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Geographic Variation and Bias in the Polygenic Scores
of Complex Diseases and Traits in Finland

Sini Kerminen,1 Alicia R. Martin,2,3,4 Jukka Koskela,1 Sanni E. Ruotsalainen,1 Aki S. Havulinna,1,5

Ida Surakka,1,6 Aarno Palotie,1,2,3,7,8 Markus Perola,1,5 Veikko Salomaa,5 Mark J. Daly,1,2,3,4

Samuli Ripatti,1,9 and Matti Pirinen1,9,10,*

Polygenic scores (PSs) are becoming a useful tool to identify individuals with high genetic risk for complex diseases, and several projects

are currently testing their utility for translational applications. It is also tempting to use PSs to assess whether genetic variation can

explain a part of the geographic distribution of a phenotype. However, it is not well known how the population genetic properties of

the training and target samples affect the geographic distribution of PSs. Here, we evaluate geographic differences, and related biases,

of PSs in Finland in a geographically well-defined sample of 2,376 individuals from the National FINRISK study. First, we detect

geographic differences in PSs for coronary artery disease (CAD), rheumatoid arthritis, schizophrenia, waist-hip ratio (WHR), body-

mass index (BMI), and height, but not for Crohn disease or ulcerative colitis. Second, we use height as a model trait to thoroughly assess

the possible population genetic biases in PSs and apply similar approaches to the other phenotypes. Most importantly, we detect

suspiciously large accumulations of geographic differences for CAD, WHR, BMI, and height, suggesting bias arising from the

population’s genetic structure rather than from a direct genotype-phenotype association. This work demonstrates how sensitive the

geographic patterns of current PSs are for small biases even within relatively homogeneous populations and provides simple tools to

identify such biases. A thorough understanding of the effects of population genetic structure on PSs is essential for translational appli-

cations of PSs.
Introduction

Understanding the causes behind geographic health differ-

ences can help to optimally apply limited healthcare

resources and improve public health. Geographic health

differences can be partially explained by lifestyle and

environmental factors, but also by genetic differences

that affect health both through population-specific genetic

diseases, e.g., the Finnish Disease Heritage (see Web

Resources), and through variation in the polygenic

components of many complex diseases.1–3 In particular,

recent discoveries from genome-wide association studies

(GWASs)4 have enabled improved polygenic prediction

of complex diseases and traits and raised expectations for

their future translation to clinical use.5–8 It is an open ques-

tion to what extent the geographic distribution of pheno-

types could be explained by their polygenic predictions.

A standard way to estimate a polygenic score (PS) of an

individual is to select a set of independent variants identi-

fied by a GWAS, to weight the number of copies of each

variant by its estimate of effect size from the GWAS, and

to sum these quantities over the variants. PSs have turned

out to be a useful tool for identifying individuals at high

risk for many diseases, such as breast cancer,5 prostate

cancer,9 and Alzheimer disease.8 As an example, a PS for

coronary artery disease (CAD) can characterize individuals
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who have a risk that is equivalent to that of carrying a

monogenic variant of familial hypercholesterolemia.7 At

the same time, two recent studies have raised concerns

about comparing PSs between populations with varying

demographic histories.10,11 Both studies showed that

when a PS was built on a GWAS conducted in European

populations and then applied to populations from Africa

or East Asia, the differences in the PS were inconsistent

with the actual phenotypic differences between the popu-

lations. Exact reasons for this inconsistency are unclear,

but it has been speculated that a complex interplay of pop-

ulation genetic differences, including varying linkage-

disequilibrium patterns and allele-frequency differences,

between the target sample and the GWAS data can limit

generalizability across populations.10,11 Can similar prob-

lems appear also within a much more genetically and

environmentally homogeneous setting than between

populations from different continents? This is a crucial

question for the public healthcare systems in countries

that have the growing potential to implement PSs as part

of their population-wide practice.

In this work, we evaluate the geographic distribution of

the PSs of several complex diseases and traits in Finland

anddemonstratehowtheeffect of geneticpopulation struc-

tureneeds tobe assessedbeforePSs canbecomea robust tool

for population-wide use. The data resources available in
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Figure 1. A Comparison of Genetic Population Structure, Incidence Rates, and Distribution of the Polygenic Score of Coronary Artery
Disease in Finland
(A–C) Main genetic population structure (A), the incidence rate for age-adjusted coronary artery disease (CAD) in 2013–2015 (Sepelval-
timotauti-indeksi, see Web Resources) (B), and the distribution of the polygenic score (PS) for CAD (C) in Finland. The population struc-
ture was estimated by clustering 2,376 samples into two groups.13 The incidence rate is scaled to have a mean¼ 100. The PS distribution
is shown in units of standard deviation.
Finland provide several favorable characteristics for this

study. First, on a world-wide scale, Finland has a demo-

graphically and socially homogeneous population and a

top-level public healthcare system,12 and these together

reduce many possible environmental effects contributing

to geographic variation in health. Second, some notable

geographic differences in phenotypes and general health

still occur in Finland. A good example is the CAD incidence

rate that is 1.6 times higher in eastern Finland than inwest-

ern Finland (Sepelvaltimotauti-indeksi, seeWeb Resources)

(Figure 1). In fact, even larger differences in CAD incidence

were observed in the 1970s, and despite the extensive and

successful public health campaign to reduce these rates

through the Northern Karelia project,14 differences be-

tween east and west still remain today. Third, the genetic

structure in Finland is well-characterized13,15–19 (Figure 1),

a factor that enables a detailed comparison between the

geographic distribution of PSs and the overall genetic

population structure within the country.

In our analyses, we observe clear geographic structure

in PS distributions for most phenotypes considered.

