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Abstract: The reactivation of telomerase in cancer cells remains incompletely understood. The catalytic
component of telomerase, hTERT, is thought to be the limiting component in cancer cells for the
formation of active enzymes. hTERT gene expression is regulated at several levels including chromatin,
DNA methylation, transcription factors, and RNA processing events. Of these regulatory events,
RNA processing has received little attention until recently. RNA processing and alternative splicing
regulation have been explored to understand how hTERT is regulated in cancer cells. The cis- and
trans-acting factors that regulate the alternative splicing choice of hTERT in the reverse transcriptase
domain have been investigated. Further, it was discovered that the splicing factors that promote the
production of full-length hTERT were also involved in cancer cell growth and survival. The goals are
to review telomerase regulation via alternative splicing and the function of hTERT splicing variants
and to point out how bioinformatics approaches are leading the way in elucidating the networks that
regulate hTERT splicing choice and ultimately cancer growth.
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clustering analysis; differential gene expression analysis

1. Introduction

Telomeres are specialized DNA and protein structures found at the ends of linear chromosomes
made up of the hexameric repeat DNA 5′-TTAGGGn [1]. The main function of telomeres is to protect
the ends of linear chromosomes from inappropriate recognition as broken DNA by cellular DNA
damage response proteins [2]. Telomeres prevent the recognition of chromosome ends by DNA damage
response proteins by being bound by a six-protein complex called shelterin. Thus, telomeres and the
shelterin complex overcome the “end protection problem”. Telomeres are also involved in determining
the maximal number of times a cell can divide. Due to the inability of DNA polymerase to completely
replicate the lagging strand of telomere DNA, a small (30–150 nucleotides) piece of DNA is lost with
each round of replication (Figure 1). This phenomenon, known as the “end replication problem”, results
in telomere shortening overtime. Upon reaching a critically shortened length, telomere uncapping and
DNA damage sensing of telomeres by p53 results in growth arrest [1–3]. Growth arrest is triggered
when one or a few telomeres become short enough to be sensed as damaged DNA, resulting in
replicative senescence [4]. The limited proliferative capacity, also known as the “Hayflick limit”, of cells
can act as a ‘cellular aging/timing’ mechanism in humans and other large long-lived organisms. By
having a counting mechanism, cells can prevent unlimited cell growth (i.e., telomeres are short and
thus sensed as DNA damage). Without such a mechanism, cells could accumulate mutations associated
with cancer development. Thus, telomere shortening and replicative senescence is thought to act as a
potent inhibitor of progression to malignancy [1,5].
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Figure 1. Telomere biology. (A) Telomeres are replicated during cell division (mitosis). A set of enzymes
process the end of replicated chromosomes so that a 3′ G-rich overhang is produced. The single
stranded 3′ end displaces the double-stranded structure to form a three-stranded structure (D-loop).
Shelterin binds to both the single- and double-stranded portion of the telomere, protecting it from being
recognized by the DNA damage machinery, solving the “end-protection” problem. (B) Telomerase
negative cells or cells without a telomere maintenance mechanism. Due to the “end-replication”
problem, a small piece of DNA at the lagging strand end of DNA is not replicated and is lost from
the chromosome that is passed on to the daughter cells. Over time, this slow erosion results in the
loss of telomere length. When a few telomeres have DNA damage at chromosome ends, deprotection
occurs and cellular senescence is initiated. This removes cells with critically short telomeres from
the replicating population of cells and acts as a potent block to tumor progression. (C) Cells become
replicatively immortal by adopting a telomere maintenance mechanism. Telomeres are maintained by
two mechanisms, telomerase RNP or a homology-directed mechanism called alternative lengthening of
telomeres. Telomerase is the mechanism that approximately 90% of human cancer cells use to maintain
telomeres and immortality. In male germline cells, telomeres are also maintained or elongated by the
ribonucleoprotein telomerase.

In order to achieve immortality, cancer cells need a telomere length maintenance mechanism [6].
Nearly all cancer cells up-regulate telomerase to re-elongate or maintain telomeres by de novo synthesis
of telomere repeats on to chromosome ends [1,7,8]. Although most cancer cells have detectable
telomerase activity, enzyme levels vary considerably between tumors and individual cells within
tumors [9]. Telomere length is also heterogenous between tumor types and within tumors [10].
Telomerase is a ribonucleoprotein (RNP) with reverse transcriptase activity that consists of two main
components and several accessory proteins. The core RNP is composed of the catalytic protein subunit
telomerase reverse transcriptase (hTERT) and an RNA template component (human telomerase RNA
component; hTERC, hTR) that when assembled and recruited can elongate or maintain telomeres [7,11].
Telomerase is active during embryonic development but is rapidly repressed in most somatic tissues [12].
Only specialized subpopulations of transit amplifying stem/ progenitor cells are capable of transient
telomerase expression post-development [1,13].

