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Abstract

Aim: Glucocorticoids play a major role in regulating the stress response, and an imbalance of 

glucocorticoids has been implicated in stress-related disorders. Within mouse models, CpGs across 

the genome have been shown to be differentially methylated in response to glucocorticoid 

treatment, and using the Infinium 27K array, it was shown that humans given synthetic 
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glucocorticoids had DNA methylation (DNAm) changes in blood. However, further investigation 

of the extent to which glucocorticoids affect DNAm across a larger proportion of the genome is 

needed.

Methods: Buccal samples were collected before and after synthetic glucocorticoid treatment in 

the context of dental procedure. This included 30 tooth extraction surgery patients who received 10 

mg of dexamethasone. Genome-wide DNAm was assessed with the Infinium 

HumanMethylationEPIC array.

Results: Five CpGs showed genome-wide significant DNAm changes that was >10%. These 

differentially methylated CpGs were in or nearest the following genes: ZNF438, KLHDC10, 

miR-544 or CRABP1, DPH5, and WDFY2. Using previously published datasets of human blood 

gene expression changes following dexamethasone exposure, a significant proportion of genes 

with FDR-adjusted significant CpGs were also differentially expressed. A pathway analysis of the 

genes with FDR-adjusted significant CpGs revealed significant enrichment of olfactory 

transduction, pentose and glucuronate interconversions, ascorbate and aldarate metabolism, and 

steroid hormone biosynthesis pathways.

Conclusion: High-dose synthetic glucocorticoid administration in the setting of dental procedure 

was significantly associated with DNAm changes within buccal samples. These findings are 

consistent with prior findings of an influence of glucocorticoids on DNAm in humans.
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Introduction

Stress is a major contributing factor in the development of psychiatric disorders 1, 2. Major 

depressive disorder (MDD) has been linked to stress 1, 3, with the incidence of a depressive 

episode increased with a major stressful event 4. Approximately 17% of the population is 

affected by MDD and about 30% of patients do not undergo remission and suffer from 

chronic depression despite treatment 5, 6. Post-traumatic stress disorder (PTSD) is 

precipitated by a traumatic event, and it affects 5–10% of the population 7.

The hypothalamic-pituitary-adrenal (HPA) axis plays an essential role in mediating the 

stress response, which ultimately results in the release of glucocorticoids (GCs) from the 

adrenal cortex that regulate tissues throughout the body through the binding of GCs to the 

glucocorticoid receptor (GR) 8. Dysregulation of this system is often seen with chronic 

stress and in psychiatric disorders 9, 10. PTSD has been associated with suppressed cortisol 

levels, which can lead to hypersensitivity of the GR and enhanced negative feedback 

inhibition 11. In contrast, in MDD, blunted cortisol and adrenocorticotropic hormone 

responses are often present 12. These alterations in GC feedback on the HPA axis constitute 

one of the most consistent biomarkers for MDD and PTSD 13. The contribution of GCs to 

psychiatric disorders is further evidenced in a large epidemiological study of individuals 

given GC treatment for a range of inflammatory disorders 14. Individuals treated with GCs 

had an elevated risk of suicide or suicide attempt, depression, mania, delirium, and panic 
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disorder 14. This is consistent with the hypothesis that the impact of stress on psychiatric 

disorders is mediated in part by GC exposure.

MDD, PTSD, and stressful life events have all been associated with changes in DNA 

methylation (DNAm) 15–17. To tease out the role of GCs themselves, rodent models of GC 

exposure have been employed. One study reported DNAm changes in Fkbp5, the co-

chaperone of the GR, within the hippocampus 18, which was later found to correlate partially 

with similar changes in blood 19. A genome-wide investigation of GC exposure in mice 

found differentially methylated regions (DMRs) across the genome, and 209 DMRs that 

mapped to the same genomic coordinates in the hippocampus and blood were significantly 

changed with GC exposure in the same direction within both tissues 20.

Only one study, to our knowledge, has previously investigated genome-wide DNAm changes 

in response to synthetic glucocorticoid administration in humans. In that study, investigators 

examined patients with chronic obstructive pulmonary disease (COPD) and made a DNAm 

comparison using blood samples from those who were given glucocorticoid treatment and 

those who were not. The study was performed with the Illumina 27K methylation array 21. A 

total of 511 sites were significantly differentially methylated, and an enrichment of 

corresponding genes involved in membrane components, hemostasis and coagulation, 

cellular ion homeostasis, leukocyte and lymphocyte activation, and protein transport was 

found 21.

