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APOE at the interface of inflammation, neurodegeneration and pathological protein spread in

Alzheimer’s disease

Despite more than a century of research, the aetiology

of sporadic Alzheimer’s disease (AD) remains unclear

and finding disease modifying treatments for AD pre-

sents one of the biggest medical challenges of our time.

AD pathology is characterized by deposits of aggregated

amyloid beta (Ab) in amyloid plaques and aggregated

tau in neurofibrillary tangles. These aggregates begin in

distinct brain regions and spread throughout the brain

in stereotypical patterns. Neurodegeneration, compris-

ing loss of synapses and neurons, occurs in brain

regions with high tangle pathology, and an inflamma-

tory response of glial cells appears in brain regions with

pathological aggregates. Inheriting an apolipoprotein E

e4 (APOE4) allele strongly increases the risk of develop-

ing AD for reasons that are not yet entirely clear. Sub-

stantial amounts of evidence support a role for APOE in

modulating the aggregation and clearance of Ab, and
data have been accumulating recently implicating

APOE4 in exacerbating neurodegeneration, tau pathol-

ogy and inflammation. We hypothesize that APOE4

influences all the pathological hallmarks of AD and

may sit at the interface between neurodegeneration,

inflammation and the spread of pathologies through the

brain. Here, we conducted a systematic search of the lit-

erature and review evidence supporting a role for

APOE4 in neurodegeneration and inflammation. While

there is no direct evidence yet for APOE4 influencing

the spread of pathology, we postulate that this may be

found in future based on the literature reviewed here.

In conclusion, this review highlights the importance of

understanding the role of APOE in multiple important

pathological mechanisms in AD.
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Introduction

The greatest genetic risk factor for sporadic AD is a

polymorphism in the apolipoprotein E (APOE) gene.

The APOE e4 (APOE4) allele is associated with increas-

ing risk of AD in a dose-dependent manner when com-

pared to the more common APOE e3 (APOE3) allele;

whereas the much rarer APOE e2 (APOE2) allele has

been shown to be protective [1]. The inheritance of

two copies of APOE4 increases the chance of develop-

ing AD by 12 times compared to the risk of a person

with two copies of APOE3. Homozygous APOE4 carri-

ers who develop AD also have a lower average age of

Correspondence: Tara Spires-Jones, UK Dementia Research
Institute and Centre for Discovery Brain Sciences, The University
of Edinburgh, 1 George Square, Edinburgh EH8 9JX, UK. Tel: +44
(0)1316511895; E-mail: Tara.spires-jones@ed.ac.uk
aEqual contributions.

© 2018 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd

on behalf of British Neuropathological Society.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

327

Neuropathology and Applied Neurobiology (2019), 45, 327–346 doi: 10.1111/nan.12529

https://orcid.org/0000-0002-2660-5943
https://orcid.org/0000-0002-2660-5943
https://orcid.org/0000-0002-2660-5943
https://orcid.org/0000-0003-2422-0633
https://orcid.org/0000-0003-2422-0633
https://orcid.org/0000-0003-2422-0633
https://orcid.org/0000-0003-2530-0598
https://orcid.org/0000-0003-2530-0598
https://orcid.org/0000-0003-2530-0598
mailto:
http://creativecommons.org/licenses/by/4.0/


clinical onset of 68 years of age compared to an aver-

age age of onset of 84 for an individual with two copies

of APOE3. One copy of APOE4 increases the chance of

AD by three times and lowers the average age of onset

to 76 years of age [1]. Although mentioned in associa-

tion with AD most frequently, APOE has also been

linked to Parkinson’s disease [2], frontotemporal

dementia [3] and other neurological diseases (reviewed

in [4]) as well as linked to lower cognition in nonde-

mented aged individuals [5]. The pathways by which

APOE impacts the development of AD have been widely

studied both in vitro and in vivo, however, the exact

mechanisms have yet to be uncovered.

Much of the work looking at APOE in AD investi-

gates its relationship with Ab. Early post mortem work

found a positive correlation between APOE4 allele dose

and Ab plaque density in individuals with AD [6]. A

wide range of compelling studies indicate that APOE4

affects the production, clearance and aggregation of Ab
(reviewed in [4,7]). Recent genetic data that strongly

suggest inflammation to play a role in AD risk have

re-invigorated the investigations of the role of APOE in

neuroinflammation and how this contributes to disease

[8]; and there are emerging data suggesting that APOE

may also influence tau-mediated neurodegeneration

[9].