Telomerase is subject to a myriad of gene expression regulatory mechanisms. Little consensus
exists in the field about chromatin environment, DNA methylation, DNA looping, promoter mutations,
and transcription factor binding [14,15]. Despite the vast amount of research that has focused on
transcriptional and epigenetic regulation of hTERT, little research has focused on the regulation of the
resultant RNA molecules and co/post-transcriptional gene expression regulation [16,17]. hTERT mRNA
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levels are highest in embryonic stem cells, induced pluripotent stem cells and transit-amplifying adult
progenitors, and lower in normal cells. Contrary to the dogma in the field, recent evidence indicates
that there may or may not be a slight increase in hTERT mRNA abundance in cancer cells [18–20].
Full-length (FL) hTERT mRNA is the limiting factor for the formation of telomerase activity. Despite the
presence of active telomerase enzymes in cancer cells and stem cells, the mRNA copy number or mRNA
abundance is very low compared to other genes [21–23]. For instance, quantification of telomerase
components has shown 5000–10,000 molecules of hTR in cells, while hTERT mRNA is expressed between
1–40 molecules per cell [21–23]. Although the general paradigm is that the hTERT is limiting for active
telomerase, either component can be limiting in the formation of active telomerase [23,24]. In most
normal cells, hTR is present in excess and thus hTERT is limiting. Evidence for this is the observation
that hTERT expression is sufficient for immortalization (but not transformation) of fibroblast cells [25].
Recent evidence has demonstrated that there is a subpopulation of hTERT protein that is not assembled
into the telomerase complexes that could be capable of maintaining telomeres. Estimates indicate that
there are anywhere from 100–700 hTERT protein molecules that can interact with hTR in a telomerase
active cell at any given time [26,27]. In order to develop better telomerase inhibitors, a more thorough
understanding of hTERT gene expression regulation and function is necessary to gain insights into
possible therapeutic avenues.

Due to the lack of telomerase activity in most normal cells, besides transit-amplifying stem cells
and germ line cells, and the fact that the majority (~90%) of cancer cells have telomerase activity,
telomerase has been a highly sought-after cancer therapeutic target. While both public and private
efforts have attempted to develop inhibitors of this enzyme, the most clinically progressed drug is an
anti-sense RNA (Imeltelstat, GRN163L) of the template RNA, hTR [10,28–30]. Other small molecule
drugs and vaccine-like approaches to target telomerase positive cancer cells have been attempted but
have failed due to dose-limiting toxicities and other off target effects on normal cells [30–33]. Further,
clinical trials of Imetlestat are still underway and this drug may be best for cancers with already very
short telomeres [10]. Thus, the potential therapeutic benefits of targeting telomerase have not been
realized with current strategies. The major issue with direct inhibition of telomerase activity is the
long lag period that it takes to treat cells with inhibitors before telomeres are critically shortened and
cancer cells begin to die [1]. Recent advances in the field, however, have led to a resurgence in interest
towards finding a therapeutic window and means to inhibit telomerase/target telomere biology as a
cancer therapy. For instance, the observations that certain cancer cells/tumors appear to be addicted
to hTERT/telomerase as indicated by rapid telomere length-independent apoptosis, suggests that
there may be other strategies to target cancer cells [34]. hTERT promoter somatic mutations in cancer
cells also provide a new approach to targeting hTERT/telomerase positive cancer cells with minimal
off target effects. Additionally, a new class of drugs called telomere uncapping drugs are showing
significant benefits in pre-clinical studies. Leading the way in this class is a nucleotide analogue,
6-thio-deoxyguanosine (6-thio-dG) [35]. This nucleotide is preferentially incorporated by telomerase
into telomeres, which is hypothesized to generate a mutant telomere sequence. Shelterin components
cannot bind to mutant (6-thio-dG containing) telomeres which contributes to rapid telomere uncapping,
DNA damage signaling at the telomeres, and cell death in telomerase-expressing cancer cells [35].
Thus, a more thorough biochemical analysis of the hTERT regulatory mechanisms is being sought to
find new and more potent telomerase/TERT/telomere biology drugs.

One area of gene expression regulation that has mostly been ignored is alternative RNA splicing
of hTERT. Alternative RNA splicing has recently been observed to impact at least 95% of human
multi-exon genes and serves as a mechanism to control gene expression in several evolutionary
conserved ways [36]. For example, alternative splicing generates proteome diversity by making
several proteins from the same transcriptional unit/gene, allowing ~20,000 genes to code for more than
100,000 proteins [37]. While gene number does not scale with organism complexity, intron number
and thus splicing, does scale with organism complexity [38]. Alternative splicing of a gene can lead to
proteins with similar function or even opposing functions (dominant-negative isoforms). Alternative
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splicing can also regulate the abundance of functional gene products by splicing to isoforms that have
premature stop codons (degraded by non-sense mediated mRNA decay [39]). Ultimately, alternative
splicing offers a biological mechanism utilized by cells to regulate the functional outcomes of each gene.
hTERT/telomerase offers a good model gene that utilizes alternative splicing as part of its regulatory
repertoire, which is of particular importance in cancer biology and stem cells.

