Figure 1.
Scheme of ASD Drug discovery based on Genetic Studies, Post-mortem Brain Studies and Cellular Studies using induced pluripotent stem cells (IPSC) for future personalized treatment. Genetic studies reveal associations to Autism Spectrum Disorders either through candidate genes approach or Genome-wide Association Studies (GWAS), whereas genes mutated in syndromic autism have been identified. Furthermore, copy number variations (CNVs) that potentially lead to either gene disruption or duplication were more recently identified. Studies performed on post-mortem tissue provide information about brain anatomy and development, histology and cellular morphology, besides gene and protein expression profiles. Cellular Studies based on IPSC technology may be employed to generate neurons and other cell types (2D) and brain organoids (3D) using cells from patients. Those IPSC-derived models where used to investigate gene expression profiles and cellular morphology as well as cell signaling, synaptogenesis and electrophysiological properties. Moreover, 3D Studies allow to further investigate cellular migration and interaction during development. Those studies provide convergent information regarding the pathophysiology of the Autism Spectrum Disorders, toward altered mechanisms related to Mitochondria function, Synaptic maturation, Cellular interactions, and neuronal development. IPSC-derived cells are currently used to further investigate those altered functions and constitute human in vitro systems allowing drug screenings for potential targets that could lead to new therapies for ASDs.