We hypothesize that APOE4 acts beyond its well-

known roles in influencing Ab pathology and lipid

homoeostasis and has a strong influence on neurode-

generation, inflammation and potentially the spread of

pathological proteins through the brain. Here, we con-

ducted a systematic literature search and review the

current support in the literature for this hypothesis.

Methods

A systematic literature search approach was taken for

finding studies to review in this paper. In February 2018,

Embase, Web of Science and MedLine were searched to

identify primary research articles published from 1980 to

the date searches were run. Search terms covering APOE,

AD and inflammation/pathological protein spread/neu-

rodegeneration were developed (Table S1) to suit each

database. Initially, there were no language or selec-

tion restrictions on the type of study included or

how outcomes were defined, measured or when they

were taken. Searches identified 22 909 abstracts and

titles that were exported to Endnote, where 12 638

duplicates were removed. 10 271 articles were

uploaded into Covidence, where a further 767 dupli-

cates were removed. A two-stage screening strategy

was conducted on titles/abstracts and then on full

texts using predetermined exclusion criteria

(Table S2). Three researchers contributed to the

abstract and title screening process such that 50% of

abstracts/titles were screened by at least two people

and 50% by one. All full-text articles were double

screened. Of the 9502 titles/abstracts screened, 214

progressed to full-text review and 88 studies were

included. Twenty hand-picked papers that were

either published after the search date or were missed

during the search but deemed pertinent to the

review were also included as is standard practice for

full systematic reviews (Figure 1; Table S3). In the

results section, we synthesize the findings of the

papers identified by the systematic search. Due to

the heterogeneous nature of the studies, we did not

perform standardized quality control checks of all of

the papers, however, all papers included were pub-

lished in peer-reviewed journals. Because systematic

reviews are designed to test evidence of an interven-

tion and due to the inability to conduct formal qual-

ity control due to the many types of experiments

reviewed, this is not a fully registered systematic

review but instead uses some of the principles of sys-

tematic reviews to perform a systematic literature

search and screen for relevant papers which we

review.

Results of the systematic literature search

APOE and neurodegeneration

To determine whether there is evidence that APOE

influences neurodegeneration search terms were used

to identify papers containing both APOE and indicators

of neuron and synapse loss (papers relating to APOE

and neurodegeneration identified in the systematic

search are coloured blue and orange in Table S1).

APOE-related atrophy and neuronal loss in AD

Imaging studies in AD populations repeatedly demon-

strated possession of an APOE4 allele to be associated

with more extensive atrophy in disease-specific brain

regions such as the medial temporal lobe [3,11–23],
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although this was not universal [24,25]. This is unsur-

prising when considering that brain structures located

here have clinical correlates to well-defined AD symp-

toms (e.g. memory impairments – hippocampus; altered

emotional responses – amygdala), and that APOE4 car-

riers are at increased risk of developing these symptoms

in the form of AD. APOE4-related atrophy of medial

temporal lobe structures was suggested to occur in a

gene-dose-dependent manner [15–17,19,21], with one

study finding each APOE4 allele to impart a 4.8%

reduction in hippocampal volume and a 3.8% reduc-

tion in amygdala volume [16]. In longitudinal studies,

Figure 1. PRISMA flow diagram summarizing the review process. Template edited from [10]. Papers referenced in the main body of text

were identified through our systematic search and can be found in Table S3.
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accelerated rates of hippocampal atrophy were associ-

ated with the APOE4 allele [13,22,26–29], although

this was not always observed [30,31]. APOE4-related

atrophy was also observed in the parietal cortex [3,13]

and some prefrontal areas [3,12], although again these

were not consistently reported and may be related to

the inclusion of younger AD patients in these studies.

Diffuse cerebral atrophy is a gross pathological fea-

ture of AD. Somewhat surprisingly, however, whole

brain volume has been proposed to increase with

increasing number of APOE4 alleles in AD patients

[19,32]. Greater APOE4 allele dose was associated with

larger volumes in the frontal lobes [11,17,20],

although not always [12,14], which might potentially

outweigh reductions in other brain regions and

account for increased whole brain volume. Nonetheless,

these studies indicate that the APOE4 allele selectively

influences the topography of regional brain atrophy,

and thus neurodegeneration, in AD.