Furthermore, the spatial pattern is similar across the

phenotypes and resembles the population genetic east-

west division of Finland (see a comparison for CAD in

Figure 1). Although a population genetic difference can

well result in such patterns, a major goal of this work was

to thoroughly assess whether these geographic patterns

could alternatively result from some bias that emerges

when the GWAS estimates of tens of thousands of variants

are accumulated into PSs. We do this by generating many

versions of PSs with different variant-inclusion criteria

and by monitoring how the geographic structure accumu-

lates across these PSs.
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To demonstrate our approach, we consider the adult

height (HG) as a model trait. In addition to HG, we apply

our approach to two additional quantitative traits, body-

mass index (BMI) and waist-hip ratio (WHR), in five dis-

eases: coronary artery disease (CAD), rheumatoid arthritis

(RA), schizophrenia (SCZ), Crohn disease (CD), and ulcer-

ative colitis (UC). The results suggest that polygenic

components of CAD, RA, SCZ, WHR, BMI, and HG show

differences along the east-west direction, whereas only

HG and WHR also show differences in the north-south di-

rection. PSs for CD and UC do not show significant

regional differences in either direction. Last, we discuss

the credibility of the observed geographic differences. In

particular, we report possible population-stratification-

related biases in PSs for CAD, WHR, BMI, and HG. Our

results raise concerns about how to reliably interpret

geographic variation in PSs even within relatively homoge-

neous populations.
Material and Methods

Geographically Defined Target Data
We used data from the National FINRISK Study, which is a survey

of the Finnish adult population (aged from 25 to 74) to estimate

risk and protective factors of chronic diseases.20 The FINRISK

Study has collected several thousand samples every five years since

1972. We used data from the FINRISK Study survey of 1997 from

2,376 individuals in a geographically defined sample that was

previously described in Kerminen et al.13 The two parents of

each individual in this sample were both born within 80 km of

each other. For the genetic analyses, we used genotypes from Illu-

mina HumanCoreExome-12 BeadChip (see details in Kerminen

et al.13) and imputed genotypes as described by Ripatti et al.21
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Table 1. Summary of the Background GWAS and Our Polygenic Scores

Trait Study Method GWAS Ancestry GWAS N
Finnish
Samples Filtering in PS SNPs in PS

CAD CARDIoGRAMplusC4D
(Nikpay et al., 201523)

Logistic European þ
South Asian þ
East Asian

60,801/123,504 5,825/5,639 P value, MAF, MHC,
INFO, #Cohorts

19,597

RA Okada et al., 201424 Logistic European 18,136/49,724 – P value, MAF, MHC 32,736

CD IIBDGC (Liu et al., 201525) Logistic European 5,956/14,927 – P value, MAF, MHC,
INFO, #Cohorts

21,771

UC IIBDGC (Liu et al., 201525) Logistic European 6,968/20,464 – P value, MAF, MHC,
INFO, #Cohorts

23,513

SCZa PGC (Ripke et al., 201426) Logistic European þ
East Asian

36,989/113,075 –a P value, MAF, MHC,
INFO, #Cohorts

30,311

WHR GIANT (Locke et al., 201527) Linear European 224,459 �16,000 P value, MAF, MHC,
#Samples

13,727

FINRISK20 Linear Finnish 24,919 24,919 P value, MAF, MHC 43,252

BMI GIANT (Shungin et al., 201528) Linear European 322,154 �23,000 P value, MAF, MHC,
#Samples

12,742

UKBB (Neale lab29) Linear White British 337,199 – P value, MAF, MHC 75,979

FINRISK20 Linear Finnish 24,919 24,919 P value, MAF, MHC 44,920

HG GIANT (Wood et al., 201430) Linear European 253,288 �23,000 P value, MAF, MHC,
#Samples

27,066

UKBB (Neale lab29) Linear White British 337,199 – P value, MAF, MHC 113,079

FINRISK20 Linear Finnish 24,919 24,919 P value, MAF, MHC 50,536

For diseases, GWAS N ¼ affected individuals/controls. The filtering column describes the thresholds used as follows: p value ¼ p value < 0.05; MAF ¼Minor allele
frequency > 0.01; MHC ¼ major histocompatibility complex removed; INFO ¼ imputation quality > 0.9; #Cohorts ¼ exists in over 90% of GWAS cohorts;
#Samples ¼ exists in over 90% of GWAS samples. Other abbreviations are as follows: CAD ¼ coronary artery disease; RA ¼ rheumatoid arthritis; CD ¼ Crohn
disease; UC ¼ ulcerative colitis; SCZ ¼ schizophrenia; WHR ¼ waist-hip ratio; BMI ¼ body-mass index; and HG ¼ height.
aOur SCZ-PS excludes Finnish samples (546/2,011) from Ripke et al. In Figures S6 and S7 we show SCZ-PS, including these Finnish samples.
Variant Filtering for Polygenic Scores
We derived PSs in our target data for each disease and trait on the

basis of large international GWAS meta-analyses whose summary

statistics were publicly available. We derived all PSs by excluding

variants whose minor allele frequency (MAF) was below 1% in a

meta-analysis, whose meta-analysis p value was above 0.05, or

that resided in the major histocompatibility complex (chr 6:

25–34 Mb).22 In addition, where applicable, we filtered out

variants whose imputation quality was below 90% or variants

that had been present in less than 90% of the cohorts or samples

of the meta-analysis. We also excluded all multi-allelic variants.

Table 1 summarizes GWAS characteristics and variant filtering

for all PSs. Finally, the PSs were built by selecting independent

variants with PLINK 1.931 (see Web Resources) via the clump com-

mand with a 500 kb window radius and a 0.1 threshold for r2.

