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Abstract

Shared autonomy integrates user input with robot autonomy in order to control a robot and help 

the user to complete a task. Our work aims to improve the performance of such a human-robot 

team: the robot tries to guide the human towards an effective strategy, sometimes against the 

human’s own preference, while still retaining his trust. We achieve this through a principled 

human-robot mutual adaptation formalism. We integrate a bounded-memory adaptation model of 

the human into a partially observable stochastic decision model, which enables the robot to adapt 

to an adaptable human. When the human is adaptable, the robot guides the human towards a good 

strategy, maybe unknown to the human in advance. When the human is stubborn and not 

adaptable, the robot complies with the human’s preference in order to retain their trust. In the 

shared autonomy setting, unlike many other common human-robot collaboration settings, only the 

robot actions can change the physical state of the world, and the human and robot goals are not 

fully observable. We address these challenges and show in a human subject experiment that the 

proposed mutual adaptation formalism improves human-robot team performance, while retaining a 

high level of user trust in the robot, compared to the common approach of having the robot strictly 

following participants’ preference.

1. INTRODUCTION

Assistive robot arms show great promise in increasing the independence of people with 

upper extremity disabilities [1-3]. However, when a user teleoperates directly a robotic arm 

via an interface such as a joystick, the limitation of the interface, combined with the 

increased capability and complexity of robot arms, often makes it difficult or tedious to 

accomplish complex tasks.

Shared autonomy alleviates this issue by combining direct teleoperation with autonomous 

assistance [4-8]. In recent work by Javdani et al., the robot estimates a distribution of user 
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goals based on the history of user inputs, and assists the user for that distribution [9]. The 

user is assumed to be always right about their goal choice. Therefore, if the assistance 

strategy knows the user’s goal, it will select actions to minimize the cost-to-go to that goal. 

This assumption is often not true, however. For instance, a user may choose an unstable 

grasp when picking up an object (Fig. 2), or they may arrange items in the wrong order by 

stacking a heavy item on top of a fragile one. Fig. 1 shows a shared autonomy scenario, 

where the user teleoperates the robot towards the left bottle. We assume that the robot knows 
the optimal goal for the task: picking up the right bottle is a better choice, for instance 

because the left bottle is too heavy, or because the robot has less uncertainty about the right 

bottle’s location. Intuitively, if the human insists on the left bottle, the robot should comply; 

failing to do so can have a negative effect on the user’s trust in the robot, which may lead to 

disuse of the system [10-12]. If the human is willing to adapt by aligning its actions with the 

robot, which has been observed in adaptation between humans and artifacts [13, 14], the 

robot should insist towards the optimal goal. The human-robot team then exhibits a mutually 
adaptive behavior, where the robot adapts its own actions by reasoning over the adaptability 
of the human teammate.

Nikolaidis et al. [15] proposed a mutual adaptation formalism in collaborative tasks, e.g., 

when a human and a robot work together to carry a table out of the room. The robot builds a 

Bounded-memory Adaptation Model (BAM) of the human teammate, and it integrates the 

model into a partially observable stochastic process, which enables robot adaptation to the 

human: If the user is adaptable, the robot will disagree with them, expecting them to switch 

towards the optimal goal. Otherwise, the robot will align its actions with the user policy, thus 

retaining their trust.

A characteristic of many collaborative settings is that human and robot both affect the world 

state, and that disagreement between the human and the robot impedes task completion. For 

instance, in the table-carrying example, if human and robot attempt to move the table in 

opposing directions with equal force, the table will not move and the task will not progress. 

Therefore, a robot that optimizes the task completion time will account for the human 

adaptability implicitly in its optimization process: if the human is non-adaptable, the only 

way for the robot to complete the task is to follow the human goal. This is not the case in a 

shared-autonomy setting, since the human actions do not affect the state of the task. 

Therefore, a robot that solely maximizes task performance in that setting will always move 

towards the optimal goal, ignoring human inputs altogether.

In this work, we propose a generalized human-robot mutual adaptation formalism, and we 

formulate mutual adaptation in the collaboration and shared-autonomy settings as instances 

of this formalism.

We identify that in the shared-autonomy setting (1) tasks may typically exhibit less structure 

than in the collaboration domain, which limits the observability of the user’s intent, and (2) 

only robot actions directly affect task progress. We address the first challenge by including 

the operator goal as an additional latent variable in a mixed-observability Markov decision 

process (MOMDP) [16]. This allows the robot to maintain a probability distribution over the 

user goals based on the history of operator inputs. We also take into account the uncertainty 
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that the human has on the robot goal by modeling the human as having a probability 

distribution over the robot goals (Sec. 3). We address the second challenge by proposing an 

explicit penalty for disagreement in the reward function that the robot is maximizing (Sec. 

4). This allows the robot to infer simultaneously the human goal and the human adaptability, 

reason over how likely the human is to switch their goal based on the robot actions, and 

guide the human towards the optimal goal while retaining their trust.