To better understand the impact of GC exposure on genome-wide methylation within 

humans, we investigated DNAm changes by comparing buccal samples taken before and 

after individuals underwent tooth extraction and were given a synthetic GC, dexamethasone, 

prior to the procedure. We employed the Illumina EPIC array, which assays >850,000 CpG 

sites, and we thus substantially expanded the coverage of the genomic landscape compared 

to earlier work.

Methods

Participants and sample collection

Two cohorts of individuals exposed to synthetic glucocorticoids were used and both were 

approved by the University of Iowa’s Human Subjects Research Institutional Review Board. 

Written informed consent was obtained. The first cohort included individuals recruited from 

the dental clinic (DC). These subjects underwent tooth extraction procedure, and 10 mg of 

dexamethasone was administered prior to surgery. From 30 individuals, buccal tissue was 

collected with swabs (Puritan, 25–1506 1PF TT MC) before and after dental surgery. Buccal 

samples were chosen because they are more easily obtained than blood samples, and the 

dental procedure patients had difficulty producing saliva for sampling. Subject 

characteristics from the DC cohort are in Table 1. Depressive symptoms and childhood 

adversity were measured with the Quick Inventory of Depressive Symptomatology Self-

Report (QIDS-SR-16) scale and the Adverse Childhood Experiences (ACE) questionnaires, 

respectively.
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The second cohort (NSG) included twenty-one subjects with medically intractable epilepsy 

undergoing neurosurgery who were recruited for a separate study between March 2014 and 

April 2017 at the University of Iowa Hospitals and Clinics. Before and after dexamethasone 

exposure, whole blood samples were collected in EDTA tubes, saliva samples with the 

Oragene DISCOVER™ kit (DNA Genotek Inc., OGR-500), and buccal tissue with swabs 

(Puritan, 25–1506 1PF TT MC). Resected brain tissue samples were taken within the 

operating room before dexamethasone exposure and between 30 minutes to 3 hours after. In 

total, both pre- and post-samples were collected for blood (n = 18), buccal tissue (n = 13), 

saliva (n = 21), and brain (n = 10). Samples were immediately stored and transported on dry 

ice and a portion of each brain region was sent to pathology to exclude tissues with 

malignancy. All samples were stored at −80°C. NSG sample characteristics are in Table 2.

Methylome assays

Genomic DNA was extracted from whole blood, buccal, saliva, and brain tissues with the 

MasterPure™ DNA extraction kit (Epicenter, MCD85201) following the respective 

protocols for each tissue type. DNA quality was assessed with NanoDrop spectrometry and 

quantified with the Qubit™ dsDNA Broad Range Assay Kit (ThermoFisher Scientific, 

Q32850). For each sample, 500 ng of DNA was bisulfite converted with the EZ DNA 

Methylation™ Kit (Zymo Research, D5002). The Infinium HumanMethylationEPIC 

BeadChip™ Kit (Illumina, WG-317–1002) was used to analyze genome-wide DNAm in all 

brain, blood, saliva, and buccal samples. The arrays were scanned with the Illumina iScan 

platform.

The methylation data were processed with the R packages Minfi and RnBeads 22–24. The 

two cohorts were analyzed separately. Background correction was performed with the Noob 

method in Minfi 23, 25. Using RnBeads, probes were filtered out if they: 1) overlapped within 

5 bp of a SNP (DC: 21,414; NSG: 21,358 probes), 2) had a detection P-value > 0.01 or were 

considered unreliable measures based on RnBeads’s greedy-cut algorithm (DC: 26,065; 

NSG: 18,864 probes), or 3) were context-specific sites (DC: 2,825; NSG: 2,873 probes). 

After filtering, 816,532 probes remained in the DC cohort and 822,996 in the NSG cohort. 

Samples were normalized with beta mixture quantile dilation (BMIQ) 26. Samples from the 

same individual were verified by generating a heatmap cluster of the 65 SNP probes on the 

array.