Studies of post mortem human AD brain have identi-

fied neuronal loss in vulnerable brain regions to be

characteristic of AD. From our literature search, deter-

mining whether APOE influences this was less clear. In

the nucleus basalis, APOE4 was found to exacerbate

neuronal loss [33], but have no impact in other studies

[34,35]. These discrepancies may be due to the differ-

ent methods employed in quantification of neuronal

loss and groups studied. APOE4 allele possession was

also found to enhance neuronal loss in other subcorti-

cal structures [33,34], but have no effect on the CA1

region of the hippocampus or superior temporal sulcus

[34,36].

In vivo and in vitro studies supported an association

between APOE4 and neuronal degeneration. In aged

mice expressing human APOE, those expressing APOE4

exhibited increased hippocampal and cortical atrophy

compared to those expressing APOE3 [37,38]. In

APOE4, but not APOE3 mice, activation of the amyloid

cascade by inhibition of the Ab degrading enzyme

neprilysin was sufficient to induce degeneration of hip-

pocampal and entorhinal cortex neurons, suggestive of

a specific effect of APOE4 in exacerbating Ab-related
neuronal loss [39]. Isoform-specific effects of APOE on

Ab-induced neurodegeneration were also suggested

in vitro, with APOE3 and APOE2, but not APOE4,

protecting hippocampal and cortical neurons from Ab-
induced neurotoxicity [40–42]. APOE4 has also been

shown to exacerbate neurodegeneration in the absence

of Ab, instead operating through a tau-dependent

mechanism [9].

Animal studies support an isoform-specific role for

APOE in the loss of GABAergic interneurons [43,44].

Mice expressing human APOE4 exhibited greater age-

dependent loss of GAD67- and somatostatin-positive

interneurons in the dentate gyrus compared to those

expressing APOE3. Interestingly, loss of somatostatin

immunoreactivity was exacerbated by APOE4 in the

AD brain [45]. The detrimental effects of APOE4 on

GABAergic interneurons was sex-dependent, only being

observed in female mice [44]. This is interesting when

considering APOE4 confers greater AD risk in females

and some effects of APOE4 on regional brain atrophy

are more prominent in females [16,18,21].

In summary, there is strong evidence that APOE4

influences neuron loss in AD, however, there are some

conflicting reports and future well-powered, rigorous

studies in both human brain and animal models are

needed to fully understand the age, sex and region-spe-

cific effects of APOE on neuron death.

APOE-related synaptic and dendritic degeneration in
AD

Prior to the onset of neuronal loss in AD, extensive

synapse loss and dendritic changes occur. These can be

considered early neurodegenerative processes that con-

tribute to synaptic and neuronal dysfunction, which

pave the way for more generalized neurodegeneration

later in the disease. In contrast to neuronal loss, synap-

tic and dendritic degeneration are dynamic processes,

with the potential to be reversed if targeted early

enough. Thus, it is important to consider the role of

APOE in these changes.

Whether synapse loss associates with APOE genotype

was the subject of a few studies identified by our

search. Electron microscopy coupled with stereological

counting in post mortem tissue identified AD-related loss

of synapses in the dentate gyrus, stratum radiatum of

the CA1 region of the hippocampus and lamina III of

the inferior temporal gyrus. However, this was not

related to APOE status [46–48]. These findings contrast

with results from aged APOE mice, which suggested

APOE4 to be associated with a reduced number of

synapses in the dentate gyrus [49]. Although not

accounting for these discrepancies, it is worth noting

that electron microscopy is limited by its ability to only
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quantify synaptic changes in small areas of tissue.

Thus, its use for characterizing changes in a disease

that stereotypically results in widespread pathology

may not be entirely representative.

In AD, loss of the presynaptic vesicle protein, synap-

tophysin, is evident in various brain regions. In post

mortem studies, APOE genotype did not modulate

synaptophysin levels in frontal or temporal regions

[50,51] although a trend towards lower synapto-

physin immunoreactivity was observed in AD patients

with an APOE4 allele [50]. A further study of another

presynaptic vesicle protein, Rab3a, also found no asso-

ciation of synapse loss with APOE genotype [52]. This

contrasts with animal studies demonstrating that mice

expressing human APOE4 alone or in concurrence

with human amyloid precursor protein display

increased age-dependent degeneration of synapto-

physin-positive presynaptic terminals in the neocortex

and hippocampus [53,54]. Preservation of synapto-

physin-positive presynaptic terminals in aged APOE4

mice has also been reported, however, [55]. Contra-

dictory results have also been reported in APOE KO

mice, with both age-dependent reductions in synapto-

physin-positive terminals [56] and no changes [57]

observed.