We conducted a human subject experiment (n = 51) with an assistive robotic arm on a table-

clearing task. Results show that the proposed formalism significantly improved human-robot 

team performance, compared to the robot following participants’ preference, while retaining 

a high level of human trust in the robot.

2. PROBLEM SETTING

A human-robot team can be treated as a multi-agent system, with world state xworld ∈ 
Xworld, robot action ar ∈ Ar, and human action ah ∈ Ah. The system evolves according to a 

stochastic state transition function T: Xworld × Ar × Ah → Π(Xworld). Additionally, we 

model the user as having a goal, among a discrete set of goals g ∈ G. We assume access to a 

stochastic joint policy for each goal, which we call modal policy, or mode m ∈ M. We call 

mh the modal policy that the human is following at a given time-step, and mr the robot 

mode, which is the [perceived by the human] robot policy towards a goal. The human mode, 

mh ∈ M is not fully observable. Instead, the robot has uncertainty over the user’s policy, that 

can modeled as a Partially Observable Markov Decision Process (POMDP). Observations in 

the POMDP correspond to human actions ah ∈ Ah. Given a sequence of human inputs, we 

infer a distribution over user modal policies using an observation function O(ah∣xworld, mh).

Contrary to previous work in modeling human intention [17] and in shared autonomy [9], 

the user goal is not static. Instead, we define a transition function Tmh : M × Ht × Xworld × 

Ar → Π(M), where ht is the history of states, robot and human actions (xworld
0 , ar

0, 

ah
0, …, xworld

t − 1 , ar
t − 1, ah

t − 1). The function models how the human mode may change over time. 

At each time step, the human-robot team receives a real-valued reward that in the general 

case also depends on the human mode mh and history ht: R(mh, ht, xworld, ar, ah). The reward 

captures both the relative cost of each goal g ∈ G, as well as the cost of disagreement 

between the human and the robot. The robot goal is then to maximize the expected total 

reward over time: ∑t = 0
∞ γtR(t), where the discount factor γ ∈ [0,1) gives higher weight to 

immediate rewards than future ones.

Computing the maximization is hard: Both Tmh and R depend on the whole history of states, 

robot and human actions ht. We use the Bounded-memory Adaptation Model [15] to 

simplify the problem.

2.1 Bounded-Memory Adaptation Model

Nikolaidis et al. [15] proposed the Bounded-memory Adaptation Model (BAM). The model 

is based on the assumption of “bounded rationality” was proposed first by Herbert Simon: 

people often do not have the time and cognitive capabilities to make perfectly rational 
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decisions [18]. In game theory, bounded rationality has been modeled by assuming that 

players have a “bounded memory” or “bounded recall” and base their decisions on recent 

observations [19-21].

The BAM model allows us to simplify the problem, by modeling the human as making 

decisions not on the whole history of interactions, but on the last k interactions with the 

robot. This allows us to simplify the transition function Tmh and reward function R defined 

in the previous section, so that they depend on the history of the last k time-steps only. 

Additionally, BAM provides a parameterization of the transition function Tmh, based on the 

parameter α ∈ 𝒜, which is the human adaptability. The adaptability represents one’s 

inclination to adapt to the robot. With the BAM assumptions, we have 

Tmh
: M × 𝒜 × Hk × Xworld × Ar Π(M) and R: M × Hk × Xworld × Ar × Ah ℝ. We describe 

the implementation of Tmh in Sec. 3 and of R in Sec. 4.

2.2 Shared Autonomy

The shared autonomy setting allows us to further simplify the general problem: the world 

state consists only of the robot configuration xr ∈ Xr, so that xr ≡ xworld. A robot action 

induces a deterministic change in the robot configuration. The human actions ah ∈ Ah are 

inputs through a joystick interface and do not affect the world state. Therefore, the transition 

function of the system is deterministic and can be defined as: T: Xr × Ar → Xr.

2.3 Collaboration

We include the collaboration setting formalism for completeness. Contrary to the shared-

autonomy setting, both human and robot actions affect the world state, and the transition 

function can be deterministic or stochastic. In the deterministic case, it is T : Xworld × Ar × 

Ah → Xworld. Additionally, the reward function does not require a penalty for disagreement 

between the human and robot modes; instead, it can depend only on the relative cost for 

each goal, so that R: Xworld ℝ. Finally, if the task exhibits considerable structure, the 

modes may be directly observed from the human and robot actions. In that case, the robot 

does not maintain a distribution over modal policies.

3. HUMAN AND ROBOT MODE INFERENCE

When the human provides an input through a joystick interface, the robot makes an 

inference on the human mode. In the example table-clearing task of Fig. 1, if the robot 

moves to the right, the human will infer that the robot follows a modal policy towards the 

right bottle. Similarly, if the human moves the joystick to the left, the robot will consider 

more likely that the human follows a modal policy towards the left bottle. In this section, we 

formalize the inference that human and robot make on each other’s goals.

3.1 Stochastic Modal Policies

In the shared autonomy setting, there can be a very large number of modal policies that lead 

to the same goal. We use as example the table-clearing task of Fig. 1. We let GL represent 

the left bottle, GR the right bottle, and S the starting end-effector position of the robot. Fig. 
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3-left shows paths from three different modal policies that lead to the same goal GL 

Accounting for a large set of modes can increase the computational cost, in particular if we 

assume that the human mode is partially observable (Section 5).

