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Abstract: Aligned P(VDF-TrFE) nanofibers are successfully fabricated by advanced electrospinning.
The aligned feature of the nanofibers is achieved by using parallel electrodes, which is fabricated by
lithography and wet etching, and a rotating drum collector. Scanning electron microscope (SEM)
images show that the nanofibers are highly ordered with a smooth surface and uniform diameter.
X-ray diffraction (XRD) and Fourier Transform Infrared spectrum (FTIR) tests indicate that the fibers
contain high β phase content. The nanogenerator based on aligned P(VDF-TrFE) nanofibers exhibits
good electric performance with a maximum output voltage as high as 12 V and peak-peak short
circuit current about 150 nA, highlighting the potential application of P(VDF-TrFE) on self-powered
and wearable devices.
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1. Introduction

Scavenging waste energy from human movement or ambient environments has become an
interesting topic recently [1–6]. To date, a wide spectrum of mechanical energy scavenging techniques
has been successfully demonstrated, including tribo-electricity [2,7] and piezoelectricity [7–10].
For example, the triboelectric nanogenerators (TENGs) have shown extremely high energy conversion
efficiency and high output voltage [11]. Various designs and approaches have been reported for
harvesting energy using TENG [12]. However, their relatively large size makes them unfavorable for use
in small-size, and also requires sophisticated device structures to ensure enough resilience for the charge
separation, otherwise there is no output current [13]. Furthermore, the use of polymers as electrification
materials in TENGs causes wear and tear on two contact surfaces, which has led to doubts regarding
their long-term stability [14]. Meanwhile, generators based on piezoelectricity have become the most
widely used devices in various applications due to their high sensitivity, stability, fast-response, and
parallel-reading detections of spatial pressure distributions [15–18]. After ZnO nanowire arrays were
demonstrated [19], several materials with different architectures for piezoelectric generators have been
reported [15,16,20,21]. Although the inorganic materials such as Lead Zirconate Titanate (PZT) ceramic
or BaTO3 (BTO) have high piezoelectric coefficients, the fragility of them limits their integrations
in flexible electronic devices, and also makes them easy to be damaged during working [22,23].
Polyvinylidene fluoride (PVDF) and its copolymer P(VDF-TrFE) are emerging piezoelectric polymer
with unique features including biocompatibility, high power density, and high flexibility, especially
promising for wearable devices powered by such flexible sensors [24] and harvesters [14,25,26].
Recently, various PVDF-based generators with different functional morphologies, including multiple
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structure films [27–29], nanofibers [30], nanotubes [31], and other nano-patterns [32] have been used
for the design of novel flexible wearable/implantable devices. In particular, previous reports described
that the electric field and associated extensional forces produced by electrospinning methods naturally
cause local poling for piezoelectric nanofibers [20,33,34]. Fang et al. [33] demonstrated a one-step
fabrication of piezoelectric PVDF nanofibers without any extra poling treatment that can be used
to convert mechanical energy. Persano et al. [34] indicate that aligned P(VDF-TrFE) nanofibers can
be formed into flexible, free-standing sheets, by use of electrospinning onto a fast rotating collector.
Thereby enabling excellent response and high piezoactive β-fraction without further processing. And
the high volumetric densities of aligned nanofibers have more potential in actual device fabrication.
At present, those aligned nanofibers are mainly obtained by means of gap collectors [35] or rotating
collectors [34]. But gap collectors generally have disadvantages in producing large area, and rotating
collectors need high speed to obtain uniform structures, making it unsuitable for realizing large area
and multilayered aligned arrays. In this article, we demonstrate a novel method combining gap
collectors and rotating collectors to obtain a large area of aligned P(VDF-TrFE) nanofibers. The unique
parallel electrodes can also be adopted to improve the device performance. And then, a simple
P(VDF-TrFE) nanofibers-based piezoelectric nanogenerator (PENG) is fabricated. The PENG exhibits a
high output voltage about 12 V, and peak-peak short-circuit current about 150 nA. These findings will
promote the development in self-powered devices and wearable energy harvesters.

2. Experimental Procedure

The preparation of P(VDF-TrFE) nanofibers. A P(VDF-TrFE) solution was prepared by adding
1 g P(VDF-TrFE) (70/30) powder to 5 mL of dimethyl formamide/acetone (7/3 v/v), and then stirring
until homogeneous at room temperature. The electrospinning procedure was shown in Figure 1b,
the voltage applied on the nozzle was about 15 kV, and a cylindrical collector (diameter = 18 cm)
was placed at a distance of about 15 cm. A unique feature of this setup is a flexible parallel copper
electrode which is fabricated by a standard lithography process and wet etching method (Figure 1a).
The electrode was pasted on the side of the cylindrical collector that is used as the collecting device,
the speed of the cylindrical collector was about 1000 RPM. The as-prepared P(VDF-TrFE) nanofibers
are approximately 1 cm in width and 2 cm in length. The thickness has a range of 5–10 µm, which
depends on the size of the electrode and spinning time. The electrospun membranes were still placed
in the high-speed collector with room temperature for 5 h before desiccation.