Although the findings discussed thus far tend to sug-

gest that APOE4 does not contribute to synaptic degener-

ation, it is important to consider that techniques used

may not be optimal for quantification of synapses or

synaptic protein loss, and that many of these studies did

not consider plaque proximity in the analyses which is

known to drive substantial local synapse loss as will be

discussed below. The axial resolution of even confocal

microscopy is not sufficient to resolve individual synapses

in standard tissue sections. In addition, immunoblotting is

inferior to techniques that yield absolute synaptic protein

concentrations. Indeed, using ELISA, presynaptic protein

levels were found to be reduced in AD patients with an

APOE4 allele, although only a trend towards reduction

was seen for synaptophysin [58].

A relatively recently described histological technique,

array tomography, has been used to overcome some of

the limitations associated with synapse quantification

using other methods, offering a means for high-resolu-

tion characterization of synapses in post mortem tissue.

In addition, this approach avoids some issues associated

with electron microscopy in that thousands of synapses

can be analysed. Using this technique, synapse density

was found to be specifically reduced within the ‘halo’

surrounding amyloid plaques. In both AD human post

mortem tissue and a mouse model, this was isoform-

specific, with APOE4 exacerbating peri-plaque synapse

loss [59,60].

APOE4-related peri-plaque synapse loss affects both

pre- and post-synapses [59] and greater age-induced

reductions in post-synaptic proteins have been observed

in AD mouse models expressing APOE4 compared to

other isoforms [61]. Dendritic abnormalities, such as

dystrophic neurites, alterations in dendrite complexity

and loss of spines are widespread in AD. Considering

that dendritic abnormalities are closely linked to synap-

tic dysfunction, and thus potentially synaptic degenera-

tion, the effect of APOE here is relevant.

The presence of dystrophic neurites are a neuropatho-

logical hallmark of AD and are exacerbated by APOE4 in

AD mouse models when compared to other isoforms

[59]. Such changes in dendritic morphology are pre-

dicted to alter synaptic function, and thus may influence

degeneration. Indeed, neuritic degeneration requires the

presence of APOE [62], with APOE4 mice showing

increased age-dependent loss of neocortical and hip-

pocampal dendrites compared to APOE3 mice [53].

The density of dendritic spines, the post-synaptic site

of over 90% of excitatory neurons, has consistently

been shown to be reduced in the presence of APOE4 in

cortex, hippocampus, entorhinal cortex and amygdala

in vitro [63], in vivo [64–68] and in humans [68]. A

reduction in dendrite length was also observed in

APOE4 mice [66,67], which contributes to reduced

connectivity. Interestingly, expression of APOE2 can

rescue reduced spine density in AD mouse models [69].

The morphology of dendritic spines has also been sug-

gested to be influenced by APOE, with APOE4 being

associated with shorter spines and APOE2 with longer

spines [64]. In addition, APOE may influence spine

morphology such that APOE4 specifically reduces the

number of spines associated with learning and memory

[65]. Finally, APOE4 is associated with reductions in

dendritic arborization and less complicated branching

patterns, impacting on neuronal function [64,65,67].

Collectively, these studies suggest that, in the con-

text of dendritic and synaptic changes, APOE4 is less

effective at maintaining synaptic and neuronal integ-

rity in disease-specific brain areas than other isoforms,

which likely contributes to synaptic and neuronal

degeneration.
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Mechanisms of APOE-related neurodegeneration

Dendritic, synaptic and neuronal degeneration are all

influenced by APOE in an isoform-specific manner.

However, the mechanisms by which APOE4 impacts

neurodegeneration are not completely understood. Elu-

cidating these mechanisms may enable the develop-

ment of appropriate therapies, particularly in relation

to APOE effects on synapses and dendrites, which have

potential to be reversible.