2. Alternative Splicing is Dysregulated in Cancer Leading to the Re-Emergence of Splice Variants
Normally Found in Development but Silenced in Normal Cells

Alternative splicing is dysregulated in cancers [40]. Alternative splicing is regulated by the
combination of cellular context, cis-elements, and trans-factor/RNA binding proteins [41]. Alternative
splicing is also co-transcriptionally regulated according to the kinetic coupling model [42]. As RNA
polymerase II transcribes a new pre-mRNA molecule, the spliceosome is recruited to the pre-mRNA,
even docking on the C-terminal domain of RNA polymerase II and dictating the inclusion and exclusion
of exons [43]. Further, the rate of RNA polymerase across a gene body, along with the chromatin
environment, DNA methylation patterns, and other unknown factors, can significantly impact the
alternative splicing pattern of a gene [44]. The spliceosome is a megadalton molecular machine that
is composed of five small nuclear ribonucleic particle (snRNP) core components (U1, U2, U4, U5
and U6) and an additional ~700 proteins [45]. The spliceosome components are recruited with RNA
polymerase II to the growing pre-mRNA and assembled in a step-wise manner at the 5′ and 3′ splice
sites, branch point, and polypyrimidine tract in order to complete intron lariat formation and removal,
and joining of exons in the processed transcript [45] (Figure 2). Exon joining may be constitutive,
meaning the exons are always included in the mRNA of a gene or alternative (only included sometimes
in the mRNA of a gene), giving rise to alternative splice variants (ASVs; [45]). Other types of splicing
events can occur such as intron retention, alternative 5′ or 3′ splicing sites, alternative promoters/first
exons, and alternative polyadenylation/3′ exon (Figure 2). Splice site selection is a complex process but
generally the proximity of local sequence elements (cis) such as exonic splicing enhancers/silencers
(ESE/ESI) and intronic splicing enhancers/silencers (ISE/ISI) and the RNA binding proteins in the
cell at any given time dictate splicing choice (Figure 2; [46]). There are at least 700 known splicing
factors/RNA binding proteins that can participate in alternative splicing [47]. We are only at the
beginning of understanding the roles and regulation of splicing in normal cells and the many ways
cancer cells utilize dysregulated splicing to promote growth and survival. Nearly all of the hallmarks
of cancer cells have dysregulated splicing products that have been identified, including hTERT and
cellular immortality [48]. These mechanistic insights may pave the way for new therapeutic avenues
into treating cancer, or specific aspects of cancer cells.
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contained in intronic and exonic sequences that are called intronic splicing silencers/enhancers (ISS/ISE)
and exonic splicing silencers/enhancers (ESS/ESE). Specialized RNA binding proteins bind to these
sequence elements and recruit in the megadalton spliceosome. Serine/Arginine-Rich (SR) proteins are
typically splicing enhancers (enhanced exon inclusion) while hnRNP proteins are typically splicing
silencers (repress exon inclusion, promote exon skipping/alternative RNA splicing). There are at least
700 RNA binding proteins in the human genome that can act as splicing trans factors, thus the repertoire
of splicing regulatory features is vast.

3. Alternative Splicing of hTERT

The reverse transcriptase component of telomerase, hTERT, is subjected to regulation by alternative
splicing. It is important to note that the murine TERT (mTERT) gene is not alternatively spliced
in the same fashion as human TERT (hTERT) [20]. Thus, we will focus solely on the splicing of
human TERT in this review. There are 22 known splice isoforms of hTERT that have been detected
in a variety of cell types [49]. hTERT is a 16 exon (15 intron) gene (Figure 3 and Table 1). hTERT
consists of four major protein domains (TEN domain, RNA binding domain, reverse transcriptase
domain, and C-terminal domain; Figure 3). Only the full-length 16 exon isoform of TERT that codes
for a protein that can be assembled into telomerase ribonucleoproteins is capable of maintaining or
elongating telomeres (Table 1; [17]). hTERT is spliced into active and inactive forms simultaneously in
telomerase positive cells (i.e., cancer cells, embryonic stem cells, iPS cells, male germ line precursor
cells, transit-amplifying adult stem cells, and activated immune T cells). The full-length protein coding
hTERT mRNA is expressed in the range of 1–90% of the steady state transcripts depending on cell
line/tissue studied [19,21,22].
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Figure 3. hTERT gene, protein domains and commonly studied splice variants. (A) Cartoon image of
hTERT exons and introns. hTERT is a 16 exon/15 intron gene that generates the reverse transcriptase
component of the telomerase enzyme. Exon 2 is highlighted in orange as it is the major contributor to
the telomerase RNA binding domain (TRBD). Exons 7 and 8 are highlighted in red as these two exons
represent one of the most commonly studied splicing events in the hTERT gene and they encode for
critical residues in the reverse transcriptase domain (RT). (B) Protein domains of hTERT. Lines linking
exons to the domains they encode are shown. Critical domains are the TEN (exon 1), RNA binding
(exons 2 and 3), RT (exons 4–13), and c-terminal (exons 14–16). All four of these domains are essential
for telomerase activity, processivity, recruitment, and function. (C) Open reading frames of abundant
hTERT alternative RNA splicing isoforms.
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Table 1. Description of major hTERT splice isoforms.