Nanogenerator fabrication. As shown in Figure 1c, after electrospinning, the joints of the parallel
electrodes are cut off by a scissor. The PENG was fabricated simply by establishing electrical contacts
to two sides polymer [4].

Device characterization. The crystalline structures of nanofibers were characterized by X-ray
diffraction (XRD, Bruker AXS, D8-ADVANCE, Karlsruhe, Germany). Room temperature Fourier
Transform Infrared spectrum (FTIR) spectra were recorded on NICOLET 5700 FTIR spectrometer
at 4 cm−1 resolution in the range of 1500–400 cm−1. The morphologies of electrospun P(VDF-TrFE)
nanofibers were observed using a scanning electron microscope (SEM, Hitachi S-4800, Tokyo, Japan).
Each sample was sputter-coated with gold for analysis. The average for diameter was calculated using
appropriate software and on the basis of SEM images.

3. Results and Discussion

As known, PVDF is a semi-crystalline polymer with a complex structure, and it presents five
distinct crystalline phases corresponding to different chain conformations [36]. P(VDF-TrFE) generally
exhibits good piezo- and ferro-electric behavior and a single all-trans polar crystalline phase that
is stable at room temperature. The crystal structure of P(VDF-TrFE) co-polymer nanofibers was
characterized by using XRD, as shown in Figure 1d, the characteristic peak locates at 2θ = 19.8◦, which
comes from the sum of the (110) and (200) diffraction [36]. The polymeric crystallinity of the nanofibers
was further verified by Fourier Transform Infrared spectrum (FTIR) in the wavenumber range of
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750–1500 cm−1, shown in Figure 1e. The transmission peaks are found at 510, 840, 1279 cm−1, which
illustrates associated intense bands and all the peaks belong to the polar β-phase PVDF. By contrast,
the bands of the non-polar α-phase (532, 612, 796, 854, 870 cm−1) are not appreciable, and the peaks in
766 cm−1 and 976 cm−1 are very weak. according to Gregorio et al. [37], the relative fraction of the
β-phase in a sample containing just α and β-PVDF is:

F(β) =
Aβ(

Kβ/Kα
)
Aα + Aβ

(1)

where F(β), represents theβ-phase content; Aα and Aβ are the absorbance at 766 and 840 cm−1, Kα and Kβ,
at the respective wavenumber of 766 and 840 cm−1. which values are 6.1 × 104 and 7.7 × 104 cm2

·mol−1,
respectively. In this way, it is assumed that FTIR absorption follows the Lambert-Beer law and
calculated the absorption coefficients, Aα value is 0.05 and Aβ value is 0.20, respectively. Hence, the
percentage of the β-phase in the sample is about 76%
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Figure 1. (a) Schematic diagram of flexible parallel copper electrode fabrication, (b) the schematic
of electrospinning progress, (c) nanogenerator fabrication, (d) X-ray diffraction (XRD) pattern of the
P(VDF-TrFE) nanofibers, (e) infrared spectra of the P(VDF-TrFE) nanofibers.

Figure 2a presents scanning electron microscopy (SEM) images of the flexible parallel copper
electrode, it clearly shows that the electrodes have uniform size. And the width of the electrode is about
100 µm, the gap of the electrode is about 200 µm. The height of the electrode is about 50 µm. Figure 2b
shows the side view SEM image of P(VDF-TrFE) nanofibers and electrode after the electrospinning
process. The fiber is fully stretched across the gap between two electrodes, and the thickness of the
fiber is less than the electrode height. Figure 2c,d show the top view SEM images of the nanofibers,
the diameter of the P(VDF-TrFE) nanofibers is uniform, the fibers are laterally aligned on the parallel
electrodes. We used Image-pro plus software to calculate the diameter and orientation distribution,
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as shown in Figure 2e,f, it can be seen that electrospinning nanofibers diameter distribution range is
200–450 nm, concentrating between 250–350 nm, while angle distribution range is −15◦~20◦, mainly
concentrating in the area of ±10◦.
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Figure 2. (a) SEM image of the flexible parallel copper electrode, (b) side view SEM image of the
P(VDF-TrFE) nanofibers and electrode after electrospinning process, (c) top view SEM image of the
nanofibers, (d) enlarged SEM image of the nanofibers, (e) typical fiber diameter distribution statistics,
(f) fiber orientation distribution statistics.