Therefore, we define a modal policy as a stochastic joint-policy over human and robot 

actions, so that m : Xr × Ht → Π(Ar) × Π(Ah). A stochastic modal policy compactly 

represents a probability distribution over paths and allows us to reason probabilistically 

about the future actions of an agent that does not move in a perfectly predictable manner. For 

instance, we can use the principle of maximum entropy to create a probability distribution 

over all paths from start to the goal [22, 23]. While a stochastic modal policy represents the 

uncertainty of the observer over paths, we do not require the agent to actually follow a 

stochastic policy.

3.2 Full Observability Assumption

While mr, mh can be assumed to be observable for a variety of structured tasks in the 

collaboration domain [15], this is not the case for the shared autonomy setting because of the 

following factors:

Different policies invoke the same action.—Assume two modal policies in Fig. 3, 

one for the left goal shown in red in Fig. 3-left, and a symmetric policy for the right goal 

(not shown). An agent moving upwards (Figure 3-right) could be following either of the two 

with equal probability. In that case, inference of the exact modal policy without any prior 

information is impossible, and the observer needs to maintain a uniform belief over the two 

policies.

Human inputs are noisy.—The user provides its inputs to the system through a joystick 

interface. These inputs are noisy: the user may “overshoot” an intended path and correct 

their input, or move the joystick in the wrong direction. In the fully observable case, this 

would result in an incorrect inference of the human mode. Maintaining a belief over modal 

policies allows robustness to human mistakes.

This leads us to assume that modal policies are partially observable. We model how the 

human infers the robot mode, as well as how the robot infers the human mode, in the 

following sections.

3.3 Robot Mode Inference

The bounded-memory assumption dictates that the human does not recall the whole history 

of states and actions, but only a recent history of the last k time-steps. The human attributes 

the robot actions to a robot mode mr.

P(mr ∣ hk, xr
t , ar

t ) = P(mr ∣ xr
t − k + 1, ar

t − k + 1, …, xr
t , ar

t )
= η P(ar

t − k + 1, …, ar
t ∣ mr, xr

t − k + 1, …, xr
t )

(1)
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In this work, we consider modal policies that generate actions based only on the current 

world state, so that M : Xr → Π(Ah) × Π(Ar).

Therefore Eq. 1 can be simplified as follows, where mr(xr
t , ar

t ) denotes the probability of the 

robot taking action ar at time t, if it follows modal policy mr:

P(mr ∣ hk, xr
t , ar

t ) = η mr(xr
t − k + 1, ar

t − k + 1)…mr(xr
t , ar

t ) (2)

P(mr ∣ hk, xr
t , ar

t ) is the [estimated by the robot] human belief on the robot mode mr.

3.4 Human Mode Inference

To infer the human mode, we need to implement the dynamics model Tmh that describes 

how the human mode evolves over time, and the observation function O that allows the robot 

to update its belief on the human mode from the human actions.

In Sec. 2 we defined a transition function Tmh, that indicates the probability of the human 

switching from mode mh to a new mode mh′ , given a history hk and their adaptability α. We 

simplify the notation, so that xr ≡ xr
t , ar ≡ ar

t  and x ≡ (hk, xr):

Tmh
(x, α, mh, ar, mh′ ) = P(mh′ ∣ x, α, mh, ar)

= ∑
mr

P(mh′ , mr ∣ x, α, mh, ar)

= ∑
mr

P(mh′ ∣ x, α, mh, ar, mr) × P(mr ∣ x, α, mh, ar)

= ∑
mr

P(mh′ ∣ α, mh, mr) × P(mr ∣ x, ar)

(3)

The first term gives the probability of the human switching to a new mode mh′ , if the human 

mode is mh and the robot mode is mr. Based on the BAM model [15], the human switches to 

mr, with probability α and stays at mh with probability 1 − α. Nikolaidis et al. [15] define α 
as the human adaptability, which represents their inclination to adapt to the robot. If α = 1, 

the human switches to mr with certainty. If α = 0, the human insists on their mode mh and 

does not adapt. Therefore:

P(mh′ ∣ α, mh, mr) =
α mh′ ≡ mr

1 − α mh′ ≡ mh

0 otherwise
(4)

The second term in Eq. 3 is computed using Eq. 2, and it is the [estimated by the human] 

robot mode.
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Eq. 3 describes that the probability of the human switching to a new robot mode mr depends 

on the human adaptability α, as well as on the uncertainty that the human has about the 

robot following mr. This allows the robot to compute the probability of the human switching 

to the robot mode, given each robot action.

The observation function O: Xr × M → Π(Ah) defines a probability distribution over human 

actions ah. This distribution is specified by the stochastic modal policy mh ∈ M. Given the 

above, the human mode mh can be estimated by a Bayes filter, with b(mh) the robot’s 

previous belief on mh:

b′(mh′ ) = η O(mh′ , xr′, ah) ∑
mh ∈ M

Tmh
(x, α, mh, ar, mh′ )b(mh) (5)

In this section, we assumed that α is known to the robot. In practice, the robot needs to 

estimate both mh and α. We formulate this in Sec. 5.

