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A B S T R A C T

Gamma amino butyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebral central nervous
system. It functions by altering the membrane conductance of Cl− ions, maintaining the membrane potential
close to the resting potential. The hormone oxytocin (OT) has a central action where it acts as a neuromodulatory
peptide and exerts its action depending upon the distribution of OT receptors (OTR) in the target site. OTRs are
G-protein-coupled receptors (GPCRs) comprising different subunits (Gq, Gi, and Gs). The G- protein isoforms
have the ability to activate different pathways, but specific agonists and antagonists may show different affinities
to OTRs, depending on the specific G-protein isoform to which they are coupled. It is well documented that OTR
distribution varies with age and species and in regions of the brain. In this study, we attempted to observe the
impact of OT and atosiban (OTA), an OT antagonist, on GABA levels in different regions of the brain. Study
animals were exposed intraperitoneally (i.p.) to normal saline (0.89%), OT 0.0116mg/kg, and OTA 1mg/kg in
different combinations, for 30days. It was observed that OT and OTA administration modulated GABA levels in
different regions of brain, while normal saline had no effect. It may be due to OTR receptor expression in
different regions of the brain.
This is significant because region-specific expression of different receptors could be important in the devel-

opment of new drugs targeting specific neuropsychiatric disorders.

1. Introduction

Oxytocin (OT) is a neuropeptide synthesized in the hypothalamus
by neurosecretory cells (magnocellular neurons) of the hypothalamic
paraventricular (PVN) and supraoptic nuclei (SON), and secreted by the
posterior pituitary lobe into the blood (Bargmann, 1949). OT neurons
are also present in the parvocellular neurons of the PVN, super-
chiasmatic nucleus, bed nucleus of stria terminalis (BST), medial
amygdalae, dorsomedial hypothalamus, vertical diagonal band of
Broca, and olfactory bulb nuclei in rats (Buijs, 1978; Caffé and
Leeuwen, 1983). However, OT neurons are absent from the dorsome-
dial hypothalamus, vertical diagonal band of Broca, and olfactory bulb
of mice (Caffé and Leeuwen, 1983; Tobin et al., 2010). It is possible that
this is related to species-dependent differences in social behavior. OT is
a hormone involved in different physiological and pathological func-
tions like sexual activity, penile erection, ejaculation, pregnancy, uterus
contraction, milk ejection, maternal behavior, and social bonding
among others (Stoop, 2012). In addition, OT acts centrally as a neu-
rotransmitter and the release of OT within the brain occurs from

dendrites, axons, and somata of magnocellular neurons of the PVN in
different regions of the brain (Dumais and Veenema, 2016; Moghadam
et al., 2018). Furthermore, OT plays an important role in the brain by
interacting with specific receptors in different regions of the brain and
helps in neuromodulations. It has been shown that receptor distribution
varies with age (Elizabeth and Hammock, 2015) and species of animal
(Dumais and Veenema, 2016).

In a recent study, it was also shown that OT protects against in-
flammation and oxidative stress, which is due to OT and GABAA re-
ceptor interaction in the CNS (Kaneko et al., 2016). Gamma amino
butyric acid (GABA) is the principal inhibitory neurotransmitter syn-
thesized by decarboxylation of glutamate through the action of glu-
tamic acid decarboxylase (GAD) and binds to three receptors namely
GABAA, GABAB, and GABAC (Kaneko et al., 2016; Roberts, 1960).

GABAA receptors are ionotropic Cl− channels gated by the major
inhibitory neurotransmitter γ-aminobutyric acid and are widely ex-
pressed throughout CNS. They play a major role in synaptic inhibition
in the CNS (Kaneko et al., 2016; Wisden and Seeburg, 1992). OT
modulates GABAA receptor subunit expression, which mediates the
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hyperpolarization of the membrane potential and reduces neuronal
excitability due to chloride ion influx (Kaneko et al., 2016). This sug-
gests that perturbations in GABAergic inhibition have the potential to
result in neurodegenerative disorders (Piantadosi and Floresco, 2014).