Isoform Exon Structure Intron Retention? Biochemical Function

Full-length 1–16. Original ORF. No
Functional hTERT protein, maintains
telomeres when in active telomerase

holoenzyme (RNP)

Minus beta 1–6, 9, and 10; PTC in 10.
Skipping of exons 7 and 8. No

Mostly degraded by non-sense
mediated decay, some translated into
protein and may play a role in DNA

damage repair/ protection from
apoptosis, may bind hTERC (hTR)

Minus alpha

1–16, alternative 3′ splice
acceptor site in exon 6

generates in frame shift of
36 nucleotides.
Original ORF.

No Dominant-negative, binds hTERC (hTR)

INS3 1–16 plus, PTC in intron 14.
Retention of intron 14

nucleotide 623 to end of
intron 14.

Dominant-negative, binds hTERC (hTR)

INS4
1–14, and alternative exon

16 3′ splice site NT492,
PTC in exon 14.

Retention of intron 14
nucleotides 1–600. Dominant-negative, binds hTERC (hTR)

DEL2 1,3–16, PTC in exon 3. No Proposed mitochondrial hTERT variant,
retains hTERT MLS in exon 1.

Delta4–13 1–3, 14–16, original ORF. No Proposed to stimulate proliferation.
Interacts with WNT/Beta catenin.

Minus Gamma Skipping of exon 11.
Original ORF. No Tissue specific and may inhibit

telomerase action at the telomeres.

PTC—premature termination codon. RNP—ribonucleoprotein. NT—nucleotide.

The alternative RNA splicing isoforms that are expressed in each cell type are not well described
but are likely to be tissue- and cell line-specific. The most commonly studied isoforms of hTERT
result from alternative splicing in the reverse transcriptase domain (RT) between exons 5 and 9 [19,50].
Alternative splicing in the RT domain consists of splicing in regions called the alpha and beta regions
(Table 1; Figure 3). The hTERT alpha region is a cryptic splice site within exon 6 that results in deletion
of the 5′ 36 nucleotides resulting in the minus alpha variant [51]. This alternative variant is in the
canonical hTERT reading frame and codes for a dominant-negative protein that can interact with hTR,
and when overexpressed, results in telomere shortening in telomerase positive cells [51]. However,
this variant is not very abundant, accounting for less than 5% of the steady state transcripts in cancer
cells [22]. The beta region consists of exons 7 and 8 of hTERT and these exons are skipped in the minus
beta variant of hTERT. The skipping of exons 7 and 8 of hTERT puts a premature stop codon in exon 10
in frame and thus results in the majority of the steady state mRNA of this transcript being targeted for
non-sense-mediated decay [22,51]. However, recent evidence in certain cancer cells indicates that not
all of this transcript is degraded and some may interact with polyribosomes and be translated into
truncated hTERT proteins [50]. The suspected function of minus beta truncated hTERT proteins is
similar to that of minus alpha in that it would contain exon 2 and the RNA binding domain, and thus
could interact with hTR and compete with full-length telomerase for telomere binding [26]. Other
evidence indicates that minus beta may be interacting with DNA damage and repair complexes and be
protecting cells that express this variant from certain types of genotoxic stressors [50,52]. However,
these results are controversial since an antibody to minus beta hTERT does not exist. The abundance
of minus beta varies from cell type to cell type but can be anywhere from 10% to 90% of the steady
state transcript levels [19,50]. The combination of minus alpha and minus beta splicing also occurs
in some cell types. The abundance of minus alpha minus beta can range from 1% to 15% depending
on cell type [22]. The function of this variant is assumed to be null as it should be degraded by
non-sense-mediated decay pathways.
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Several other variants outside of these have been described in the literature such as the minus
gamma variant, Del2, INS3, INS4, and delta4–13 (Table 1) [49,53]. The gamma deletion variant results
from skipping of exon 11 and is in the original reading frame of hTERT [16]. This splicing event impacts
the RT domain, is highly tissue-specific, and may act as a dominant-negative protein if it is expressed
at sufficient levels in cells. Recently, the Del2 (deletion of exon 2) alternative splicing variant (ASV)
of TERT was quantified in several cancer cell lines [21]. Exon 2 codes for part of the RNA binding
domain of hTERT. ASVs lacking this exon would be unable to interact with hTR and thus would not
have canonical telomerase activity. This variant was estimated at 40 copies per cell in certain cell
lines investigated but was absent in other lines, thus its expression is tissue- and cell line-specific [44].
The authors also went on to show that this ASV could indeed code for a protein of 12 kDa; however,
no function or physiological studies were performed so the function of this protein is unknown [36].
Several intron retention variants exist in hTERT as well. Many of these variants contain premature
stop codons, but two variants, INS3 and INS4, have been defined to function as dominant-negative
inhibitors of telomerase activity [53]. INS3 contains a 159 bp insertion of intron 14 (622–781 nucleotides)
at the end of exon 14, encoding for 44 amino acids, followed by a stop codon [52]. INS4 contains a
600 bp insertion of the entire intron 14, encoding for 17 amino acids, followed by a stop codon [12].
The expression of INS3 and INS4 is tissue-specific and when expressed may account for 1–15% of the
total steady state levels of hTERT mRNAs. Another recent study exploring the identity of hTERT ASVs
in a variety of human cell lines discovered several new variants including delta4–13 [49]. The authors
demonstrated that hTERT was transcribed in all lines investigated, even telomerase negative lines, but
that the transcript in the negative lines was alternatively spliced to the delta4–13 ASV which lacks the
RT domain and thus cannot produce active telomerase. The delta4–13 ASV codes for a truncated hTERT
protein that seemingly interacts with WNT/beta-catenin pathway and stimulates the proliferation of
cells in culture. While hTERT alternative splicing variants have been documented in various tissues
and cell lines to date, technological and methodological limitations make some of the above conflicting
findings difficult to interpret. Moving forward and as described below, RNA sequencing technologies
and new informatic techniques will pave the way for a more thorough understanding of hTERT ASVs.