4. DISAGREEMENT BETWEEN MODES

In the previous section we formalized the inference that human and robot make on each 

other’s goals. Based on that, the robot can infer the human goal and it can reason over how 

likely the human is to switch goals given a robot action.

Intuitively, if the human insists on their goal, the robot should follow the human goal, even if 

it is suboptimal, in order to retain human trust. If the human is willing to change goals, the 

robot should move towards the optimal goal. We enable this behavior by proposing in the 

robot’s reward function a penalty for disagreement between human and robot modes. The 

intuition is that if the human is non-adaptable, they will insist on their own mode throughout 

the task, therefore the expected accumulated cost of disagreeing with the human will 

outweigh the reward of the optimal goal. In that case, the robot will follow the human 

preference. If the human is adaptable, the robot will move towards the optimal goal, since it 

will expect the human to change modes.

We formulate the reward function that the robot is maximizing, so that there is a penalty for 

following a mode that is perceived to be different than the human’s mode.

R(x, mh, ar) =
Rgoal : xr ∈ G

Rother : xr ∉ G
(6)

If the robot is at a goal state xr ∈ G, a positive reward associated with that goal is returned, 

regardless of the human mode mh and robot mode mr. Otherwise, there is a penalty C < 0 for 

disagreement between mh and mr, induced in Rother. The human does not observe mr 

directly, but estimates it from the recent history of robot states and actions (Sec. 3.3). 

Therefore, Rother is computed so that the penalty for disagreement is weighted by the 

[estimated by the human] probability of the robot actually following mr:

Nikolaidis et al. Page 7

Proc ACM SIGCHI. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rother = ∑
mr

Rm(mh, mr)P(mr ∣ x, ar) (7)

where Rm(mh, mr) =
0 :mh ≡ mr

C :mh ≠ mr
(8)

5. HUMAN-ROBOT MUTUAL ADAPTATION FORMALISM

5.1 MOMDP Formulation

In Section 3.4, we showed how the robot estimates the human mode, and how it computes 

the probability of the human switching to the robot mode based on the human adaptability. 

In Section 4, we defined a reward function that the robot is maximizing, which captures the 

trade-off between going to the optimal goal and following the human mode. Both the human 

adaptability and the human mode are not directly observable. Therefore, the robot needs to 

estimate them through interaction, while performing the task. This leads us to formulate this 

problem as a mixed-observability Markov Decision Process (MOMDP) [16]. This 

formulation allows us to compute an optimal policy for the robot that will maximize the 

expected reward that the human-robot team will receive, given the robot’s estimates of the 

human adaptability and of the human mode. We define a MOMDP as a tuple 

{X, Y , Ar, 𝒯x, 𝒯α, 𝒯mh
, R, Ω, O}:

• X : Xr × Ar
k is the set of observable variables. These are the current robot 

configuration xr, as well as the history hk. Since xr transitions deterministically, 

we only need to register the current robot state and robot actions ar
t − k + 1, …, ar

t .

• Y :𝒜 × M is the set of partially observable variables. These are the human 

adaptability α ∈ A, and the human mode mh ∈ M.

• Ar is a finite set of robot actions. We model actions as transitions between 

discrete robot configurations.

• 𝒯x: X × Ar X is a deterministic mapping from a robot configuration xr, history 

hk and action ar, to a subsequent configuration xr′ and history hk′ .

• 𝒯α:𝒜 × Ar Π(𝒜) is the probability of the human adaptability being α′ at the 

next time step, if the adaptability of the human at time t is α and the robot takes 

action ar. We assume the human adaptability to be fixed throughout the task.

• 𝒯mh
: X × 𝒜 × M × Ar Π(M) is the probability of the human switching from 

mode mh to a new mode mh′ , given a history hk, robot state xr, human adaptability 

α and robot action ar. It is computed using Eq. 3, Sec. 3.4.
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• R: X × M × Ar ℝ is a reward function that gives an immediate reward for the 

robot taking action ar given a history hk, human mode mh and robot state xr. It is 

defined in Eq. 6, Sec. 4.

• Ω is the set of observations that the robot receives. An observation is a human 

input ah ∈ Ah (Ω ≡ Ah).

• O : M × Xr → Π(Ω) is the observation function, which gives a probability 

distribution over human actions for a mode mh at state xr. This distribution is 

specified by the stochastic modal policy mh ∈ M.

5.2 Belief Update

Based on the above, the belief update for the MOMDP is [16]:

b′(α′, mh′ ) = ηO(mh′ , xr′, ah) ∑
α ∈ 𝒜

∑
mh ∈ M

𝒯x(x, ar, x′)

𝒯α(α, ar, α′)𝒯mh
(x, α, mh, ar, mh′ )b(α, mh)

(9)

We note that since the MOMDP has two partially observable variables, α and mh, the robot 

maintains a joint probability distribution over both variables.