Numerous studies in humans and animals have established that OT
affects the social life of mammals and reduces anxiety (Sabihi et al.,
2017). Various brain regions have been identified as the site of action
for the anxiolytic effects of OT, including the hypothalamic PVN (Blume
et al., 2008; Smith et al., 2016), amygdale (Bale et al., 2001; Neumann,
2002), raphe nucleus (Yoshida et al., 2009), and prelimbic (PL) region
of the medial prefrontal cortex (mPFC) (Sabihi et al., 2014a,b). Apart
from this, evidence also suggests that OT interacts with GABA to reduce
anxiety (Nuss, 2015; Smith et al., 2016). Therefore, interest is growing
towards the study of neuropeptides and their region-specific receptors
that may be important when designing new drugs targeting specific
neuropsychiatric diseases (Busnelli et al., 2013). The mouse, which is
widely used in neuroscience research, has a rich social life. Like other
rodents, their social communication and behavior depends upon their
sex, age, and hormonal status, among other factors. The important of
OT on different regions of the mouse brain is less well-documented.
Therefore, in the present investigation we have tried to evaluate the
impact of exogenous OT and atosiban (OTA) on GABAergic transmis-
sion in different regions of the brain.

2. Results

OT and OTA treated animals showed significant changes in GABA
contents in different regions of the brain relative to the control group.
After 30 days exposure to OT and OTA, GABA levels were significantly
higher (p < 0.01, one-way analysis of variance [ANOVA]) in the hy-
pothalamus and cerebellum of the brain of Mus musculus than those of
the control group. However, these values were significantly lower
(p < 0.01, one-way analysis of variance [ANOVA]) when OTA was
administered along with OT for 30 days than in the exclusively OT-or
OTA-treated groups (Fig. 1). OT reduced the GABA levels in the hip-
pocampus, cerebral cortex, medulla oblongata, and striatum of the
brain of Mus musculus relative to the control groups. However, when
OTA was administered along with OT, out of the seven regions of the
brain considered, only four regions of the brain i.e., the hippocampus,
cerebral cortex, medulla oblongata, and striatum, showed an increase in
the GABA level in comparison to those in OT exposed animals. Three
regions, i.e., the hypothalamus, cerebellum, and midbrain, showed
greater lowering of the GABA levels when we administered OT along
with OTA for up to 30 days.

3. Discussion

Numerous studies on humans as well as animals have shown that OT
reduces anxiety (Ayers et al., 2011; Bale et al., 2001; Blume et al., 2008;

Oliveira et al., 2012), and leads to expressions of social behavior (Stoop,
2012) by interacting with GABA in the CNS, effects which vary with
species and sex (Elizabeth and Hammock, 2015). The mouse, which is
widely used in neuroscientific research, has a rich social life. Similar to
other rodents, their social communication and behavior depends upon
their sex, age, and hormonal status, among other factors. The present
study revealed a novel mechanism underlying the effect of inter-
aperitoneal (i.p.) administration of OT and OTA on GABAergic trans-
mission in different regions of the brain. Intraperitoneal administration
of OT crosses blood brain barrier (Mizuno et al., 2015; Neumann et al.,
2013; Peñagarikano et al., 2015) and modulate social behavior buffer
anxiety in autism, schizophrenia as well as recovery of neurodegen-
erative disorder. In present study OT significantly increased (p < 0.01)
GABAergic neuronal activity in the hypothalamus, midbrain, and cer-
ebellum in the experimental group.

OT activates GABAergic neurons by interacting with the GABAA
receptor in the hypothalamo-pituitary-adrenal (HPA) axis in the hy-
pothalamic PVN, and reduces anxiety, increases social buffering, and
calmness in females (Blume et al., 2008; Smith et al., 2016). Apart from
this, exogenous OT increases GABA in the midbrain. Central OT plays
an important role in the reward system through its effects on social
behavior like social reward, social learning, pair bonding, parenting,
and mating (Choe et al., 2015; Dölen et al., 2013; Gimpl and
Fahrenholz, 2001; Love, 2014; Marlin et al., 2015). A number of studies
have demonstrated the modulatory action of OT and dopamine (DA) in
the CNS and characterized axonal projection from OT neurons of the
hypothalamic PVN to midbrain DA regions (Charlet and Grinevich,
2017; Xiao et al., 2017). OT neurons are exclusively present in the
hypothalamus, but DA neurons are present in the ventral tegmental
area (VTA) and substantia nigra (SN). However OTR are present in the
VTA as well as the SN. OT activates two pathways; it directly activates
VTA neurons and indirectly inhibits SN neurons through local GA-
BAergic interneurons (Charlet and Grinevich, 2017; Xiao et al., 2017).

In this experiment, it was also found that GABA activity was higher
in the cerebellum. The cerebellum is known to play an important role in
classical conditioned reflex responses, mental imagery, affective beha-
vior, and control of sensory data acquisition (Fatemi et al., 2012). Many
of these functions are disturbed in autism. GABA is the principal in-
hibitory neurotransmitter in several brain regions including the cere-
bellum and is synthesized by decarboxylation of glutamate through the
action of GAD. GABA binds to three receptors, namely, GABAA, GABAB
and GABAC (Kaneko et al., 2016; Roberts, 1960). GABAA receptors help
in the opening of chloride ion channels in the cell membrane that are
gated by GABA, causing hyperpolarization and inhibition of neuronal
excitation (Bing et al., 2018).

