysfunction(138,139). Angiotensin II infusion using same technique can result in 

hypertrophy with characteristics similar to heart failure with preserved ejection 

fraction(140,141), while combination of unilateral nephrectomy and salty diet led to 

impaired systolic function(142). Monocrotaline is another substance that is used very 

commonly in rats to induce pulmonary hypertension. Single injection of monocrotaline 

results in pulmonary vascular remodeling and right ventricular failure that has similar 

characteristics to clinical pulmonary arterial hypertension. Nevertheless, some of the drugs 

that have shown efficacy in this model failed to show same benefit in clinical trials, 

suggesting incomplete representation of human disease. In addition, despite its advantage on 

simple and reliable induction method, monocrotaline is not very effective in inducing severe 

pulmonary hypertension in mice. To induce pulmonary hypertension in mice, SU5416 

(vascular endothelial growth factor receptor inhibitor) is often used in combination with 

hypoxia or other pulmonary vascular injury approaches. Although this is more cumbersome 

than monocrotaline model, it exhibits closer histological features to human pulmonary 

arterial hypertension(143).

4-1c. Gene manipulation models—Different cardiac phenotypes induced by specific 

gene knockout or overexpression are not within the scope of this review. There are some 

commonly used gene manipulated rodent models including salt-sensitive and spontaneously 

hypertensive mouse(144) and rat(145), obesity and type 2 diabetes(146), and combination of 

both hypertension and obesity(147). These models exhibit diastolic dysfunction and are 

important tools to study heart failure with preserved ejection fraction.

4-2. Other small and middle sized animal models

Guinea pigs, cats, and rabbits are also used for cardiac research. Their classifications are 

somewhat vague and guinea pigs are often included in rodents, and cats and rabbits are 

sometimes referred to as large animals. They are larger in size compared to mice and rats 

and offer easier surgical manipulation. Cardiac physiology is more similar to humans, as the 

heart rate is generally lower in larger species. In addition, guinea pigs present more 

similarity to human in electrophysiological properties compared to mice and rats(148), 

including intracellular Ca2+ handling, action potential shape, human-like QT alterations and 

arrhythmias associated with heart failure(149). Aortic banding is commonly performed in 

guinea pigs to induce hypertrophy(150). Cats with spontaneous hypertrophic 

cardiomyopathy have been reported(151) and provide opportunities to study this clinically 

relevant disease(152). Rabbits show similarities to human in myosin heavy chain ratio (β 
type predominant)(153) and abundance of calcium cycling proteins(154). Specifically, 

contribution of Na+-Ca2+ exchanger in diastolic Ca2+clearance is around 28–29% in rabbits, 

which is around 4-fold higher than mice and rats, while similar to humans(155). Surgical 

approaches are commonly used to induce cardiac diseases such as aortic banding, coronary 

ligation and tachypacing after pacemaker implantation(156). A unique rabbit model of 

vulnerable atherosclerotic plaque rapture was developed by a combination of vascular injury 

and high cholesterol diet(157). These middlesized animal models offer experiments in more 
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physiologically closer conditions to humans while being relatively cost-efficient compared 

to the larger animal models described in the following section.

4-3. Large animal models of cardiac diseases

Large animals commonly used for cardiac research include pigs, dogs, sheep and non-human 

primates. Their advantages over smaller animal models are physiological relevance and size 

similarity to humans, closer molecular characteristics, and availability in testing clinical 

sized devices and catheters. The disadvantage includes high cost for acquiring and 

maintaining the animals, requirement of large space and man power, more ethical concerns, 

and difficulties in obtaining aged or transgenic animals. Nevertheless, large animal 

experiments are the key step for translating new therapeutic approaches toward clinic by 

testing the efficacy in clinically relevant species, examining the safety, and defining optimal 

endpoint for future clinical trials. Several models have been established each mimicking 

different cardiac disease phenotypes that are found in patients.

4-3a. Ischemia models—Ischemia induced cardiac disease models are most commonly 

used in large animal cardiac research for its reproducible induction of systolic dysfunction 

and relatively simple method. Myocardial infarction associated with ischemic reperfusion 

injury can be developed by temporally blocking the antegrade coronary flow followed by 

reperfusion. Duration of ischemia determines the transmurality of the infarct, and short 

ischemia only induces myocardial stunning(158). Hedström et al(159) reported that duration 

of ischemia to develop 50% of infarction in the area at risk is significantly different between 

the species. Dogs required significantly longer ischemic time (181 min) compared to pigs 

(37 min) and rats (41 min) suggesting the importance of coronary collaterals, which is 

inherently rich in dogs(160). Left anterior descending artery or the left circumflex artery is 

commonly targeted to induce left heart failure. Occlusion of the proximal part of the left 

anterior descending artery is associated with larger infarct size and more cardiac remodeling 

at the chronic stage compared to the proximal left circumflex occlusion in pigs(161). 