In vivo and in vitro studies suggested that APOE4

may drive neurodegeneration through an Ab-depen-
dent mechanism [37,39–42]. Recent revisions of the

amyloid hypothesis of AD, have suggested soluble

oligomeric forms of Ab (oAb) to be the effectors of Ab-
induced degeneration, with APOE4 exacerbating oAb-
associated degeneration relative to other isoforms

[41,42,70] (Figure 2) (details of participants in Fig-

ures 2-5 found in Table S4). APOE and oAb may act

intracellularly to enact this degeneration, with APOE

uptake into neurons correlating with neuronal death

and intracellular accumulation of soluble Ab [71].

APOE4-specific increases in intraneuronal oAb have

been suggested to drive neurodegeneration through

impairments of mitochondria and lysosomes [39,72],

although the role of intracellular Ab remains hotly

debated in the field. Isoform-specific interactions

between APOE and the C-terminal domain of soluble

Ab, or lack of in the case of APOE4, have also been

suggested to influence the propensity for APOE4 to

promote Ab-mediated neuronal death [42]. Moreover,

protection against oAb-mediated synaptic loss by

APOE3 has been suggested to be mediated by a novel

intracellular protein kinase C pathway, which is not

activated by APOE4 [70].

APOE and oAb may also act extracellularly to impact

neurodegeneration. Interestingly, oligomeric forms of

Ab are increased in the ‘halo’ surrounding plaques, an

area where synaptic degeneration is exacerbated by

APOE4 [59,60]. Mechanistically, APOE4 might exacer-

bate peri-plaque synapse loss by facilitating the associa-

tion of oAb with synapses where it is toxic, thus

resulting in synapse loss [60].

While APOE certainly influences Ab-dependent neu-

rodegeneration, it is becoming increasingly clear that

there are other mechanisms by which APOE influences

degeneration (Figure 3). For example, in mice express-

ing a form of mutant human tau associated with

(A) (B)

(C) (D)

Figure 2. Amyloid-b pathology in APOE3/3 and APOE3/4 carriers in normal ageing and AD. Ab plaque deposition is evident in aged

controls (A) and is exacerbated in the presence of the APOE4 allele (B), resembling an AD-like phenotype. Both APOE3/3 and APOE3/4

AD cases (C and D, respectively) have substantial Ab deposition in all six layers of the cortex. Images taken from the grey matter of

inferior temporal lobe (Brodmann area [BA] 20/21). Information about all participants donated tissue can be found in Table S4. Ab is

stained with 6F/3D (mouse monoclonal, DAKO, M087201-2, 1:100, 98% formic acid, 5 minutes). Scale bar 1 mm.
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frontotemporal dementia, co-expression of human

APOE4 led to a drastic increase in neurodegeneration

compared to that seen with other APOE isoforms.

APOE was necessary for this tau-mediated neuronal

death to occur [9], suggestive of APOE exerting a neu-

rodegenerative effect through tau. APOE4 has also

been shown to impair GABAergic interneurons though

a tau-dependent mechanism in vivo [43]. Although

known to be related to Ab, dysregulation of calcium

homoeostasis has also been implicated as a mechanism

of APOE-related neurodegeneration, independent of Ab.
Here, APOE4 increased levels of cytosolic calcium, an

effect that was dose-dependently associated with cell

death [73].

Another important consideration, and one that is

often neglected, is the cellular source of APOE.

Although primarily produced by glial cells, under con-

ditions of stress or injury neurons also synthesize APOE

[74]. Considering that the AD brain can be considered

both a ‘stressed’ and ‘injured’ environment, the cellular

source of APOE is likely to be relevant to its effect on

neurodegeneration. Indeed, at the level of the dendrite,

loss of spines, reduced arborization and alterations in

morphology were observed in mice expressing neuronal

APOE4, but not astrocytic APOE4 [65,75]. This phe-

nomenon has also been confirmed to occur at the level

of the synapse, with only neuronal APOE4 promoting

the degeneration of presynaptic terminals and cell

death [75]. Consequently, the cellular source of APOE

seems to impact upon its capacity to induce neurode-

generation. Further studies are needed to examine how

neuronal and astrocytic APOE differ from one another,

to characterize how these effects are mediated.