Additional GWASs for FINRISK, UK Biobank, and GIANT
FINRISK

We used Hail (see Web Resources) to run standard linear re-

gression for HG, BMI, and WHR (adjusted for BMI) in 24,919

individuals across the National FINRISK Study collections from

1992–2012. These data excluded all 2,376 target individuals.

We used sex, age, FINRISK project year, genotyping chip, and

the first ten principal components of population structure as co-

variates in the analysis. In addition, we ran a linear mixed model

for HG with BOLT-LMM v.2.332 with the same samples and

covariates.
The America
UK Biobank

For the UK Biobank (UKBB), we performed a linear mixed model

GWAS for HG with BOLT-LMM v2.3.32 For this analysis, we

mimicked the linear regression analysis (round 1) of the Neale

lab29 and used UKBB v2 genotypes on 343,728 samples with

white British ancestry. We used age, sex, and the first 20 prin-

cipal components as covariates, and we used directly genotyped

variants with a MAF above 1% and missingness below 10% for

generating the variance component. GWAS statistics were calcu-

lated for imputed data with a MAF above 0.1% and an imputa-

tion quality above 0.7.

GIANT

We made two additional versions of the GIANT consortium

meta-analysis with METAL,33 as in Wood et al.,30 except that

in the first version we excluded the cohorts that included sam-

ples from the National FINRISK Study (FUSION, MIGEN,

and COROGENE) and in the second version we excluded all

cohorts that included any Finnish samples (DGI, FTC, FUSION,

GENMETS, MIGEN, NFBC1966, COROGENE, FINGESTURE,

HBCS, and YFS).

Polygenic Scores
We calculated PSs for the target set of 2,376 FINRISK individuals by

using the additive model of:

PSi ¼
XM
j¼1

xij
bbj;
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Table 2. Results from the Linear Model for Correlated Data where Polygenic Score is Explained by Latitude or Longitude

Latitude Longitude

Trait SNPs Estimate P value Estimate P value WF-EF Difference (95% CI)

CAD 19,597 �6.3 3 10�4 0.97 0.05 1.6 3 10�4* �0.63 (�0.71, �0.55)

RA 32,736 0.03 0.12 0.06 5.5 3 10�5* �0.63 (�0.71, �0.55)

CD 21,771 0.03 0.18 �0.002 0.87 0.10 (0.01, 0.19)

UC 23,513 0.03 0.23 0.02 0.22 �0.26 (�0.35, �0.18)

SCZ 30,311 0.04 8.7 3 10�2 0.04 4.0 3 10�3* �0.35 (�0.43, �0.26)

BMI 12,742 0.03 9.4 3 10�2 0.04 1.8 3 10�3* �0.53 (�0.61, �0.44)

WHR 13,727 0.10 1.0 3 10�9* 0.08 4.7 3 10�12* �1.16 (�1.23, �1.09)

HG 27,066 �0.18 1.1 3 10�40* �0.15 2.1 3 10�60* 1.51 (1.45, 1.58)

SNPs ¼ number of variants in PS. The difference in PS between Western Finland (WF) and Eastern Finland (EF) subpopulations is given in the standard deviation
unit of PS. * marks a p value < 0.05. Abbreviations are as follows: CI ¼ confidence interval, CAD ¼ coronary artery disease; RA ¼ rheumatoid arthritis; CD ¼ Crohn
disease; UC ¼ ulcerative colitis; SCZ ¼ schizophrenia; WHR ¼ waist-hip ratio; BMI ¼ body-mass index; and HG ¼ height.
where PSi is a polygenic score for individual i, M is the number of

SNPs in the score (after variant filtering), xij is the individual’s

(imputed) genotype dosage for SNP j, and bbj is the effect size

estimate of SNP j from the GWAS.
Genetic Risk Maps
To visualize the geographic distribution of PSs, we used the

geographic locations of our geographically well-defined sample

of 2,376 individuals and their PSs. We estimated an individual’s

geographic location as the mean of his or her parents’ birth-

places. We then created risk maps in R by using a geographical

centroid approach; this approach lays a grid on the map of

Finland, and for each grid point p, it calculates the average of in-

dividuals’ PSs inversely weighted by their squared distance to the

grid point as

PSp ¼ 1

rTot

XN
i¼1

PSi
r2ip

;

where rip is the distance between individual i and grid point

p and rTot ¼
P
i

1=r2ip is the sum of the weights. We used a grid

with a square size of 10 km and limited the minimum value for

rip to be 50 km to avoid high variance in weights. In addition,

to control for uncertainty in the areas that have a low sample

size, we added to the calculation of PSp one pseudo-individual

whose PS is the population average PS and whose distance to

the point p is the minimum of the observed distances rip. This

modification draws the PS values of grid points toward the popu-

lation average, especially in sparse areas where there are few

individuals at the minimum range from the grid point. Last,

the risk maps were scaled by the population average and standard

deviation with a subset of 1,042 geographically evenly distributed

individuals as described in Kerminen et al.13 The border line

for the map of Finland was obtained from GADM (see Web

Resources).
A Linear Model for Correlated Data for Assessing Spatial

PS Differences
To quantify whether the PS has geographic differences, we

performed a regression analysis with a linear model for correlated
1172 The American Journal of Human Genetics 104, 1169–1181, Jun
data wherein we explained PS with latitudinal or longitudinal

coordinates and accounted for genetic relatedness as

PSi ¼mþ xiaþ ε ε � N
�
0;s2

ε
RÞ;

where xi is the coordinate of individual i, m is the intercept,

and a is the effect of latitude or longitude on PS reported in

Tables 2, S4, S6 and S7. For the structure of the error terms, we

used the genetic relationship matrix R that was estimated with

PLINK 1.931,34 (command --make-rel) with 61,598 independent

variants from the Illumina HumanCoreExome chip described

in Kerminen et al.13 Regression results from the standard linear

model without accounting for genetic relatedness are shown in

Table S1.
Polygenic and Phenotypic Differences between

Subpopulations
The two main subpopulations in Finland are located in western

Finland (WF) and eastern Finland (EF); they were previously

described in Kerminen et al.13 and are shown in Figure 1A. Here,

we reproduced this analysis by using CHROMOPAINTER and

FineSTRUCTURE35 with our current sample of 2,376 individuals

to estimate both phenotypic and polygenic score differences

between these two populations. The analysis divided our target

sample into 1,604 EF and 772 WF individuals, and we used this

division for estimating the differences between subpopulations.