3.1. hTERT Alternative Splicing during Human Embryogenesis and Development Indicates that Telomerase
Activity is Regulated by Alternative Splicing

hTERT is regulated by alternative splicing during human embryonic development. During tissue
development and the first phases of differentiation, hTERT is transcribed and spliced to multiple
forms [54,55]. The most commonly studied isoforms arising from exons 5–9 have been documented.
For example, full-length (FL) hTERT and minus beta hTERT are present along with telomerase activity
during kidney development. At about week 17 of development, there is a massive shift in hTERT
splicing where the full-length (exon 7/8 containing) transcript is eliminated and only minus beta remains.
This shift in splicing coincides with a complete loss of telomerase activity [54]. These observations can
be interpreted to indicate that alternative splicing regulates telomerase activity. However, the splicing
factors that regulate the turning off of telomerase activity during tissue differentiation and specification
are completely unknown. Further, the expression and splicing of other hTERT ASVs is not well studied
during the differentiation and development of human tissues. This area deserves further investigation
as telomerase halopinsufficiency leads to stem cell diseases and risk of early cancers in patients.
Thus, further characterization of hTERT regulation in stem cells may lead to early interventions and
cancer prevention.

3.2. A Paradigm Shift: hTERT Is Regulated by Alternative Splicing in Cancers

A long-held paradigm in the telomere/telomerase field was and still is that hTERT and telomerase
is regulated by transcription. It appeared that hTERT was transcriptionally silenced following fetal
development and this was the mechanism that prevented hTERT expression and thus telomerase
activity, and allowed for progressive telomere shortening that is observed in the soma [16,17]. However,
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recent evidence from several groups indicates that this may have been a mis-interpretation of the
assays used to measure hTERT steady state transcripts. The most common assays to measure hTERT
transcripts are designed to detect exons 5–9 in the RT domain, however, we now know that those exons
are spliced out of most transcripts of hTERT [20,49]. Thus, previous research using primers in exons
5–9 led to missing transcripts that contained other regions of hTERT mRNA and the interpretation
that hTERT is transcriptionally silenced in normal somatic cells. We and others have reported that
hTERT is indeed transcribed in all cells but it is spliced to forms that do not encode for reverse
transcriptase activity [18,49]. Further, exon 1 of hTERT is extremely G/C rich making it difficult to detect
without using PCR additives and modified polymerases at higher than normal annealing temperatures.
We have quantitated that normal cells and tissues express between 50–90% of the abundance of hTERT
transcripts as cancer cells and that ultimately an upregulation of transcription of hTERT in cancer cells
is minimal in terms of overall transcripts [18]. The major regulatory mechanism that leads to active
telomerase and full-length hTERT production is a shift in splicing. Thus, the new working model
going forward should be to understand how hTERT alternative splicing is regulated in normal cells
and becomes dysregulated during the progression to malignancy, leading to tumor cell immortality.