5.3 Robot Policy

We solve the MOMDP for a robot policy πr
∗(b) that is optimal with respect to the robot’s 

expected total reward.

The stochastic modal policies may assign multiple actions at a given state. Therefore, even if 

mh ≡ mr, ar may not match the human input ah. Such disagreements are unnecessary when 

human and robot modes are the same. Therefore, we let the robot actions match the human 

inputs, if the robot has enough confidence that robot and human modes (computed using Eq. 

2, 5) are identical in the current time-step. Otherwise, the robot executes the action specified 

by the MOMDP optimal policy. We leave for future work adding a penalty for disagreement 

between actions, which we hypothesize it would result in similar behavior.

5.4 Simulations

Fig. 4 shows the robot behavior for two simulated users, one with low adaptability (User 1, 

α = 0.0), and one with high adaptability (User 2, α = 0.75) for a shared autonomy scenario 

with two goals, GL and GR, corresponding to modal policies mL and mR respectively. Both 

users start with modal policy mL (left goal). The robot uses the human input to estimate both 

mh and α. We set a bounded-memory of k = 1 time-step. If human and robot disagree and 

the human insists on their modal policy, then the MOMDP belief is updated so that smaller 

values of adaptability α have higher probability (lower adaptability). It the human aligns its 

inputs to the robot mode, larger values become more likely. If the robot infers the human to 

be adaptable, it moves towards the optimal goal. Otherwise, it complies with the human, 

thus retaining their trust.
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Fig. 5 shows the team-performance over α, averaged over 1000 runs with simulated users. 

We evaluate performance by the reward of the goal achieved, where Ropt is the reward for 

the optimal and Rsub for the sub-optimal goal. We see that the more adaptable the user, the 

more often the robot will reach the optimal goal. Additionally, we observe that for α = 0.0, 

the performance is higher than Rsub. This is because the simulated user may choose to move 

forward in the first time-steps; when the robot infers that they are stubborn, it is already 

close to the optimal goal and continues moving to that goal.

6. HUMAN SUBJECT EXPERIMENT

We conduct a human subject experiment (n = 51) in a shared autonomy setting. We are 

interested in showing that the human-robot mutual adaptation formalism can improve the 

performance of human-robot teams, while retaining high levels of perceived collaboration 

and trust in the robot in the shared autonomy domain.

On one extreme, we “fix” the robot policy, so that the robot always moves towards the 

optimal goal, ignoring human adaptability. We hypothesize that this will have a negative 

effect on human trust and perceived robot performance as a teammate. On the other extreme, 

we have the robot assist the human in achieving their desired goal.

We show that the proposed formalism achieves a tradeoff between the two: when the human 

is non-adaptable, the robot follows the human preference. Otherwise, the robot insists on the 

optimal way of completing the task, leading to significantly better policies, compared to 

following the human preference, while achieving a high level of trust.

6.1 Independent Variables

No-adaptation session.—The robot executes a fixed policy, always acting towards the 

optimal goal.

Mutual-adaptation session.—The robot executes the MOMDP policy of Sec. 5.3.

One-way adaptation session—The robot estimates a distribution over user goals, and 

adapts to the user following their preference, assisting them for that distribution [9]. We 

compute the robot policy in that condition by fixing the adaptability value to 0 in our model 

and assigning equal reward to both goals.

6.2 Hypotheses

H1 The performance of teams in the No-adaptation condition will be better than of teams in 
the Mutual-adaptation condition, which will in turn be better than of teams in the One-way 
adaptation condition. We expected teams in the No-adaptation condition to outperform the 

teams in the other conditions, since the robot will always go to the optimal goal. In the 

Mutual-adaptation condition, we expected a significant number of users to adapt to the robot 

and switch their strategy towards the optimal goal. Therefore, we posited that this would 

result in an overall higher reward, compared to the reward resulting from the robot following 

the participants’ preference throughout the task (One-way adaptation).
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H2 Participants that work with the robot in the One-way adaptation condition will rate 
higher their trust in the robot, as well as their perceived collaboration with the robot, 
compared to working with the robot in the Mutual-adaptation condition,. Additionally, 
participants in the Mutual-adaptation condition will give higher ratings, compared to 
working with the robot in the No-adaptation condition. We expected users to trust the robot 

more in the One-way adaptation condition than in the other conditions, since in that 

condition the robot will always follow their preference. In the Mutual-adaptation condition, 

we expected users to trust the robot more and perceive it as a better teammate, compared 

with the robot that executed a fixed strategy ignoring users’ adaptability (No-adaptation). 