PS Differences in Standard Deviation Units

We calculated the PS differences between the subpopulations by

first scaling the PSs of the target sample with the subset of 1,042

geographically evenly distributed samples. We then used scaled

PSs to calculate the difference between WF and EF. This strategy

ensured a robust comparison between PSs on the basis of a fixed

reference set. The 95% confidence intervals for the difference be-

tween two groups were given by Welch’s t test in R 3.4.1.36

Phenotypic Differences Predicted by PS

For HG, BMI, and WHR, we also estimated the phenotypic differ-

ence predicted by PS between our subpopulations. First, we fitted

the linear model wherein we explained the phenotype with the

general covariates of sex, age (measured in 1997 and also repre-

sented by the birth year), and age2 (WHR was additionally

adjusted for BMI) in our target sample. Then we fitted another
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linear model wherein we explained the residuals with PS. On the

basis of the effect estimates of the second model, we were able

to estimate the predicted phenotypic effect by multiplying the

PS effect estimate with the PS difference between the populations.

We estimated the respective 95% credible intervals by using a

simulation approach wherein we generated 100,000 sample pairs

of effect estimates for PS difference, d, and PS effect on phenotype,

b, from their sampling distributions, and we used the empirical

distribution of d*b to determine the 95% credible interval. The

sampling distribution of d was modeled as a normal distribution

with a mean set to the observed PS difference and the standard de-

viation calculated from the 95% confidence interval from the

Welch’s t test as ðx� CIlowÞ=1:96. The sampling distribution of b

was modeled as a normal distribution with a mean set to the

observed effect estimate and the standard deviation set to the cor-

responding standard error from the linear model.

Observed Phenotypic Differences for HG, BMI, and WHR

We estimated the observed phenotypic differences in HG, BMI,

andWHR betweenWF and EF by adjusting the corresponding trait

for sex, age, and age2 (WHR was additionally adjusted for BMI) via

linear regression, and then we calculated the difference of the sub-

population means on the basis of the residuals from this regres-

sion. The residuals were maintained in the units of the original

phenotypes.
P Value Thresholding in PSs
We studied the effect of p value threshold for our PSs by applying

seven different thresholds (p value< 13 10�2, 13 10�3, 13 10�4,

1 3 10�5, 1 3 10�6, 1 3 10�7, and 1 3 10�8) to the variants of

initial PSs (that used a threshold of 0.05) and calculated the addi-

tional PSs as described above.
Detecting Accumulation of Biases with Weakly

Associated Variants (‘‘Random PSs’’)
To detect the accumulation of biases, we used an approach where

we first filtered the GWAS summary statistics similarly to the orig-

inal scores (as explained above), except we considered only vari-

ants with the GWAS p value > 0.5. This left us with, at most,

very weakly associated variants. Among these p > 0.5 variants,

we performed linkage disequilibrium (LD) clumping with the

same parameters as above, except we set the p value cut-off to 1

in order to not further exclude any variant on the basis of its

p value, and we permuted the p values among the p > 0.5 variants

to ensure that the resulting scores are randomwith respect to their

p value. LD clumping resulted in different numbers of variants for

different traits, and from those we randomly sampled increasing

numbers of variants (5,000, 10,000, 20,000, 40,000, 60,000, and

80,000). For BMI and WHR, the remaining number of variants af-

ter LD clumping was <80,000, and hence we were not able to

compute a PS for 80,000 for these two traits. Finally, we calculated

the PS for each individual and evaluated the difference between

subpopulations in these ‘‘random PSs.’’ To assess uncertainty, we

repeated the random PS generation ten times, and we report the

mean and the range of the subpopulation difference over these

ten random PSs.

To understand the expected behavior of PSs with truly zero

effect sizes and to compare with our observed random PSs, we

generated 1,000 simulated PSs for each observed random PS. These

PSs were simulated from the variants from the random PSs but

sampled their effect estimates independently from a normal distri-

bution with a mean of zero and a standard deviation that corre-
The America
sponded to the standard error of the variant in GWAS. In Figure 5,

we see that the 95% highest probability interval of the population

difference is approximately constant across the different number

of variants in the PSs and across the different GWASs. Supple-

mental Text S1 describes the theoretical basis for this property.

Our simulated 95% intervals assume completely independent

variants, whereas our PS pipeline used a more liberal LD threshold

of r2 < 0.1. Therefore, we also compared the effects of residual LD

to our random scores by performing LD clumping with r2 thresh-

olds of 0.01 and 0.001 for CAD and HG with GIANT and UKBB

data. Figure S1 shows that, for GIANT-PS, the residual LD does

not have an effect on the accumulation of population difference,

and a similar tendency is suggested for CAD-PS even though the

data are limited. For UKBB-PS, there is no accumulation of differ-

ence for any r2 threshold.