3.3. RNA Sequencing and Other Technologies to Detect hTERT Splice Variants in Cancer

The abundance and splicing of hTERT makes it difficult to detect using standard techniques.
Using short read sequencing and RT-PCR to quantify and identify splicing variants leads to bias and
the potential for mis-interpretations of the data [56]. The coverage and sequencing depth of short
read RNA sequencing experiments can significantly mislead research concerning hTERT splicing
and must be interpreted and validated carefully. New and emerging sequencing technologies and
informatics tools have significantly advanced the detection and quantification of full-length cDNAs [57].
For instance, Sayed et al. 2018 demonstrated using third generation single molecule sequencing of
hTERT-specific cDNA libraries that HeLa cells splice hTERT into several variants [20]. This sequencing
technology was combined with informatics analysis that allowed the authors to define the identity
of full-length transcripts in cells [20]. The most common variants in the libraries were identified as
a very short transcript-containing exons 1, 15 and 16, a transcript splicing from exon 4 to exon 16.
Other variants where detected using this method such as full-length being the second most abundant
transcript identified. Interestingly, minus beta as well as Del2 were detected but these variants in their
full-length context were not as abundant as previously estimated by other techniques. These newer
sequencing technologies and informatics have their own sets of caveats. Improvements in reagent
chemistry, library generation techniques, and analysis software that allows mapping and quantification
of detected transcripts of third generation sequencing will prove advantageous over other methods for
splice isoform measures.

3.4. Regulation of hTERT Alternative Splicing by cis-Elements and trans-Factors

The general rules of splicing regulation or the splicing code are still being elucidated; several
recent efforts to understand the role of cis-and-trans elements of hTERT alternative splicing regulation
have been published. Two seminal studies investigated the reverse transcriptase domain alternative
splicing of hTERT [17,50]. Both groups generated minigene constructs including exons 5–9 to determine
what sequence elements and trans-factors were responsible for the formation of full-length (containing
all five exons) versus the minus beta splice variants containing only exons 5, 6, and 9. In breast cancer
cells, Listerman et al. focused on the formation of minus beta. Using their minigene construct they
observed that the majority of the product when in the context of breast cancer cells was the full-length
variant (90%) with about 10% of the observed transcripts being minus beta [50]. Next, they undertook
a small-scale cDNA screen of common splicing enhancers (Serine/Arginine-rich (SR) proteins) and
splicing repressors (hnRNP proteins; Figure 4). They observed that SRSF11 promoted the alternative
splicing (repressed full-length splicing; Figure 4) and formation of minus beta in their minigene. They
also observed that hnRNPH2 and hnRNPL promoted full-length splicing of their hTERT minigene [29].
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This study also observed that not all of the minus beta transcript was degraded by non-sense mediated
decay and may make a dominant-negative protein of telomerase. Further the authors demonstrated
that minus beta may protect breast cancer cells from chemotherapeutic insults [29]. Thus, future
research is needed to more carefully explore the role of minus beta in cancer cells.

In a study by Wong et al., an hTERT minigene was generated and an interesting observation was
made that the initial construct only formed full-length hTERT transcripts containing exons 5–9 when
placed in the context of HeLa cells [58]. To determine what sequence elements may be missing in
the minigene construct, the authors performed a self-blast of hTERT exons 5–10 and observed highly
repetitive sequences in these exons and introns of hTERT. To determine if these repeat regions might
be important in regulation, they looked at the conservation of these repeats in species that regulate
TERT similar to humans (i.e., old world primates) compared to species that regulate TERT differently
(i.e., rodents). The authors found several conserved repeat regions shared between old world primates
and human TERT gene loci, but these elements were lacking/missing in rodents and other shorter-lived
primates. Utilizing this information, the authors inserted three of the conserved elements into the
hTERT minigene and observed the expected ratio of full-length to minus beta steady state expression
(i.e., recapitulating the endogenous hTERT isoform expression ratio). These cis-elements were termed
block 6 repeats (a variable number tandem repeat in intron 6), direct repeat 6 (DR6), and direct repeat 8.
The direct repeats are 256 nucleotides within intron 6 and 285 nucleotides within intron 8 respectively,
and consist of 85% homologous sequences [58]. Through deletion analysis, the authors determined the
impact of each element on steady state hTERT isoform expression. It was observed that the 1.1 kb
VNTR (38 nucleotide repeat) termed block 6 repeats was essential for exclusion/skipping of exons 7
and 8 and production of the minus beta deletion containing transcripts. Further, DR8 was important
for the formation of exon 7- and 8-containing transcripts, or potential full-length transcripts. To follow
up these observations, the authors went on to show that a minimal number of VNTR block 6 repeats
were needed to promote minus beta splicing (skipping of exons 7 and 8) and that blocking DR8 with
an anti-sense oligonucleotide could promote skipping of exons 7 and 8, indicating that DR8 is likely a
docking site for trans-factors [58]. In a second study, Wong et al. utilized RNA secondary structure
modeling to predict how the pre-mRNA could be folding following transcription [59]. They then
utilized a modified mutation complementation assay to demonstrate that the VNTR block 6 repeats
could potentially form RNA:RNA pairing, making the splicing of the exon 6 5′ splice site be in closer
proximity to the exon 9 3′ splice site [59]. Combined, these foundational data indicate that alternative
splicing of hTERT, which is a very low abundant transcript, does not follow the typical splicing rules
of more abundant transcripts. These studies determined a few trans-factors and the pivotal sequence
elements in determination of the splicing choice of exons 7 and 8 of hTERT.
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Figure 4. Reverse transcriptase alternative splicing regulation of hTERT. (A) Key of RNA binding
proteins associated with hTERT. Enhancers are depicted in green. Repressors in red. Blue indicates a
likely indirect impact on TERT splicing caused by the manipulation of a splicing factor. (B) Cartoon
image of introns 5 through exon 9 of hTERT in the reverse transcriptase domain (RT). On top of the
cartoon image are the hTERT exon 7/8 enhancers. On the bottom are the proteins that repress the
inclusion of exons 7/8.
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To begin to elucidate additional trans-factors, Ludlow et al. used a dual-reporter minigene loss of
the function screen focused on 516 splicing factors [19]. The list of RNA binding proteins was derived
based on both empirically determined RNA binding proteins via literature searches and searching
protein data bases (Genecards, etc.) that resulted in the curation of a list of 516 putative RNA binding
proteins. Following the screen, there were 110 individual genes that resulted in a two-fold change in
reporter activity. Since the goal of this initial study was to understand splicing factors/RNA binding
proteins involved in the promotion of full-length TERT and telomerase activity, they focused on
93 genes that resulted in a two-fold change in minus beta to full length splicing. A systematic approach
utilizing bioinformatics techniques and network analysis was then utilized to focus the analysis and
narrow down the list of candidate genes (detailed below in Section 4).