A potential mechanism by which neuronal APOE4

exerts increased neurotoxic effects may be due to the

intraneuronal proteolytic processing of APOE, whereby

APOE can be cleaved to generate C-terminally trun-

cated fragments. In the human AD brain, these frag-

ments are more numerous in individuals carrying an

APOE4 allele. In vitro, APOE4 is more susceptible to

proteolytic cleavage than APOE3 and, in mice, these

APOE fragments are capable of eliciting AD-like neu-

rodegeneration [76]. Further work has identified the

lipid-binding region of APOE to be essential for

(A) (B)

(C) (D)

Figure 3. Tau pathology in APOE3/3 and APOE3/4 carriers in normal ageing and AD. In aged controls, phosphorylated tau species are

absent in APOE 3/3 cases (A) and rarely found in APOE3/4 cases (B). In AD, both APOE3/3 (C) and APOE3/4 (D) have markedly

increased numbers of tau-positive neurones. Images taken from the grey matter of inferior temporal lobe (BA20/21). Phosphorylated tau

is stained with AT8 (mouse monoclonal, ThermoFisher, 1020, 1:2500). Scale bar 50 lm, insert scale bar 25 lm.
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toxicity although not sufficient alone. Instead, the

lipid- and receptor-binding regions appear to act in

concert to mediate toxic effects [77]. APOE4 fragments

have also been shown to interact synergistically with

Ab and tau, exacerbating both pathologies and

increasing the degree of neurodegeneration [43,78].

In relation to Ab, APOE4 fragments bind poorly to

Ab, leading to reduced clearance and increased depo-

sition [78], and these fragments also promote intra-

neuronal Ab accumulation [79]. In relation to tau,

APOE fragments increase the degree of phosphoryla-

tion, likely exacerbating neurodegeneration [43].

Cleavage fragments of APOE may also exert neurode-

generative effects by increasing intracellular calcium

[80], a mechanism that has previously been associ-

ated with full-length APOE4, as aforementioned, or by

impairing mitochondrial function and integrity [77].

Finally, structural differences among APOE isoforms

may also contribute to the more neurodegenerative

phenotype associated with APOE4. Unlike APOE2 and

APOE3, APOE4 exhibits a domain interaction,

whereby a salt bridge mediates interaction between N-

and C-terminal domains. Indeed, in mice, this domain

interaction has been shown to be associated with pre-

and post-synaptic protein loss [81], thus suggesting

another mechanism by which APOE4 might con-

tribute to synaptic pathology and neurodegeneration.

APOE genotype may further contribute to synaptic

degeneration, and subsequent neuronal degeneration,

through its effects on dendrites. Dendritic changes are

suggested to alter neuronal plasticity and regenera-

tive capacity, leading to synaptic dysfunction and

subsequent synapse and neuron loss. Indeed, more

plastic changes are seen in the human AD brain in

the absence of an APOE4 allele [33]. Various mecha-

nisms have been proposed as to how APOE isoforms

differentially regulate dendritic changes in AD. These

range from altered binding of APOE to receptors and

subsequent intracellular signalling cascades

[82,83], impaired regulation of receptors within

spines [63], elevations in calcineurin activity that is

associated with reductions in spine density [84] and

impairments of neuronal outgrowth [82], among

others.

Overall, these results highlight the far-reaching and

diverse biological effect APOE4 has on neurodegenera-

tion in AD with particularly strong evidence supporting

a role for APOE4 in synapse degeneration.

(A) (B)

(C) (D)

Figure 4. Activated microglia (CD68) in APOE3/3 and APOE3/4 carriers in normal ageing and AD. The lysosomal marker of microglia

and macrophages, CD68, shown in AD (C-D) and age-matched control cases (A–B). Various microglial morphologies can be observed, for

example, ramified (A and D) and amoeboid (B and C) in both ageing/AD and APOE3/x. Images taken from the grey matter of inferior

temporal lobe (BA20/21). Microglia are stained with CD68 (mouse monoclonal, DAKO, M0876, 1:100, citric acid antigen retrieval).

Scale bar 100 lm, insert scale bar 25 lm.
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APOE and inflammation

To determine whether there is evidence that APOE

influences inflammation, search terms were used to

identify papers containing both APOE and indicators of

inflammation (papers from the systematic search that

support a role for APOE in inflammation are coloured

in green and orange in Table S1).

Increased glial activation and gliosis with APOE4

There is substantial reactive glial cell accumulation,

termed gliosis, during AD which is enhanced in the

presence of the APOE4 allele (Figures 4 and 5).

Markers of glial activation are commonly used to

reflect a variety of functional outcomes and to quan-

tify the changes in glial numbers and their respective

phenotype.