The imputation-quality filter did not noticeably affect the re-

sults from either the actual PS or the random PS (Figure S2).
Results

Polygenic Scores Show Geographic Differences in

Finland

We estimated PSs across Finland by using a geographically

well-defined sample of 2,376 individuals from the National

FINRISK Study 1997 survey.20 The parents of each of these

2,376 individuals were born within 80 km of each other,

and the means of the parents’ coordinates were used as

the individuals’ locations. We derived PSs for the individ-

uals with summary statistics from publicly available

GWAS meta-analyses by applying LD pruning (r2 < 0.1),

MAF filtering (MAF > 0.01), and p value thresholding

(p < 0.05) (see Material and Methods). To visualize the re-

sults on the map of Finland (Figure 2), we estimated the

score at each map point by averaging individuals’ PSs

inversely weighted by the individuals’ squared distance

from the point (see Material and Methods).

We applied our approach to five diseases, CAD, RA, CD,

UC, and SCZ, as well as to three quantitative traits, BMI,

WHR adjusted for BMI, and HG. We observe that the PS

patterns for CAD, RA, SCZ, BMI, HG, and WHR closely

resemble the main population structure in Finland

(Figure 1A). CD and UC do not show clear geographic

differences between any parts of the country.

To evaluate statistically whether the PSs show

geographic differences, we quantified the patterns by using

a linear model for correlated data, wherein we explained

individuals’ PSs with either longitude or latitude and ac-

counted for genetic relatedness of the samples (seeMaterial

and Methods). The strongest differences were observed for

HG (p¼ 2.13 10�60) andWHR (p ¼ 4.73 10�12) based on

longitude, and lower but non-zero differences were

observed for CAD, RA, SCZ, and BMI (all with p < 0.05)

(Table 2, see Table S1 for results based on the standard

linear model without accounting for genetic relatedness).

HG and WHR showed differences also based on latitude,

whereas CD and UC did not show differences based on

either longitude or latitude. Table 2 also shows that the

difference in PS between WF and EF subpopulations is
n Journal of Human Genetics 104, 1169–1181, June 6, 2019 1173



Figure 2. Distribution of Polygenic Scores in Finland
(A–H) Distribution of polygenic scores for (A) coronary artery disease, (B) rheumatoid arthritis, (C) Crohn disease, (D) ulcerative colitis,
(E) schizophrenia, (F) body-mass index, (G) waist-hip ratio adjusted for body-mass index, and (H) height. P values correspond to the
association with longitude presented in Table 2.
the largest in HG (1.51 SDs) and in WHR (�1.16 SDs). In

general, we observed stronger PS differences between east

and west than between north and south, and this observa-

tion is in line with the main population structure in

Finland.

Recently, it has been reported that PS differences between

populations are prone to technical and confounding biases

arising especially from population genetic differences (i.e.,

genetic divergence) or relatedness structure between the

GWAS discovery and the target data.10,11,37–39 To assess

whether some of the results in Figure 2 and Table 2 might

be affected by these problems, we next concentrate on eval-

uating our PSs in several ways. We used HG as a model trait

for developing the methodology.

Height PSs in Three Independent Cohorts

Adult height (HG) is a highly heritable and polygenic

trait30,40,41 and shows clear phenotypic differences in

Finland; western Finns are on average 1.6 cm taller than

eastern Finns (see Material and Methods and Figure 3A).

Furthermore, HG is a quantitative trait that makes it

possible to compare geographic differences between the
1174 The American Journal of Human Genetics 104, 1169–1181, Jun
observed phenotype and the predictions based on PS. For

such comparisons, we regressed out effects of sex, age,

and age2 fromHG by using residuals from a standard linear

model.

We calculated HG-PS by using summary statistics from

three independent GWASs, including results from the GI-

ANT consortium (a meta-analysis from a heterogeneous

set of European samples),30 the UK Biobank (a single

cohort of uniformly genotyped and phenotyped white-

British samples), and the National FINRISK study (Finnish

samples genotyped with two different chips) using our

standard pipeline (see Material andMethods). Table 3 sum-

marizes the performance of these three scores.

The GIANT consortium height GWAS is a meta-analysis

of 250,000 samples from multiple European populations,

and it includes about 23,000 Finnish samples.30 The GI-

ANT-PS included 27,000 variants, explained 14% of the

variance of height, and showed dramatic geographic differ-

ences in Finland (Figure 3B). The GIANT-PS was 1.5 SDs

larger in WF than in EF, and we estimated, by regressing

height on this PS in the target sample of 2,376 Finnish in-

dividuals, that this difference would correspond to a
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Figure 3. Distributions of Adult Height and Three Polygenic Scores for Height
(A–D) A distribution of sex-, age-, and age2-adjusted adult height (A) and polygenic score (PS) distributions of GIANT-PS (B), UKBB-PS (C),
and FINRISK-PS (D) for height in Finland. The values are presented in standard deviation units.
predicted height difference of 3.5 cm between WF and EF

(see Material and Methods). This difference is over twice

the observed phenotypic difference between the subpopu-

lations. Note that even if we assumed that all variation in

height was genetic, we would expect our GIANT-PS (that

has R2 < 15%) to explain only a part of the actual 1.6 cm

WF-EF height difference. This raises concerns that in our

target sample, GIANT-PS produces geographically biased

results that cannot be interpreted directly on the pheno-

typic scale. The predicted WF-EF difference was even larger

for GIANT-PS if the HG-on-PS regression was done

within the WF subpopulation (4.7 cm) or within the EF

subpopulation (6.4 cm) alone (Table S2), indicating chal-

lenges of interpretability for absolute differences among

subpopulations.