The GABAergic neuromodulatory mechanism of OT depends upon
the distribution of OTRs, which varies in different regions of the brain.
OTRs are members of the G-protein-coupled receptor (GPCR) super-
family. The structure of GPCRs is characterized by seven

Fig. 1. Gamma Amino Butyric Acid (GABA) estimation (mg/g
tissue) in the brain of female animal, Mus musculus after 30 days of
treatment with OT, OT+OTA, OTA, and Control.
Values are mean ± SEM of 6 animals.
* Difference p < 0.05 in control vs study deduced by one-way
ANOVA test.
**Significant difference p < 0.01 in control vs study deduced by
one-way ANOVA test.
*** Highly Significant difference p < 0.001 in control vs study
deduced by one-way ANOVA test.
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transmembrane (7-TM) α-helices connected by three intracellular (IL-1
to IL-3) and three extracellular loops (EL-1 to EL-3). These receptors can
be coupled to different G-proteins and exhibit different functions. An
OTR coupled with the heterotrimeric Gq/11 protein activates the
phospholipase Cβ pathway (PLCβ), causing the release of Ca2+ from
intracellular stores, increasing neuronal excitation (Gimpl and
Fahrenholz, 2001) and thereby enhancing GABA release from inter-
neurons (Breton et al., 2008; Lara et al., 2009; Piloni et al., 2006). The
Gq/11 family of proteins consists of four members, two of which (Gq
and G11) are almost solely expressed in the CNS (Tanaka et al., 2000).
These appear responsible for maternal behavior after parturition in
females (Wettschureck et al., 2004). Furthermore, OT can also activate
the inward rectifying current through the Gi/o protein, which is also
responsible for its antiproliferative effect (Gravati et al., 2010). In ad-
dition, the Gs protein of the OTR can also increase cAMP production by
activating adenylate cyclase, which opens sodium channels (Stoop,
2012).

In fetal rats, OT increased the intracellular chloride concentration in
GABA neurons, thereby reducing neuronal excitation; this process was
thought to protect the neonate from anoxic injury (Tyzio et al., 2006,
2014).

Apart from this OTA activates different signaling pathways by
coupling with different OTR subunits. For example, OTA is used in the
treatment of preterm labor due to its antagonistic ability to block Gq/
PLC/calcium signaling pathway in myometrial cells (Stoiber et al.,
2018). However, OTA shows biased agonist properties by coupling with
OTR Gi, inhibiting the proliferation of some cancer cells (Reversi et al.,
2005), therefore its use limited to only 48 h in patients with a high risk
of preterm delivery (Kim et al., 2017). Recent evidence indicates the
antagonistic properties of OTA in the CNS (Abdullahi et al., 2018), OT
is well known for its action on social memory and memory consolida-
tion when identifying novel objects in the nucleus basalis of Meynert;
OTA also impaired memory consolidation in the CNS (Gard et al.,
2012). Our finding also supported the antagonistic properties of OTA in
the hypothalamus, midbrain, and cerebellum of the experimental
group. However, in certain regions, i.e., the medulla oblongata, cere-
bral cortex, striatum, and hippocampus, OTA does not show an in-
hibitory action on OTRs, indicating that OTA activates different sig-
naling pathways in the CNS by binding with different receptor subunits.

Apart from this OT and vasopressin (VP) are two important neuro-
peptide in CNS and plays an important role in the control of social,
cognitive, and neuroendocrine function (Sala et al., 2011). OT and VP
have high degree of similarity in their structure and structure of re-
ceptor i.e. OTR and V1a receptor (Gimpl and Fahrenholz, 2001;
Maybauer et al., 2008; Zhimin et al., 2016). Evidences from previous
study support that OT and VP control social behavior and physiological
responses by activating each other’s receptor i.e. OTR and V1a, in CNS
(Zhimin et al., 2016). In summary, the findings of the current study
demonstrated that long term exposure to exogenous OT and OTA ac-
tivate different pathways in different region by binding with different
receptor subunits in female mice. This represents a very valuable tool
for investigating the molecular basis of neuropeptide action in the CNS.