Previous work in collaborative tasks has shown a significant improvement in human trust, 

when the robot had the ability to adapt to the human parter [15, 24, 25]

6.3 Experiment Setting: A Table Clearing Task

Participants were asked to clear a table off two bottles placed symmetrically, by providing 

inputs to a robotic arm through a joystick interface (Fig. 1). They controlled the robot in 

Cartesian space by moving it in three different directions: left, forward and right. We first 

instructed them in the task, and asked them to do two training sessions, where they practiced 

controlling the robot with the joystick. We then asked them to choose which of the two 

bottles they would like the robot to grab first, and we set the robot policy, so that the other 

bottle was the optimal goal. This emulates a scenario where, for instance, the robot would be 

unable to grasp one bottle without dropping the other, or where one bottle would be heavier 

than the other and should be placed in the bin first. In the one-way and mutual adaptation 

conditions, we told them that “the robot has a mind of its own, and it may choose not to 

follow your inputs.” Participants then did the task three times in all conditions, and then 

answered a post-experimental questionnaire that used a five-point Likert scale to assess their 

responses to working with the robot. Additionally, in a video-taped interview at the end of 

the task, we asked participants that had changed strategy during the task to justify their 

action.

6.4 Subject Allocation

We recruited 51 participants from the local community, and chose a between-subjects design 

in order to not bias the users with policies from previous conditions.

6.5 MOMDP Model

The size of the observable state-space X was 52 states. We empirically found that a history 

length of k = 1 in BAM was sufficient for this task, since most of the subjects that changed 

their preference did so reacting to the previous robot action. The human and robot actions 

were {move-left, move-right, move-forward}. We specified two stochastic modal policies 

{mL, mR}, one for each goal. We additionally assumed a discrete set of values of the 

adaptability α : {0.0, 0.25, 0.5, 0.75, 1.0}. Therefore, the total size of the MOMDP state-

space was 5 × 2 × 52 = 520 states. We selected the reward so that Ropt = 11 for the optimal 

goal, Rsub = 10 for the suboptimal goal, and C = −0.32 for the cost of mode disagreement 

(Eq. 8). We computed the robot policy using the SARSOP solver [26], a point-based 
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approximation algorithm which, combined with the MOMDP formulation, can scale up to 

hundreds of thousands of states [17].

7. ANALYSIS

7.1 Objective Measures

We consider hypothesis H1, that the performance of teams in the No-adaptation condition 

will be better than of teams in the Mutual-adaptation condition, which in turn will be better 

than of teams in the One-way adaptation condition.

Nine participants out of 16 (56%) in the Mutual-adaptation condition guided the robot 

towards the optimal goal, which was different than their initial preference, during the final 

trial of the task, while 12 out of 16 (75%) did so at one or more of the three trials. From the 

participants that changed their preference, only one stated that they did so for reasons 

irrelevant to the robot policy. On the other hand, only two participants out of 17 in the One-

way adaptation condition changed goals during the task, while 15 out of 17 guided the robot 

towards their preferred, suboptimal goal in all trials. This indicates that the adaptation 

observed in the Mutual-adaptation condition was caused by the robot behavior.

We evaluate team performance by computing the mean reward over the three trials, with the 

reward for each trial being Ropt if the robot reached the optimal goal and Rsub if the robot 

reached the suboptimal goal (Fig. 6-left). As expected, a Kruskal-Wallis H test showed that 

there was a statistically significant difference in performance among the different conditions 

(χ2(2) = 39.84, p < 0.001). Pairwise two-tailed Mann-Whitney-Wilcoxon tests with 

Bonferroni corrections showed the difference to be statistically significant between the No-

adaptation and Mutual-adaptation (U = 28.5, p < 0.001), and Mutual-adaptation and One-

way adaptation (U = 49.5, p = 0.001) conditions. This supports our hypothesis.

7.2 Subjective Measures

Recall hypothesis H2, that participants in the Mutual-adaptation condition would rate their 

trust and perceived collaboration with the robot higher than in the No-adaptation condition, 

but lower than in the One-way adaptation condition. Table I shows the two subjective scales 

that we used. The trust scales were used as-is from [27]. We additionally chose a set of 

questions related to participants’ perceived collaboration with the robot.

Both scales had good consistency. Scale items were combined into a score. Fig. 6-center 

shows that both participants’ trust (M = 3.94, SE = 0.18) and perceived collaboration (M = 

3.91, SE = 0.12) were high in the Mutual-adaptation condition. One-way ANOVAs showed a 

statistically significant difference between the three conditions in both trust (F(2, 48) = 

8.370, p = 0.001) and perceived collaboration (F(2, 48) = 9.552, p < 0.001). Tukey post-hoc 

tests revealed that participants of the Mutual-adaptation condition trusted the robot more, 

compared to participants that worked with the robot in the No-adaptation condition (p = 

0.010). Additionally, they rated higher their perceived collaboration with the robot (p = 

0.017). However, there was no signihcant difference in either measure between participants 

in the One-way adaptation and Mutual-adaptation conditions. We attribute these results to 

the fact that the MOMDP formulation allowed the robot to reason over its estimate of the 
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adaptability of its teammate; if the teammate insisted towards the suboptimal goal, the robot 

responded to the input commands and followed the user’s preference. If the participant 

changed their inputs based on the robot actions, the robot guided them towards the optimal 

goal, while retaining a high level of trust. By contrast, the robot in the No-adaptation 

condition always moved towards the optimal goal ignoring participants’ inputs, which in 

turn had a negative effect on subjective measures.