Human post mortem studies have quantified gliosis in

different brain regions using multiple markers of activa-

tion. By immunophenotyping microglia in the frontal

gyrus and correlating to APOE status in AD and con-

trol cases, markers of activation (CD68, Human

Leucocyte Antigen-DR isotype [HLA-DR], CD64) were

found to be significantly associated with APOE4 carri-

ers while APOE2 carriers were associated with higher

levels of more homoeostatic microglial markers (Iba1

and Macrophage Scavenger Receptor-A; MSR-A) and

lower levels of the reactive ones [85]. Although the

microglial phenotype was insufficient in predicting the

APOE status in dementia, the elevated markers of

phagocytosis, adaptive immune response and antigen

recognition seen in APOE4 carriers point towards a

more pathological environment. Other brain regions

have been assessed for microglial levels, where in an

APOE4 dose-dependent manner, there was extensive

microgliosis in both the frontal and temporal cortices

[86]. Similarly, there is elevated GFAP-positive

astrogliosis in the grey matter of APOE4 AD patients

compared to other APOE genotypes, and an overall

greater astrogliosis between AD and age-matched con-

trol cases [87]. Interestingly, the APOE4 allele was

associated with differences in GFAP burden in nonde-

mented individuals, despite the increased plaque burden

of nondemented aged APOE4 individuals, supporting

the importance of glial cells in AD pathogenesis. As

(A) (B)

(C) (D)

Figure 5. Activated astrocytes in APOE3/3 and APOE3/4 carriers in normal ageing and AD. Glial fibrillary acid protein (GFAP) is a

cytoskeletal protein in activated astrocytes. Activated astrocytes are seen in both ageing (A–B) and AD (C-D), but more pronounced

astrogliosisis is observed in AD. In AD, astrocytes express more GFAP in the cell bodies, thus appearing darker, especially in APOE3/4

cases (D), and have more processes (C–D). Images taken from the grey matter of inferior temporal lobe (BA20/21). Astrocytes are stained

with GFAP (rabbit polyclonal, DAKO, 0334, 1:800). Scale bar 200 lm, insert scale bar 100 lm.
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always, the post mortem tissue only provides a snap-

shot of end-stage of disease, so we rely on mouse mod-

els for deciphering the mechanistic changes that

APOE4 induces during AD.

Mouse studies looking at the effects of the human

APOE allele with AD-like pathology have mostly repli-

cated the gliosis data seen in human post mortem tis-

sue. APOE4 mice crossed to the 5xFAD amyloidosis

model showed increased microgliosis in deep cortical

layers accompanied by a greater number of dystrophic

microglial processes in the presence of the APOE4

allele, compared to APOE4 and APOE3 [88]. Of

note, both APOE2 and APOE4 5xFAD mice had more

Ab-associated microglia than APOE3 [88,89], suggest-

ing that the APOE2 conformation may be protective

not by preventing microglia/plaque interactions but by

mediating more effective ways to respond to the pla-

ques and making microglia more resistant to amyloid

toxicity. These changes were not observed in the

subiculum of these mice, reiterating regional differences

in microglia. Furthermore, when APOE knock-in mice

were crossed to a tauopathy model (P301S), CD68-

positive microglial burdens in the hippocampus and

entorhinal/piriform cortex were markedly increased in

APOE4 mice compared APOE3 and APOE knock-out

mice in a tau pathology mediated manner [9]. The

same effect was also observed with GFAP immunoreac-

tivity, further establishing an aberrant glial response to

AD-like pathology in combination to the presence of

the APOE4 allele. Similarly, there was neurodegenera-

tion-associated microgliosis and astrogliosis in the hip-

pocampus of APOE4 mice, compared to APOE3, but no

differences were found in the septum [90]. However, in

the hippocampus of APOE4 LPS-injected mice there

was marked microgliosis although astrogliosis was

found in the APOE3 mice [91]. In summary, in APOE4

amyloidosis (5xFAD) and tauopathy (P301S) mouse

models there was exacerbated gliosis. Although, there

was important regional variability, taken together these

data strongly support a role for APOE4 in promoting

inflammatory changes in microglia and astrocytes.

The precise mechanisms by which reactive gliosis is

established in the APOE4 AD brain is unknown, but a

key question that remains is whether this gliosis is a

driver of the disease, accounting for the earlier onset

and worse prognosis APOE4 carriers face, or a by-pro-

duct of the exacerbated amyloid and tau pathology. To

answer these questions, the inflammatory capacity of

glial cells and their transcriptomic signatures in the

presence of the APOE4 are being currently assessed.