3.1. Conclusion

From the above study we can conclude that G protein isoforms have
the ability to activate different pathways, but specific agonists and
antagonists may show different affinities to OTRs because, their action
depends on the specific G protein (Gq, Gi or Gs) to which they are
coupled. For example, the OTR antagonist, OTA does not affect receptor
internalization, possibly due to the selective activation of only those
OTRs that are coupled to a Gi protein (Busnelli et al., 2013). We can
also conclude that region-specific expression of different receptors
could be important for the development of new drugs targeting specific
neuropsychiatric disorders.

4. Experimental procedure

4.1. Animals

The present experiment was performed on mature female mice, Mus
musculus, weighing 25 ± 5 g. All animals were acclimatized to la-
boratory conditions, i.e., 25 ± 3 °C, and light and dark photoperiod
(12 h light:12 h dark) in the animal house of the Laboratory of
Endocrinology, Bioscience Department, Barkatullah University, Bhopal,
India. Hygienic conditions were maintained with rice husk bedding in
separate polypropylene cages. Animals were provided with standard
feed and water ad libitum. The study was performed with the approval
of the ethical committee, i.e., Institutional Animal Ethics Committee
(IAEC) of CPCSEA (Ref No.1885/GO/S/16/CPCSEA/IAEC/B.U./04).

4.2. Chemical

OT (brand name Pitocin) was purchased from a local medical shop
in Bhopal, Madhya Pradesh, and the OT antagonist i.e., OTA, was ob-
tained from Sigma –Aldrich, for this experimental study.

4.3. Preparation of dose

OT 0.0116mg/kg and OTA 1mg/kg was prepared in 0.89% normal
saline. The dose of OT and OTA was finalized after reviewing various
previous studies and confirmed through experimental investigation
(Han et al., 2016; Mizuno et al., 2015; Teng et al., 2016).

4.4. Experimental design

The mice were divided into four groups of six each. The control
group received a balanced diet, water ad libitum, and normal saline
(0.89%) for 30 days. Group 2 received a balanced diet, water ad libitum
and was treated daily with OT 0.0116mg/kg i.p. for 30-days. Group 3
received a balanced diet, water ad libitum, and was treated daily with
OT 0.0116mg/kg and OTA 1mg/kg i.p. for 30-days. Group 4 received a
balanced diet, water ad libitum, and was treated daily only with OTA
1mg/kg i.p. for 30-days.

4.5. Dissection

After 30 days of treatment, all animals from the different groups
were killed by cervical dislocation. The brains were carefully removed,
washed in normal saline, and kept at −20 °C. The dissection was per-
formed on an ice-cooled glass plate. The frozen tissue was divided into
seven regions, the medulla oblongata, midbrain, cerebellum, cerebral
cortex, striatum, hippocampus, and hypothalamus, adopting the
methodology of (Glowinski and Iversen, 1966) as follows.

First, the rhombencephalon (A) was separated by a transverse sec-
tion from the rest of the brain and dissected into two parts, the cere-
bellum and medulla oblongata. A transverse section was made at the
level of the optic chiasma, which delimits the anterior part of the hy-
pothalamus, and through the anterior commissure. This section sepa-
rated the cerebrum into two parts, B and C. Part B was divided into five
fractions. First, the hypothalamus was dissected by taking the anterior
commissure as a horizontal reference and the line between the posterior
hypothalamus and mammillary bodies as the caudal limit. The striatum
was dissected with the external walls of the lateral ventricles as the
internal limits and corpus callosum as the external limits. The frontal
parts of the striatum, which are in section, were dissected separately
from the remaining parts of the brain. The hippocampus was then
dissected. The remainder of part B was combined with the remainder of
part C to form the cortex. An example of the reproducibility of this
procedure is given in Table 1.
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4.6. Assay

Different regions of tissue were blotted, weighed, and placed in
different tubes containing 5ml ice cold TCA (10%W/V), homogenized,
and centrifuged at 10,000 rpm for 10min at 0 °C. Next, 0.1ml of su-
pernatant was dissolved in 0.2 ml of ninhydrin solution (0.15M) in
0.5M carbonate-bicarbonate buffer (pH 9.95). This mixture was kept in
a water bath maintained at 60 °C for 30min and then cooled. The
cooled mixture was treated with 5ml of copper tartarate reagent. After
10min, florescence was observed at 377–455 nm by using a spectro-
fluorometer (Lowe et al., 1958).

4.7. Data analysis

Results are expressed as the mean and standard error of mean of
different groups. The intergroup variation was measured using a one
way analysis of variance (ANOVA) followed by Tukey’s test (Tukey,
1949). Statistical analysis was performed using the Sigma Stat Statis-
tical Software version 3.5. p < 0.05 was considered statistically sig-
nificant.
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