8. DISCUSSION

In this work, we proposed a human-robot mutual adaptation formalism in a shared autonomy 

setting. In a human subject experiment, we compared the policy computed with our 

formalism, with an assistance policy, where the robot helped participants to achieve their 

intended goal, and with a hxed policy where the robot always went towards the optimal goal.

As Fig. 6 illustrates, participants in the one-way adaptation condition had the worst 

performance, since they guided the robot towards a suboptimal goal. The fixed policy 

achieved maximum performance, as expected. However, this came to the detriment of 

human trust in the robot. On the other hand, the assistance policy in the One-way adaptation 

condition resulted in the highest trust ratings — albeit not significantly higher than the 

ratings in the Mutual-adaptation condition — since the robot always followed the user 

preference and there was no goal disagreement between human and robot. Mutual-

adaptation balanced the trade-off between optimizing performance and retaining trust: users 

in that condition trusted the robot more than in the No-adaptation condition, and performed 

better than in the One-way adaptation condition.

Fig. 6-right shows the three conditions with respect to trust and performance scores. We can 

make the MOMDP policy identical to either of the two policies in the end-points, by 

changing the MOMDP model parameters. If we fix in the model the human adaptability to 0 

and assign equal costs for both goals, the robot would assist the user in their goal (One-way 

adaptation). If we fix adaptability to 1 in the model (or we remove the penalty for mode 

disagreement), the robot will always go to the optimal goal (fixed policy).

The presented table-clearing task can be generalized without significant modifications to 

tasks with a large number of goals, human inputs and robot actions, such as picking good 

grasps in manipulation tasks (Fig. 2): The state-space size increases linearly with (1/dt), 
where dt a discrete time-step, and with the number of modal policies. On the other hand, the 

number of observable states is polynomial to the number of robot actions (O(Ar
k)), since each 

state includes history hk: For tasks with large ∣Ar∣ and memory length k, we could 

approximate hk using feature-based representations.

Overall, we are excited to have brought about a better understanding of the relationships 

between adaptability, performance and trust in a shared autonomy setting. We are very 

interested in exploring applications of these ideas beyond assistive robotic arms, to powered 

wheelchairs, remote manipulators, and generally to settings where human inputs are 

combined with robot autonomy.

Nikolaidis et al. Page 13

Proc ACM SIGCHI. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

We thank Michael Koval, Shervin Javdani and Henny Admoni for the very helpful discussion and advice.

Funding

This work was funded by the DARPA SIMPLEX program through ARO contract number 67904LSDRP, National 
Institute of Health R01 (#R01EB019335), National Science Foundation CPS (#1544797), and the Office of Naval 
Research. We also acknowledge the Onassis Foundation as a sponsor.

9. REFERENCES

[1]. Hillman M, Hagan K, Hagan S, Jepson J, and Orpwood R, “The weston wheelchair mounted 
assistive robot the design story,” Robotica, vol. 20, no. 02, pp. 125–132, 2002.

[2]. Prior SD, “An electric wheelchair mounted robotic arm a survey of potential users,” Journal of 
medical engineering & technology, vol. 14, no. 4, pp. 143–154, 1990. [PubMed: 2398486] 

[3]. Sijs J, Liefhebber F, and Romer GWR, “Combined position & force control for a robotic 
manipulator,” in 2007 IEEE 10th International Conference on Rehabilitation Robotics IEEE, 
2007, pp. 106–111.

[4]. Kofman J, Wu X, Luu TJ, and Verma S, “Teleoperation of a robot manipulator using a vision-
based human-robot interface,” Industrial Electronics, IEEE Transactions on, vol. 52, no. 5, pp. 
1206–1219, 2005.

[5]. Dragan AD and Srinivasa SS, “A policy-blending formalism for shared control,” The International 
Journal of Robotics Research, vol. 32, no. 7, pp. 790–805, 2013.

[6]. Yu W, Alqasemi R, Dubey R, and Pernalete N, “Telemanipulation assistance based on motion 
intention recognition,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 
IEEE International Conference on IEEE, 2005, pp. 1121–1126.

[7]. Trautman P, “Assistive planning in complex, dynamic environments: a probabilistic approach,” in 
Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on IEEE, 2015, pp. 
3072–3078.

[8]. Gopinath D, Jain S, and Argall BD, “Human-in-the-loop optimization of shared autonomy in 
assistive robotics,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 247–254, 2017. 
[PubMed: 30662953] 

[9]. Javdani S, Srinivasa S, and Bagnell JAD, “Shared autonomy via hindsight optimization,” in 
Proceedings of Robotics: Science and Systems, Rome, Italy, July 2015.

[10]. Hancock PA, Billings DR, Schaefer KE, Chen JY, De Visser EJ, and Parasuraman R, “A meta-
analysis of factors affecting trust in human-robot interaction,” Human Factors, 2011.

[11]. Salem M, Lakatos G, Amirabdollahian F, and Dautenhahn K, “Would you trust a (faulty) robot?: 
Effects of error, task type and personality on human-robot cooperation and trust,” in HRI, 2015.