4. Using Bioinformatics to Discover hTERT Alternative Splicing Regulation in Cancers

Following high throughput screening, target identification is an important yet difficult process.
Several approaches can be taken to narrow down candidates. To begin to narrow down our list of
candidate genes, we utilized a panel of well characterized lung cancer cells and developed highly
quantitative droplet digital PCR measures of hTERT exon inclusion/exclusion events [19]. From these
measures, we were able to segregate cell lines into high hTERT full length (FL) lines and low hTERT FL
lines. Using publicly available gene expression data from the same lung cancer cell lines, we used
hierarchical clustering analysis based on the expression level of the 516 splicing factors. We then
compared and overlapped the minigene hits to the differential expression analysis. This analysis
narrowed down the list from 93 potential candidate genes to 12 genes that were differentially expressed
between high and low TERT FL lines. This led us to identify one gene, NOVA1, that was related to
hTERT FL splicing in non-small cell lung cancer cells that express NOVA1. We then hypothesized
that NOVA1, hTERT FL, telomerase activity, and telomere length interacted to define subsets of lung
cancer cells that may be more or less similar in terms of splicing factor expression. Again, we utilized
hierarchical clustering analysis based on the expression of NOVA1, hTERT FL, telomerase activity,
and telomere length, and clustered lung cancer cell lines into categories expressing high and low
levels of these variables. We then used differential expression analysis focusing on the expression of
the 516 splicing factors and found a set of splicing genes that were differentially expressed between
these high and low cell lines [19]. This analysis identified a network of genes that are related to the
alternative splicing of hTERT and may lead to the identification of potential lead candidate genes for
targeted therapies given hTERT/telomerase specificity to cancer. These analyses were done with a
combination of in-laboratory measures and publicly available data. Other studies have done similar
analyses to try to understand hTERT alternative splicing in cancer.

Investigating the genetic landscape at the hTERT locus, a group utilized largescale analysis and fine
mapping to elucidate the relationships between single nucleotide polymorphisms (SNPs) and telomere
length, hTERT expression, and alternative splicing [60]. The authors combined cohorts to generate a
large study population that had data on 110 SNPs in hTERT and correlated these SNPs to telomere
length, hTERT expression and splicing from available RNA sequencing data. Further, the SNPs were
also correlated (step-wise regression analysis) to cancer risk for specific cancers. Interestingly, an SNP
in intron 4 was found to impact the alternative splicing of hTERT. The minor allele of this SNP was
found to impact the splicing choice of hTERT by introducing the use of a novel alternative splice donor.
In a follow up study, it was observed that this SNP generated a new splice variant termed INS1B which
is a variant of a known hTERT ASV called INS1 [61]. The expression of INS1B reduced telomerase
activity when the authors used oligonucleotides to switch the splicing to favor INS1B. The authors
concluded that this SNP results in subtle inadequacies in telomerase activity in normal cells, which
over time results in an increased risk for genome instability and cancer [61].