The piezoelectric nanogenerator and power generation mechanism are illustrated in Figure 3a,b.
First, the nanofibers are prepared by electrospinning, which provides a high electric field for the
preferential orientation of molecular dipoles (CH2/CF2-dipoles) in PVDF and its copolymer, then the
PENG is formed by establishing electrical contacts to two sides of the parallel copper electrode and
packed with elastic polydimethylsiloxane (PDMS) polymer. After that, dynamic pressure is applied on
the top surface of the PENG, which causes deformations of P(VDF-TrFE) nanofibers through the PDMS
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matrix. Then surface electric charges are generated due to the piezoelectric effect. Two models (d31
and d33) are widely used for piezoelectric devices. In this case, because the direction of the generated
electric signals is parallel to the applied stress/strain direction, model d33 is adopted. Therefore, the
induced open-circuit voltage can be expressed as follows [38]:

V3 j =
σ jd3 jL j

ε0εT [V] (2)

where d33 is the piezoelectric charge constant, σj is the mechanical stress, and L is the distance between
two electrodes, ε0 is the permittivity of vacuum, ε is the relative dielectric constant.
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Figure 3. (a) Schematic of the electrospinning experimental setup. (b) Cross-sectional view of
the generator.

A voltage difference between the two adjacent electrodes was induced due to the separation of
charge. The nanofibers between each pair of adjacent electrodes worked as a unit cell, if the piezoelectric
potential V is high enough, the electrons will flow from one electrode to another adjacent electrode to
balance the electric field induced by dipoles. On the contrary, if the stress is released, the P(VDF-TrFE)
will return from a flexed position to its original state and the piezoelectric potential between the two
sides disappears. Simultaneously, the accumulated charges will flow back in the opposite direction,
generating a reversed electrical signal. The repeat taping on the device generates output-voltages
pulses. In a parallel electrodes situation, those cells were connected in series, which could enhance the
performance of the device.

The piezoelectric performance of the device was tested on a purpose-built platform. A controlled
dynamic impact was programmed to apply mechanical force by periodically pressing and releasing
the device, the periodic pressure applied on PENG is about 2 kPa, as shown in Figure 4a. The induced
output voltage was collected using a digital storage oscilloscope (TDS 2012B, Tektronix, Cleveland,
OH, USA) and the short circuit current was measured by an electrochemical workstation (CHI 660 C,
CH instruments, Shanghai, China). The resulting short circuit current and output voltage, detected at a
loading frequency f = 1.6 Hz are shown in Figure 4b,f, respectively. The peak-peak short-circuit current
is about 150 nA. The current generation mechanism is shown in Figure 4c: During the press cycle
(part a–b), the nanofibers deformed from the original state (point a) to the maximum state (point b).
The deformation quantity of the nanofibers was controlled and affected by external force. It increased
from point a to b when pushing ahead, and reached highest in point b when the compression quantity
was biggest. During the release cycle (part b–e), the stress released, the P(VDF-TrFE) nanofibers
returned from the maximum strained position (point b) to the original strain-free state (point e), and the
piezoelectric potential between the two sides disappeared. Simultaneously, the accumulated charges
flowed back in the opposite direction, generating a negative electrical signal. The time of the pushing
between two pulses peak was about 0.32 s, which was corresponding to the loading frequency of the
external force.
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The variation of output voltages performance and calculated current signals from PENG across
different load resistances are illustrated in Figure 4d,e. The results are obtained by measured the
instantaneous output voltages of the PENG with external load resistance R from 10 MΩ–10 GΩ under
a pressure of ~2 kPa at 1.6 Hz. The output voltages V increased with increasing the load resistance and
reached a saturate value about 12 V at the load resistance of 10 GΩ (blue line). Whereas the current
decreased with the increasing load resistances (red line). As a power source, our generator can achieve
a maximum output power about 0.16 µW at the resistance of 100 MΩ.
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Figure 4. (a) Scheme of the press cycle and release cycle of mechanical loading equipment, (b) the
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cyclic pushing–releasing process, (d) output voltages from PENG with different load resistances, (e) the
variation of output voltages and calculated currents across load resistances (inset is the corresponding
circuit), (f) power density across different load resistances.

Mechanical energy exists widely in the surrounding environment, most of which is wasted in daily
life. As a wearable device application, here, we tried to apply a periodic dynamic load on the top of the
PENG with human fingers, and the power can light up 6 LEDs immediately as illustrated in Figure 5a.
A dynamic demonstration is shown in the video (Supporting Information Video S1). As we know,
human walking offers an additional mechanical energy source for step counting or wearable device
charging. We tried to place PENG inside a shoe, as shown in Figure 5b, the generated maximum voltage
output is about 8 V during a 75 kg human jumping at a speed of 2~3 step/s. These results indicate that
the PENG has the potential to be used as a mechanical force sensor for human movement monitor,
such as step counting, etc., or an inexhaustible power source for self-powered wearable devices.
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4. Conclusions

In summary, the aligned and high-density piezoelectric P(VDF-TrFE) nanofibers were prepared by
electrospinning methods with parallel electrodes, which can be fabricated into a flexible piezoelectric
nanogenerator easily. Under an applied pressure, the PENG can generate a maximum output voltage
as high as 12 V at high load resistance and the peak-peak short-circuit current over 150 nA, which are
significantly higher than other reported PENGs. The PENG can light up 6 LEDs and harvest the energy
from human walking. This PENG provides great potential of the practical application for wearable
electronic equipment.
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