Second, we built a PS based on over 330,000 UK Biobank

British ancestry samples analyzed by the team led by

Benjamin Neale.29 Using the same pipeline as with

GIANT-PS, this UKBB-PS contained considerably more var-

iants and gave qualitatively similar geographic results to

GIANT-PS, but quantitatively it showed much smaller

WF-EF differences (Figure 3C). UKBB-PS explained 22%

of the variation of height in the target sample and corre-

sponded to a 0.6 cm predicted WF-EF difference in height.

Third, we built a PS based on the Finnish-population-

specific summary statistics from the National FINRISK

Study.20 This FINRISK GWAS included nearly 25,000 sam-

ples and excluded all our 2,376 target individuals. This

FINRISK-PS (50,000 SNPs) explained 15% of the variance

of height and showed significant WF-EF differences

that corresponded to a 1.4 cm difference in predicted

height (Figure 3D). For FINRISK-PS and UKBB-PS, the

predictions were robust to whether the regression was

done in the whole target sample or in its WF or EF

subset alone (Table S2).

These results show a consistent direction in predicted

height differences between western and eastern Finland

on the basis of three independent GWASs that have
The America
different relationships to the target sample. The predicted

direction is also consistent with the observed phenotypic

difference. However, the results show considerable, and

concerning, variation in the predicted geographic differ-

ence of the genetic component of height.

Evaluating Possible Biases in Polygenic Score for Height

A PS from GIANT Accumulates Geographic Differences

An accumulation of small biases might be a substantial risk

in the PSs of thousands of variants. These small biases can

arise, for example, from unadjusted population structure

in the underlying GWAS or from overlapping samples be-

tween GWAS and target data.42,43 To understand whether

the differences in our PS and the unrealistic predictions

of geographic height differences might be due to a bias

accumulation, we generated additional PSs by varying

the inclusion criteria of variants.

First, we used variants from the initial PS but applied

different p value thresholds. Even though these scores

included different numbers of variants, the variance

explained did not vary strongly across the thresholds for

GIANT-PS or UKBB-PS (Figure 4A), a finding that replicates

the behavior of PSs reported earlier by Wood et al.30 for

other target populations. For FINRISK, the variance ex-

plained increased considerably with a more liberal p value

threshold because of the smaller sample size of the study;

specifically, the FINRISK-PS included only a handful of

variants for the smallest p value thresholds, and thus had

only a little predictive power there (Figure 4A). Conversely,

the predicted east-west height differences in the GIANT-PS

decreased considerably as more stringent p value cutoffs

were used, whereas the variance in height explained by

the PS increased simultaneously (Figure 4B). The decrease

was much subtler for the other two PSs. To confirm the

effect of the number of variants on the predicted height

differences, we randomly sampled 1,000 variants from

each of the different p value thresholds in GIANT-PS and

calculated the corresponding scores. These PSs showed
n Journal of Human Genetics 104, 1169–1181, June 6, 2019 1175



Table 3. Summary of the Results in the HG-PS Comparison

Source GWAS Ancestry GWAS N
Finnish
Samples

Variants
in PS Adjusted R2

Predicted WF-EF HG
Difference (cm; 95% CI)

Observed WF-EF HG-PS
Difference (SD unit; 95% CI)

GIANT European 253,288 �23,000 27,066 14% 3.52 (3.14, 3.90) 1.51 (1.45, 1.5)

GIANT NOFINNS European 230,794 0 25,660 17% 1.78 (1.53, 2.05) 0.70 (0.62, 0.79)

UK Biobank British 337,199 0 113,079 22% 0.64 (0.39, 0.89) 0.23 (0.14, 0.32)

FINRISK Finnish 24,919 24,919 50,536 15% 1.35 (1.14, 1.58) 0.59 (0.51, 0.67)

Adjusted R2 is the variance explained by the PS in the target set.
similar levels of predicted WF-EF height difference (about

1 cm) independent of the p value threshold, suggesting

that the number of variants is a more important factor

behind the geographic structure of GIANT-PS than the

actual phenotypic variance explained by the variants

(Figure S3).

Concerned about the accumulation ofWF-EF differences

in GIANT-PS, we tested whether similar accumulation

occurred even over random, non-associated variants. We

randomly sampled different numbers of independent var-

iants whose p values were over 0.5 in GWAS (suggesting a

negligible association to height) and calculated PSs for

them (we call these ‘‘random PSs’’). This test showed

considerable geographic differences in random PSs based

on GIANT GWAS, and these differences increased with

the number of variants (Figures 4C and 4D). Similar but

weaker behavior was detected for FINRISK variants but

not for UKBB variants.

Correlation of PS with Principal Component 1

One potential explanation for the observed behavior of

GIANT-PS is that the effect-size estimates have a consis-

tent directional bias that is aligned with the main popula-

tion structure in Finland. Indeed, GIANT-PS is highly

correlated with the leading principal component (PC1)

of population structure in our target sample (r ¼ 0.80),

and when we removed the linear effect of PC1 from the

GIANT-PS (see Material and Methods), the residuals ex-

plained more variance (19%) of height than the original

GIANT-PS (14%). This suggests that in the effect-size esti-

mates of GIANT-PS, a part of the true height association is

masked by a strong component aligned with PC1 in

Finland. For neither FINRISK-PS nor UKBB-PS did the

removal of the linear effect of PC1 improve the variance

explained in our target sample (Table S3). None of the

three PSs showed WF-EF differences after the PC1 was

regressed out (Table S3). By using the variants from GI-

ANT-PS and the effect estimates from UKBB, we observed

that the strong geographic differences in GIANT-PS are

likely driven also by the choice of the GIANT variants

and not only by a bias in the GIANT effect estimates (Sup-

plemental Text S2).