However, some species have large left circumflex artery and the size of infarct follows the 

size of the area perfused by the occluded coronary artery. Thus, angiogram prior to induction 

of myocardial infarction can help predict the size of infarction. In contrast to semi-

transmural infarction, a complete transmural myocardial infarction can be induced by 

surgically ligating the coronary artery or occluding it with embolic coils using endovascular 

technique. Both approaches result in similar infarct size, but the degree of inflammation and 

vascularization may be more close to clinical MI after endovascular approach(162). 

Microembolization is another method that has been used to induce ischemic heart 

failure(163), but this method usually requires multiple injections of microbeads to induce 

modest cardiac dysfunction. Although cumbersome, advantages of this model are that the 

degree of dysfunction can be adjusted, and global LV dysfunction can be induced in contrast 

to the regional dysfunction seen in other MI models. Overdose injection of microbeads can 

be used to induce an acute cardiogenic shock model.

In patients, ischemic disease does not always develop acutely and slow progression of 

coronary atherosclerosis can cause chronic total occlusion. The ischemic myocardium is 

often rescued by collateral flow through small bridging channels, but the myocardium 
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becomes dysfunctional due to insufficient blood supply. This dysfunctional ischemic 

myocardium remain viable and is commonly called hibernating myocardium. Models of 

hibernating myocardium have been developed to study this interesting myocardial phenotype 

using coronary occluders(164–166) and flow limiting stents(167).

4-3b. Pressure-overload model—In contrast to the frequent use of pressure-overload 

models in rodent studies, large animal models of pressure-overload are less commonly 

employed relative to ischemic models. Nevertheless, considering the wide prevalence of 

hypertension in the clinic, large animal models of pressure-overload is crucial. Similar to 

rodents, aortic banding can be applied to large animals using surgical techniques. For the 

ascending aortic banding model, the hemodynamic profile is similar to patients with aortic 

stenosis except for that coronary arteries are perfused with increased pressure in animal 

models of ascending aortic banding. Whether this difference influences heart failure 

phenotype has not been studied well. These models exhibit significant macroscopic and 

microscopic hypertrophy, but systolic dysfunction seems to progress much slower than 

rodent models, if it does(168,169). Heart failure with preserved ejection fraction is a 

common heart failure phenotype found in the clinic and patients often have hypertension, 

suggesting its association to cardiac pressure-overload. Development of animal models that 

completely recapitulate heart failure with preserved ejection fraction is challenging, as the 

disease pathophysiology is likely multifactorial(170,171). Kidney wrapping on aged dogs 

has been reported to exhibit similar cardiac phenotype to heart failure with preserved 

ejection fraction and probably is one of the most relevant large animal models of this 

disease(172). Specifically, the animals exhibit impaired relaxation, increased left ventricular 

stiffness, and left atrial remodeling together with histological hypertrophy and fibrosis of 

myocardium(172,173). There are also efforts to create new clinically relevant models by 

inducing metabolic diseases in large animals(174).

4-3c. Volume-overload model—Valvular regurgitation, left-to-right cardiac or 

vascular shunt, and anemia can overload the heart with excessive volume and can promote 

cardiac dysfunction. Increased volume load results in high left ventricular end-diastolic 

pressure and dilates all cardiac chambers. Generally, systolic function is maintained until the 

end-stage of heart failure, but the heart dilates and exhibits eccentric hypertrophy(175). Both 

aortic and mitral valves can be targeted to overload the LV, but mitral valve regurgitation has 

been more often induced in large animal models. Surgical or percutanous severing of mitral 

valve cordae tendinae reliably induces mitral regurgitation and leads to development of 

chronic heart failure, but is accompanied by high mortality as high as 50%(176,177). High 

mortality is likely related to the diffculty in controlling the degree of regurgitation in this 

method. A unique method to control the degree of left ventricle to left atrial regurgitation is 

to implant a graft between the left ventricule and the left atrium(178). Although implantation 

is technically challenging, clmping of the graft enables easy correction of the regurgitation. 