Statistical analysis

All statistical analyses were performed in R 27. Differential methylation was assessed with 

RnBeads using the limma method with a paired analysis by subject 24, 28. A hierarchical 

linear model was fitted with the empirical Bayes approach. Covariates included age, sex, and 

surrogate variables estimated with the “be” method 24, 29. Fisher’s exact test was performed 

for the enrichment of glucocorticoid expressed genes. The R package missMethyl was used 

for pathway analysis with KEGG-defined pathways, and it employs a hypergeometric test 

taking into account the number of probes per gene 30. For the comparison of DNAm from 

buccal and brain tissues, the correlation coefficient and associated p-value were calculated 

with Spearman’s test.
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Results

Genome-wide analysis of buccal samples from dental procedure patients

Thirty individuals were recruited from the dental clinic, and buccal samples were taken 

before and after tooth extraction procedure. Subject characteristics can be found in Table 1. 

Average age was 25.6 ± 7.6 years old. The QIDS-SR depressive symptom score average was 

7.6 ± 4.9, and the ACE average score was 2.3 ± 2.3, indicating a relatively young and 

healthy population. DNA samples were run on the Illumina EPIC array, and DNAm 

differences between pre- and post-dexamethasone samples were analyzed with the limma 

method in RnBeads, with a paired analysis adjusted for age, sex, and estimated surrogate 

variables.

For the analysis of individual CpGs, we set a Bonferroni genome-wide significance 

threshold for this experiment at p < 6.12 × 10−8 based on the 816,532 probes left after 

preprocessing, and we further only considered CpG changes meaningful if they showed 

DNAm differences greater than 10%. Figure 1 shows the distribution of individual CpG 

differences and their corresponding raw p-value. Five CpGs were genome-wide significant 

with differences greater than 10%, and all five also showed a decrease in methylation after 

dexamethasone exposure (Table 3). The top finding is an intergenic CpG closest to the zinc 

finger protein 438 (ZNF438; average DNAm: pre-steroid 68%, post-steroid 54%; p-value = 

3.21 × 10−9). Subsequent top findings that surpassed the Bonferroni threshold included 

CpGs in or near the following genes: KLHDC10 (average DNAm: pre-steroid 85%, post-

steroid 74%; p-value = 1.11 × 10−8), miR-544 or CRABP1 (average DNAm: pre-steroid 

82%, post-steroid 70%; p-value = 1.56 × 10−8), DPH5 (average DNAm: pre-steroid 73%, 

post-steroid 58%; p-value = 3.66 × 10−8), and WDFY2 (average DNAm: pre-steroid 92%, 

post-steroid 81%; p-value = 4.36 × 10−8). For a more comprehensive list of the top 

differential methylation results, Supplemental Table 1 contains all the CpGs with the less 

conservative FDR-adjusted p-value of 0.01 and differences greater than 10%.

We further investigated whether psychiatric risk genes showed evidence for differential 

methylation from dexamethasone administration. In this analysis, CpGs were considered 

significant if their FDR-adjusted p-value was < 0.05 and they had differences greater than 

10%. Among the genes considered (FK506 binding protein 5 [FKBP5], the glucocorticoid 

receptor [NR3C1], brain-derived neurotrophic factor [BDNF], the serotonin transporter 

[SLC6A4], and corticotropin-releasing hormone [CRH]), there were three significant CpGs 

in FKBP5, five in NR3C1, and one in BDNF (Table 4).

Additionally, the genes implicated in GWASs of schizophrenia, bipolar disorder, and MDD 

(N=366) were analyzed (Supplemental Table 2)31–33. 108 of the genes had at least one CpG 

that was differentially methylated, and 28 genes had at least one CpG that was differentially 

methylated and showed correlation between buccal and brain tissue DNAm. This included 

240 individual CpGs that were differentially methylated, and 35 that were differentially 

methylated and correlated (Supplemental Table 3).
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Pathway analysis

A pathway analysis was performed with KEGG-defined pathways using the missMethyl R 

package to correct for the different numbers of probes per gene on the array 30. Input for the 

analysis included CpGs with differences greater than 10% and FDR-adjusted p-values < 

0.01 (N = 2,587). Top pathways included olfactory transduction (FDR-adjusted p-value = 

1.15 × 10−3), pentose and glucuronate interconversions (FDR-adjusted p-value = 4.31 × 

10−3), ascorbate and aldarate metabolism (FDR-adjusted p-value = 4.31 × 10−3), steroid 

hormone biosynthesis (FDR-adjusted p-value = 4.31 × 10−3), and retinol metabolism (FDR-

adjusted p-value = 0.11; Table 5).