Together, these analyses suggest that the geographic

distribution of PSs based on the GIANT summary statistics

consistently exaggerates height differences between

the main Finnish subpopulations, whereas much less
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confounding from population stratification is seen in

FINRISK-PS, and almost none is observed in UKBB-PS. A

few possible reasons for this bias accumulation could be

the inadequate adjustment for population structure in

GWASs37,39 or partially overlapping or related samples be-

tween GWAS samples and test data.

Effect of Sample Overlap and Population-Specific Samples

Our target data originate from the National FINRISK Study

that is not reported among the GIANT cohorts (neither

among cohorts in Lango et al.,44 nor among additional co-

horts in Wood et al.30). However, a closer look into the

cohort descriptions suggested that the COROGENE,

FUSION, andMIGEN cohorts might include some FINRISK

samples. This shows that it is not always straightforward to

keep track of where publicly accessible samples have been

used previously, and this observation would be a crucial

piece of information for appropriately validating PSs.

Although computational methods exist to detect sample

overlaps between GWAS summary statistics,45 their

behavior in large datasets is not yet completely under-

stood.46

To test whether overlapping individuals affect the results

of GIANT-PS, we built a new PS without any FINRISK

samples (called GIANT-NOFR-PS). This GIANT-NOFR-PS

explained 16% of the height variance and predicted a

3.4 cm (95% CI: 3.0–3.7) difference between WF and EF,

and this difference is very similar to the result of the

original GIANT-PS (14%, 3.5 cm [95% CI: 3.2–3.9]). Thus,

a possible sample overlap is not causing the exaggerated

WF and EF differences in GIANT-PS.

Next, we excluded the cohorts that included any Finnish

samples from the meta-analysis. This GIANT-NOFINNS-PS

explained 17% of the height variance and predicted a

1.7 cm (95% CI: 1.5–2.1) difference between WF and EF

(Figure S4). This is a significantly smaller difference than

that found by the original GIANT-PS, and a similar drop

is also seen in the bias accumulation of GIANT-NOFINNS-

PS (Figures 4 and S5). A similar but weaker effect was

detected for SCZ when comparing PSs based on meta-ana-

lyses with and without Finnish samples (see Figures S6 and

S7 and Table S4). These results suggest that although

population-specific PSs have the potential to increase pre-

diction accuracy, they might also introduce considerable

bias if the population structure has not been adjusted

properly.
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A B

C D

Figure 4. A Comparison of PSs Con-
structed from Height-Associated versus
Random SNPs Demonstrates Differences
in Stratification Effects by GWAS Summary
Statistics
Top row: (A and B) Height variance ex-
plained by PS (A) and east-west difference
in height predicted by PS (B) as a function
of p value threshold in GWAS data.
Bottom row: (C and D) Height variance ex-
plained by PS (C) and east-west difference
in height predicted by PS (D) as a function
of the number of independent variants in
PS when all variants have a p value > 0.5
in GWAS (‘‘random scores’’). Variance ex-
plained is given as adjusted R2. In C
and D, the values are based on ten random
scores, and error bars in D show the range
of those scores.
When we ran the HG-GWAS in FINRISK and UKBB data

with a linear mixed model that accounts for genetic relat-

edness, the resulting PSs predicted smaller geographic dif-

ferences betweenWF and EF than our original GWAS based

on linear regression with ten PCs as covariates, but the dif-

ferences were not significant (Figure S8 and Table S5).

Bias Accumulation in Other Complex Diseases and Traits

After assessing multiple sources of bias accumulation in

HG, we applied similar strategies to the other seven pheno-

types. For each phenotype, we generated random PSs with

increasing numbers of variants to detect a possible accu-

mulation of biases. Here, we present absolute difference be-

tween western and eastern Finland using standardized PSs

because we did not have a way to turn these to the pheno-

typic scale for the disease studies. Figure 5 shows that for

RA, CD, UC, and SCZ, the absolute WF-EF PS difference

of the random score is close to zero, whereas for CAD,

BMI, WHR, and HG we observe a possible accumulation

of bias.

Similarly to HG, we were able to compare the geographic

distribution of the PSs of BMI and WHR to their pheno-

typic counterparts. Neither BMI nor WHR shows clear

geographic patterns in our data, but the PSs of BMI and

WHR largely repeat the results of the PS of HG (Figures

S9, S10, S11, and S12 and Tables S6 and S7). For both

BMI and WHR, GIANT-PS shows much larger differences

and bias accumulation in random scores between WF-EF

than FINRISK-PS (BMI and WHR) or UKBB-PS (only BMI

available).
The American Journal of Human G
Discussion

Polygenic scores (PSs) have recently

reached predictive power for some

well-established monogenic risk fac-

tors for disease,7 and several projects

are currently testing their utility in

health care settings. PSs could also

potentially inform us about the role

of genetics in the geographic vari-
ability of traits and disease. However, a major challenge

is that the geographic distribution of PSs is a complex

function of population genetic differences between the

GWAS data and the target samples, complicating its inter-

pretation.10,11,47,48 Here, we studied the geographic distri-

bution of several PSs within Finland and assessed their

robustness and possible biases in several ways.