For acute induction of mitral regurgitation, placement of inferior vena cava filters has been 

used and the degree of regurgitation can be controlled by adjusing the expansion of the 

filter(179). Mitral regurgitation also developes in patients post-myocardial infarction and is a 

predictor of worse prognosis. This can be reproduced in large animals by creating large 

infarction in the left ventricular posterior wall in sheep and pigs. These ischemic mitral 
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regurgitation models generally exhibit progressive deterioration of heart failure(180,181). 

Artery to venous fistula models are another common method to induce volume-overload 

heart failure in large animals(182). The degree of the shunt and the proximisity to the heart 

are the key factors that determine the severity of heart failure.

4-3d. Other phenotypes of heart failure—Tachycardia induced heart failure is a 

well-established and reproducible large animal model of non-ischemic cardiac 

failure(183,184). Rapid pacing of the atrium or the ventricle leads to elevation of left 

ventricular end-diastolic pressure accompanied by systolic dysfunction. Among different 

species, dog model of pacing induced tachycardiac heart failure has been the best 

characterized, and it uses a pacing rate of 200–230 bpm for 3–4 weeks. Slower pacing and 

shorter duration of pacing result in less severe heart failure phenotype(185). In this model, 

activation of neurohormonal systems and molecular changes relevant to human heart failure 

has been demonstrated(186). Similar to human tachycardic heart failure, cessation of 

tachypacing results in recovery of cardiac function, thus the dysfunction is reversible to a 

certain extent. Cardio-toxic drug injections into the coronary artery result in systolic 

dysfunction with fibrosis and myofiber atrophy(187,188). However, this approach is 

associated with high mortality and requires repetitive administration of drugs. In addition to 

the left heart failure, right heart failure can be induced by pulmonary arterial banding(189), 

pulmonary vein banding(190,191), pulmonary microbeads injection(192), artery-to-venous 

shunt(193) and pneumonectomy(194). In contrast to the LV failure models, right ventricular 

failure models are much less characterized and more research is needed to identify the 

differences between the right and left heart failures.

5. Conclusion

We reviewed commonly used in vitro and in vivo models of cardiac diseases. Wide spectrum 

of models offers various experiments dedicated to examine specific pathways and therapies, 

but the researchers need to be aware of their characteristics and relevance to clinical cardiac 

diseases. Development of more easily-induced, reproducible, and clinically relevant models 

as well as characterization of new and existing models are important for further refinement 

of experimental cardiac research.
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Table 1.

Comparisons of experimental models

In vitro Ex vivo In vivo

Features

• Relatively low cost

• Cardiomyocyte-specific 
assessments

• Minimize animal sacrifice

• High-throughput

• Controlled experimental 
setting

• Limited neurological and 
hormonal influences

• Able to assess pump 
function

• Acute studies only

• Incorporates biological 
complexity

• Clinically relevant disease 
models

• High cost and low 
throughput

• Long-term studies 
possible
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Table 2.

Comparisons of in vitro models

Neonatal cardiomyocytes Adult cardiomoycytes Cardiac cell lines ESC/iPSCs

Pros

• Easy primary isolation

• Able to culture for a 
long period

• Well-established 
checmical drugs to 
induce pathologic 
conditions

• High transfection 
efficiency

• High similarity 
to human cells 
in the 
morphology 
and behavior

• Able to obtain 
cells from 
diseased heart

• Able to assess 
contractility 
and Ca2+ 

transient

• Easy to culture

• Able to culture for a long 
period

• Able to passage and recover 
from a frozen stock

• High transfection efficiency

• Minimize animal sacrifices

• Derived 
from 
human 
source

• Able to 
assess Ca2+ 

transient

• Able to 
study 
human 
genetic 
disorder

Cons

• Immaturity

• Non-uniform contraction

• Limited gene 
manupulation 
methods

• Technically 
difficult to 
isolate cells

• Lack of cardiac phenotype

• Unable to assess 
contractility

• Technically 
difficult

• High cost

• Immaturity

• Batch-to-
batch 
variation

Application

• Hypertrophy assessment

• High-throughput drug 
screen

• Contractility 
measurement

• Ca2+ imaging

• Patch-clamp

• Sublocalization 
study by 
immunostaining

• High-throughput drug screen

• Toxicology

• High-
throughput 
drug screen

• Toxicology

• Ca2+ 

imaging

• Precision 
medicine
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