Overlap with genes differentially expressed following GC exposure

Differential gene expression within blood samples following administration of 1.5 mg 

dexamethasone has been investigated in two human studies 34, 35. These studies yielded 

1,052 genes that were differentially expressed in response to dexamethasone across both 

studies and that are covered on the Illumina EPIC array. As with the pathway analysis, genes 

that were included had at least one CpG that was differentially methylated in our data at 

FDR-adjusted p-value < 0.01 and a DNAm difference > 10%. Of these, 154 genes (15%) 

also showed a significant proportion with differential methylation after dexamethasone 

exposure within our study (Fisher’s exact p-value = 8.63 × 10−4; Supplemental Table 4).

Analysis of dexamethasone exposure in neurosurgery cohort

We performed an additional study in a separate cohort of patients given dexamethasone. In 

this cohort, patients undergoing neurosurgical brain resection for treatment refractory 

epilepsy were administered dexamethasone during surgery. Blood, buccal, saliva, and brain 

samples were taken before and after dexamethasone exposure. No genome-wide significant 

changes in DNAm were found from any of the tissues, though the top differentially 

methylated CpGs are listed in Supplemental Table 5. Of the CpGs with FDR-adjusted p-

value < 0.01 and differences > 10% from the dental procedure cohort, a subset replicated in 

additional tissues with differences greater than 10% and at nominal significance. This 

included 13 CpGs identified in samples from blood, 5 from buccal tissue, 58 from saliva, 

and 6 from brain (Supplemental Table 6). One CpG in the gene regulating synaptic 

membrane exocytosis 2 (RIMS2) was significant in all three peripheral tissues.

Correlation of buccal DNA methylation of top findings to brain tissue DNA methylation

With the NSG cohort in this paper, a separate analysis was performed of the five genome-

side significant results, assessing the degree of correlation between DNAm of buccal and 

brain tissues (n = 21), using a web-based resource we created, IMAGE-CpG (https://han-

lab.org/methylation/default/imageCpG) 36. We observed non-significant moderate 

correlation between brain and buccal DNAm for the CpG in WDFY2 (cg06335209; rho = 

0.5, p-value = 0.07), and low-moderate correlation for the CpG in KLHDC10 (cg01119284; 

rho = 0.3, p-value = 0.27).
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Discussion

This study assessed the impact of synthetic glucocorticoids on DNAm within humans. 

Studies in mice have demonstrated that chronic glucocorticoid exposure evokes DNAm 

changes across the genome in hippocampal and blood tissues 20. In a DNAm comparison of 

COPD patients with and without glucocorticoid treatment DNAm differences across 511 

CpGs were found in blood samples using the Illumina 27K array 21. Individuals with 

Cushing’s syndrome have sustained elevated glucocorticoid levels, and in a case-control 

Illumina 450K array study, additional DNAm differences were found to be associated with 

this disorder 37. Our study builds upon these reports by demonstrating across a larger portion 

of the genome DNAm changes that occur within individuals exposed to a single high dose of 

glucocorticoids.

Among the top differentially methylated CpGs in this study was one whose nearest gene is 

ZNF438, a gene implicated in transcriptional inhibition and in regulation of the immune 

system 38, 39, and both transcriptional control and the immune system are regulated by 

glucocorticoids. A decrease in methylation was also significant in a CpG within the gene 

that encodes the cellular retinoic acid binding protein 1 (CRABP1), a protein involved in 

retinoic acid-mediated proliferation and differentiation 40. CRABP1 binds to and catalyzes 

the destruction of retinoic acid 41. Of interest, in rats exposed to chronic unpredictable mild 

stress, Crabp1 was decreased in the hypothalamus 42. Though not FDR-significant, retinol 

metabolism was also one of the top pathways enriched from the dexamethasone-induced 

DNAm findings in this study. Retinoic acid regulates gene transcription and is important in 

processes including the development of the central nervous system 43 and neuronal plasticity 
44–46. Hyperactivity of the HPA axis along with anxious and depressive behaviors have been 

seen in rats treated with retinoic acid 47.