Other research has used The Cancer Genome Atlas or Pan Cancer Atlas to study telomere and
telomerase biology including hTERT alternative splicing. Barthel et al. utilized these public resources
to analyze a variety of regulatory features that lead to the expression of hTERT in cancer cells [62].
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Concerning the alternative splicing of hTERT, the authors reported that the full length transcript was
the most abundant in the samples with detectable levels of hTERT. This is in contrast to the common
thought paradigm that the minus beta transcript is most abundant in cancer cells. However, more
recent data and improved reagents and techniques are providing more evidence that FL may indeed be
more abundant compared to commonly measured alternatively spliced transcripts. Several technical
limitations should be mentioned briefly. hTERT is an extremely low abundant transcript making it
difficult to detect and quantify accurately. RNA sequencing technologies are limited in the sensitivity
for low abundance targets and thus caution must be taken when interpreting hTERT expression
estimates from large consortia RNA sequencing data. Furthermore, predicting the functional outcome
of full-length hTERT must also be interpreted cautiously. hTERT protein can be assembled into active
telomerase molecules but it also has telomere-independent roles in cells [26,63]. That being said,
this group attempted to derive a gene expression signature to predict telomerase activity levels [62].
This expression signature generated a telomerase activity score and was correlated to expression levels
of hTERT and hTERC (telomerase RNA component) in the Pan-cancer analysis [62]. Overall, this
paper utilized a wide variety of bioinformatic tools and public data to make inferences about the
activation of telomerase in cancer and how hTERT and hTERT splicing may be related to cellular
immortality of tumors. Very recently, a group published an additional trans-factor that may bind hTERT
pre-mRNA to regulate the splicing choice of exons 7/8 of hTERT. Wang et al. reported that an antisense
oligonucleotide aimed at the intronic cluster of SRSF2 binding sites in intron 6 of hTERT results in
reduced FL hTERT splicing and increased alternative splicing [64]. These data combined indicate that
alternative splicing is an emerging important regulatory paradigm for hTERT and telomerase and that
it may indeed be targetable for cancer therapeutics.

5. Utilizing Predictive Models of RNA Folding and RNA trans-Factor Binding

Alternative splicing is regulated by the combination of cis- and trans-acting factors along with the
combination and competition of trans-RNA binding proteins available in a given cell or tissue at a
given time (i.e., context). Many computational biology groups have attempted to model and predict
both RNA folding in vivo and RNA trans-factor binding (recently reviewed in References [65,66]).
There are many programs that have resulted from such efforts. Groups have utilized these programs to
predict the hTERT RNA secondary structure to help explain alternative RNA splicing. Wong et al. in
2013 and 2014 utilized RNAfold to predict the potential structure of hTERT exons and introns 5–9 [59].
They observed the potential for RNA:RNA pairing within intron 6 and between introns 6 and 8. They
inferred that this model could explain why cancer cells tend to skip exons 7 and 8 and allow for the
joining of exons 6 and 9. Many tools have since evolved from these initial predictive models, and as
machine learning capabilities improve, better and more accurate secondary structure prediction tools
will become available.

Another important consideration in the regulation of alternative splicing is the contribution of
RNA trans-acting factors or RNA binding proteins’ involvement in site choice. Given its importance in
gene expression regulation, many tools have been developed to predict RNA–protein interactions [66].
We used a series of freely available webtools to predict where NOVA1 may be interacting with hTERT.
NOVA1 is an RNA binding protein involved in neuronal development [67–69]. It was initially described
in small cell lung cancer patients with neurological complications [67]. NOVA1 was later associated
with breast and lung cancers in general. The binding motif of NOVA1 is YCAY (where Y is a C or a U in
RNA) and NOVA1 has been extensively characterized in neurons [70]. We experimentally determined
that NOVA1 in fact interacts with hTERT pre-mRNAs at DR8 [19]. Experimental confirmation of
RNA binding–protein interaction predictions is critical as RNA:protein interactions are not completely
understood and are difficult to predict. Since a number of prediction models exist, utilizing several
predictive models could provide a higher level of confidence of interaction when experimental
techniques are not available. Overall, the RNA biologist tool kit continues to grow and many of these
tools are freely available and can be found at Galaxy, RNA Galaxy workbench 2.0.
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6. Conclusions

Telomerase regulation in cancer cell progression is incompletely understood. The emergence of
hTERT full length mRNA and telomerase activity is a multi-step process that leads to telomere length
maintenance and survival of cancer cells. The role of alternative RNA splicing in the production of
full-length hTERT mRNA is not completely defined. Understanding how cells choose to splice hTERT
pre-mRNAs to either functional telomerase-generating mRNAs or to alternatively spliced products
will inform tumor progression models of cancer. Further, hTERT is a low abundant gene with several
regulatory features that make it an interesting model gene for understanding non-canonical splicing
processes. Elucidating the role of alternative RNA splicing in telomerase biology will take a combination
of molecular and cellular studies coupled with bioinformatics, network analysis, the generation of new
tools potentially involving machine learning, and access to large cohorts of patient samples. Overall,
the knowledge gained by studying the role of hTERT alternative RNA splicing in cancer cells and
during cancer progression may lead to new therapeutic targets of telomere biology and could lead to
novel paradigms of gene expression regulation of low abundance genes.
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