[12]. Lee JJ, Knox WB, Wormwood JB, Breazeal C, and DeSteno D, “Computationally modeling 
interpersonal trust,” Front. Psychol, 2013.

[13]. Xu Y, Ueda K, Komatsu T, Okadome T, Hattori T, Sumi Y, and Nishida T, “Woz experiments for 
understanding mutual adaptation,” Ai & Society, vol. 23, no. 2, pp. 201–212, 2009.

[14]. Komatsu T, Ustunomiya A, Suzuki K, Ueda K, Hiraki K, and Oka N, “Experiments toward a 
mutual adaptive speech interface that adopts the cognitive features humans use for 
communication and induces and exploits users’ adaptations,” International Journal of Human-
Computer Interaction, vol. 18, no. 3, pp. 243–268, 2005.

[15]. Nikolaidis S, Kuznetsov A, Hsu D, and Srinivasa S, “Formalizing human-robot mutual 
adaptation: A bounded memory model,” in The Eleventh ACM/IEEE International Conference 
on Human Robot Interation IEEE Press, 2016, pp. 75–82.

[16]. Ong SC, Png SW, Hsu D, and Lee WS, “Planning under uncertainty for robotic tasks with mixed 
observability,” IJRR, 2010.

[17]. Bandyopadhyay T, Won KS, Frazzoli E, Hsu D, Lee WS, and Rus D, “Intention-aware motion 
planning,” in WAFR. Springer, 2013.

Nikolaidis et al. Page 14

Proc ACM SIGCHI. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[18]. Simon HA, “Rational decision making in business organizations,” The American economic 
review, pp. 493–513, 1979.

[19]. Powers R and Shoham Y, “Learning against opponents with bounded memory.” in IJCAI, 2005.

[20]. Monte D, “Learning with bounded memory in games,” GEB, 2014.

[21]. Aumann RJ and Sorin S, “Cooperation and bounded recall,” GEB, 1989.

[22]. Ziebart BD, Ratliff N, Gallagher G, Mertz C, Peterson K, Bagnell JA, Hebert M, Dey AK, and 
Srinivasa S, “Planning-based prediction for pedestrians,” in IROS, 2009.

[23]. Ziebart BD, Maas AL, Bagnell JA, and Dey AK, “Maximum entropy inverse reinforcement 
learning.” in AAAI, 2008, pp. 1433–1438.

[24]. Shah J, Wiken J, Williams B, and Breazeal C, “Improved human-robot team performance using 
chaski, a human-inspired plan execution system,” in HRI, 2011.

[25]. Lasota PA and Shah JA, “Analyzing the effects of human-aware motion planning on close-
proximity human-robot collaboration,” Hum. Factors, 2015.

[26]. Kurniawati H, Hsu D, and Lee WS, “Sarsop: Efficient point-based pomdp planning by 
approximating optimally reachable belief spaces.” in RSS, 2008.

[27]. Hoffman G, “Evaluating fluency in human-robot collaboration,” in HRI workshop on human 
robot collaboration, vol. 381, 2013, pp. 1–8.

Nikolaidis et al. Page 15

Proc ACM SIGCHI. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Table clearing task in a shared autonomy setting. The user operates the robot using a joystick 

interface and moves the robot towards the left bottle, which is a suboptimal goal. The robot 

plans its actions based on its estimate of the current human goal and the probability α of the 

human switching towards a new goal indicated by the robot.
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Figure 2: 
The user guides the robot towards an unstable grasp, resulting in task failure.
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Figure 3: 
(left) Paths corresponding to three different modal policies that lead to the same goal GL We 

use a stochastic modal policy mL to compactly represent all feasible paths from S to GL. 

(right) The robot moving upwards from point S could be moving towards either GL or GR.
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Figure 4: 
Sample runs on a shared autonomy scenario with two goals GL, GR and two simulated 

humans of adaptability level α = 0 and 0.75. Both users start with modal policy mL 

(associated with the left goal). The human and robot actions are {move-left, move-right, 

move-forward}. For both users, the upper row plots the robot trajectory (red dots), the 

human input (green arrow) and the robot action (gray arrow) over time. The middle row 

plots the estimate of α over time, where α ∈ {0, 0.25, 0.5, 0.75, 1}. Each graph plots α 
versus the probability of α. The lower row plots m ∈ {mL, mR} versus the probability of m. 

Columns indicate successive time-steps. User 1 insists on their initial strategy throughout the 

task and the robot complies, whereas User 2 adapts to the robot and ends up following mR.
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Figure 5: 
Mean performance for simulated users of different adaptability α.
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Figure 6: 
Findings for objective and subjective measures.
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Table I:

Subjective Measures

Trust α = .85

1. I trusted the robot to do the right thing at the right time.

2. The robot was trustworthy.

Perceived Collaboration α = .81

1. I was satisfied with ADA and my performance.

2. The robot and I worked towards mutually agreed upon goals.

3. The robot and I collaborated well together.

4. The robot’s actions were reasonable.

5. The robot was responsive to me.
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