Intriguingly, steroid hormone biosynthesis was also among the top pathways, indicating that 

high dose glucocorticoid treatment may influence epigenetic regulation of the HPA axis. 

This is also supported by the differential methylation seen in FKBP5 and NR3C1. In 

addition, steroid hormone biosynthesis involves the production of other cholesterol-derived 

hormones in addition to cortisol, including estradiol, aldosterone, and testosterone, all of 

which interact with and mediate the stress response 48–54. The enrichment of steroid 

hormone biosynthesis genes suggests these genes may be regulated by dexamethasone-

induced DNAm changes.

A major limitation of this study is the potential confounding of cell-specific DNAm effects. 

Buccal samples were used, and although they are primarily epithelial cells, contamination 

from saliva, which predominantly includes white blood cells, could impact methylation 

levels. Additionally, the sample size was limited (n = 30), and a replication of the findings 

within the same dental procedure context was not possible. Therefore, we included the 

additional NSG analysis that involves the analysis of three peripheral tissues and resected 

brain tissue. However, this cohort was also limited in sample size (blood (n = 18), buccal (n 

= 13), saliva (n = 21), and brain samples (n = 10), and differences with the DC cohort 

include different dexamethasone doses and timing of the post-sample collection. 

Furthermore, the brain regions resected were not uniform among all the subjects. Future 
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studies will be needed to determine the functional impact of the differential methylation 

findings in response to GC exposure.

Our study investigated DNAm differences across the genome with the Illumina EPIC array 

in individuals given synthetic glucocorticoids. Significant DNAm changes were observed in 

genes involved in transcriptional inhibition, the immune system, cellular proliferation, and 

retinoic acid metabolism. High doses of synthetic glucocorticoid exposure may also impact 

the HPA axis through epigenetic modifications in steroid hormone biosynthesis genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The degree of significance of all individual CpGs represented on the Illumina EPIC array 

and their methylation differences after dexamethasone exposure in buccal samples from 

individuals who underwent tooth extraction (n = 30).

Braun et al. Page 12

Psychiatry Clin Neurosci. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Braun et al. Page 13

Table 1.

Clinical characteristics of the dental procedure study participants (n = 30)

Patient Sex Age GC duration (min) QIDS-SR_16 ACE

 2 female 31 112 3 1

 5 female 24 53 2 0

 7 female 22 109 5 3

 9 female 25 NA NA NA

13 male 26 118 5 1

14 female 19 106 4 0

16 male 22 118 15 5

17 female 21 170 15 3

18 female 36 134 NA NA

19 female 25 115 9 10

20 male 28 NA NA NA

21 female 23 107 9 4

22 female 24 244 16 3

24 female 19 128 NA NA

26 female 25 137 NA NA

28 female 29 199 9 1

29 male 25 135 4 0

30 male 18 110 13 2

33 female 24 112 NA NA

35 female 19 101 4 5

36 female 22 45 0 1

41 male 27 124 NA NA

43 male 19 44 6 2

44 female 36 35 2 0

45 male 22 58 5 0

52 female 22 NA 8 1

54 male 58 130 17 2

55 male 19 230 3 3

57 female 30 NA 10 1

58 female 27 110 11 4
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Table 5.
Significance of top KEGG-defined pathways enriched for genes with CpGs differentially 
methylated after dexamethasone exposure in buccal samples from individuals who 
underwent tooth extraction.

N = number of genes in the pathway. DM = number of genes with differentially methylated CpGs within the 

associated pathway.

Pathway N DM p.val fdr

Olfactory transduction 406 50 3.50E-06 1.20E-03

Pentose and glucuronate interconversions 34 14 3.40E-05 4.30E-03

Ascorbate and aldarate metabolism 27 12 4.60E-05 4.30E-03

Steroid hormone biosynthesis 59 18 5.30E-05 4.30E-03

Retinol metabolism 66 15 2.00E-03 0.11

Drug metabolism - cytochrome P450 69 15 2.00E-03 0.11

Porphyrin and chlorophyll metabolism 42 12 2.80E-03 0.13

Axon guidance 174 46 5.20E-03 0.2

Chemical carcinogenesis 82 16 5.60E-03 0.2

Drug metabolism - other enzymes 79 17 6.70E-03 0.22
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