By generating PSs for eight phenotypes in Finnish sam-

ples, we observed strong similarities between the

geographic distribution of several PSs and the main

Finnish population structure that runs from south-west

to north-east.13 We further showed that even the least sta-

tistically significantly associated half of the effect sizes

(with GWAS p value > 0.5) was carrying a consistent

pattern of east-west difference for CAD (CARDIoGRAM

data) and the three anthropometric traits from the GIANT

consortium: HG, BMI, and WHR, findings that we inter-

pret to indicate a likely bias. In theory, such a pattern could

also result from extreme polygenicity. However, with the

highly polygenic HG as our model trait, we showed that

the random score from our largest HG GWAS based on

the UK Biobank did not show any east-west variation

within Finland. This suggests that the geographic differ-

ence accumulating in the random score from GIANT is

rather due to bias than polygenicity. Furthermore, we

observed for HG that the GIANT-PS was so strongly aligned

with the first principal component of the genetic structure

in our target data that this association masked some of the

predictive power of the PS. This suggests that the effect
enetics 104, 1169–1181, June 6, 2019 1177



Figure 5. Accumulation of Geographic Differences in Random Polygenic Scores
The absolute value of PS difference between western and eastern subpopulations with different numbers of independent variants
(r2 < 0.1) randomly chosen with GWAS p value > 0.5. For BMI and WHR, the data did not contain more than 60,000 independent
variants. The solid region is the 95% probability interval under the theoretical null assumption of zero effect sizes and completely
independent variants (r2 ¼ 0) (see Material and Methods). Points show the mean, and error bars show the range over ten random
scores.
estimates from GIANT contain a bias aligned with the

main population structure in Finland, and this finding is

in line with two recent studies that have reported related

biases in the context of polygenic selection studies.37,39

When we removed all Finnish samples from the GIANT

meta-analysis of HG, the east-west difference in PS was

halved, but still remained threefold compared to that in

UKBB-PS. Also, the random scores showed that although

a considerable proportion of the bias in GIANT-PS was

related to the Finnish GWAS samples, a considerable bias

still remained after excluding the Finnish samples.

For all three quantitative traits, PSs predicted unrealisti-

cally large geographic differences compared to the actual

phenotypic differences. A theoretical but unlikely possibil-

ity remains that the geographic structure of the genetic

component not explained by our current PSs could be

opposite to the component that is explained by our

current PSs, and this could eventually balance out the un-

realistically large estimates for GIANT-PS and FINRISK-PS.

However, given that the estimated difference consistently

increases with the inclusion of more variants in PSs, a

more plausible explanation is that we simply cannot

robustly interpret the geographic differences in PSs derived

from existing GWASs on the phenotypic scale via a simple

regression framework. Earlier, the results of phenotypically

inconsistent PS differences between continental groups

have been reported.10,11,38 Here, we show that similar

patterns can exist even for a relatively small geographic

area and the relatively homogeneous population of

Finland. We note that even if the genetic EF-WF difference

in Finland might be large compared to variation within

some other European countries,19 it is tiny compared to

the continental differences.49
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Our results showed that the phenotypes that did not

accumulate EF-WF differences were the two types of in-

flammatory bowel disease (CD and UC), SCZ, and RA.

Of these, CD and UC did not show any geographic PS

variation in Finland. To our knowledge, only two studies

have studied the geographic variation in the prevalence

of inflammatory bowel disease (IBD) in Finland.

Lehtinen et al.50 reported higher incidence rates of pedi-

atric IBD in more sparsely populated areas, whereas

Jussila et al.51 reported increasing prevalence rates of

UC in Northern Finland but no geographic structure

for CD. Our polygenic risk prediction for CD is in line

with the observations in Jussila et al.,51 and even

though the PS of UC did not show significant

geographic differences in our statistical analysis, the

genetic risk map for UC shows some increasing risk

pattern in Northern Finland. SCZ showed a higher poly-

genic risk in EF than in WF, a finding in line with exten-

sive geographic incidence information from several

studies52–57 that describe the highest SCZ prevalence

and incidence rates in northern and eastern Finland

and the lowest rates in the southwestern parts of the

country. Also, RA showed higher polygenic risk in EF

than in WF. Our limited information about the regional

incidence of RA in Finland is from Kaipiainen-Seppänen

et al.,58 who reported the highest RA incidence rates for

North Karelia (in EF) and the lowest for Ostrobothnia

(on the west coast), but unfortunately the study did

not include southwestern or northern Finland. Neither

our SCZ nor our RA GWAS summary statistics included

any Finnish samples. Together these two diseases exem-

plify the potential of PSs to explain geographic health

differences.
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To conclude, we recommend the following practices

for geographic evaluation of PSs. (1) Check residual

geographic stratification of PSs by generating random

scores for non-associated variants and by testing whether

PSs unrealistically strongly align with the leading PCs of

genetic structure. (2) Use a linear/logistic mixed model

instead of the standard linear/logistic regression model in

GWAS. (3) Compare the genetically predicted phenotypic

difference between populations to the observed pheno-

typic difference in order to detect unrealistic genetic

predictions. With these tools, we showed that although

PSs for several traits in Finland followed the geographic

distribution of the phenotype (HG, CAD, SCZ, RA, CD,

and UC), for CAD and HG, as well as for BMI and WHR,

we observed in the geographic distribution of PSs suspi-

cious behavior that could indicate a bias arising from

population genetic structure rather than from a direct

genotype-phenotype association. Our results emphasize

that we have limited understanding of the interplay

between our current PSs and genetic population structure

even within one of the most thoroughly studied po-

pulations in human genetics. Therefore, we recommend

refraining from using the current PSs to argue for a signif-

icant polygenic basis for geographic phenotype differences

until we understand better the source and extent of the

geographic bias in the current PSs.
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kilä, M.A. (2013). High and increasing prevalence of inflam-

matory bowel disease in Finland with a clear North-South

difference. J. Crohn’s Colitis 7, e256–e262.

52. Lehtinen, V., Joukamaa, M., Lahtela, K., Raitasalo, R., Jyrki-

nen, E., Maatela, J., and Aromaa, A. (1990). Prevalence of

mental disorders among adults in Finland: Basic results from

the Mini Finland Health Survey. Acta Psychiatr. Scand. 81,

418–425.

53. Hovatta, I., Terwilliger, J.D., Lichtermann, D., Mäkikyrö, T.,
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