Apoe-related glial transcriptional changes

Transcriptional studies are becoming increasingly popu-

lar in the microglia and neuroinflammation field,

with Apoe upregulation consistently being a top hit in

AD-like mouse models. The advantages of RNA-sequen-

cing are a nonbiased, high-yield output of all transcrip-

tional changes as well as the ability to use these long

data sets to investigate biological pathways. As such,

this process speeds up the identification of genetic and

molecular pathways involved in AD pathogenesis and

ways they can be therapeutically targeted.

Recently, microglial Apoe mRNA transcript levels

were quantified in two models of AD-like pathology

(amyloidosis and tauopathy) and ageing [92]. Its high

abundance in all conditions supports a role for APOE

as a key part of the microglial signature, despite its

expression not being restricted to microglial cells. In

terms of its relative expression, Apoe was highly upreg-

ulated in ageing and disease models, with ageing

female mice showing a marked increase. Pathway anal-

ysis puts APOE as the driver of a network whose down-

stream effectors are also highly upregulated in these

models, like the chemoattractant CCL3, whose rele-

vance to neuroinflammation will be discussed in the

next section of this review.

Apoe transcription is also downstream of the activa-

tion of a microglial receptor TREM2 (Triggering Recep-

tor Expressed on Myeloid cells 2), another AD risk gene

[93]. This APOE activation pathway results in a more

pro-inflammatory microglial response and a degenera-

tive phenotype, as seen in the AD brain. Microglial and

astrocytic pro-inflammatory genes were also profoundly

upregulated in APOE4 knock-in mice crossed with a

tauopathy model (P301S), compared to APOE3 [9].

Conversely, APOE knock-out/P301S mice showed

attenuation of this impaired pro-inflammatory profile,

highlighting APOE as a master regulator of glial

inflammatory response with its APOE4 allele being

associated to a pro-degeneration phenotype.

Single-cell RNA sequencing takes this a step further

by identifying and characterizing clusters of subpopula-

tions within a cell type, for instance disease-associated

microglia (DAMs) [94]. Specifically, Apoe is upregulated

early in DAMs of the 5xFAD AD-like model, even in
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the absence of TREM2. A TREM2 independent pathway

is thus proposed to initiate Apoe upregulation in the

early phase of AD, with a later TREM2-dependent path-

way activating Apoe transcription which induces neu-

rodegenerative microglia. This potentially forms a

therapeutic window where preventing the second Apoe

induction via TREM2 may protect against the exacer-

bated inflammation and degeneration caused by micro-

glia. Understanding the ways in which TREM2 is

activated in the AD brain and the effectors mediating

this TREM2-APOE pathway can provide new ways to

halt AD progression and hinder neuroinflammation.

Human induced pluripotent stem cells (iPSCs)

derived from AD patients were recently transcription-

ally characterized after directing them towards a

microglial-like lineage [95]. Importantly, the micro-

glia-like cells were engineered with Crispr-Cas9 to cor-

rect APOE4 into APOE3. Not only did this result in

attenuation of AD-associated morphological and tran-

scriptomic signatures, but immune-related genes were

also upregulated.

Overall, Apoe is consistently one of the most upregu-

lated genes in transcriptomic studies of microglia in

AD-like models. Nevertheless, a limitation of transcrip-

tomics involves the isolation process which pushes

microglia into an activated phenotype [92]. There is a

lack of detailed studies of human post mortem tissue

profiling transcription in cases with different APOE

genotypes, which will be needed to confirm the transla-

tional relevance of mouse studies. As this is still at the

transcriptional level, studies looking a more functional

level are imperative to understand how these RNA

changes relate to disease.

Altered inflammatory response by glial cytokine
release

Innate and adaptive immune cells respond to environ-

mental stimuli by releasing signalling cytokines and

chemokines. Our systematic literature search showed

that the process of cytokine release by glia to maintain

homoeostasis and respond to damage is dysfunctional

in the ageing and AD brain [96], with substantial evi-

dence pointing towards the APOE4 allele playing a cru-

cial role in this [97–99], supporting the transcriptional

profile changes seen in e4 microglia and astrocytes.

APOE4 alters the baseline pro-inflammatory

response even in the absence of disease. Addition of

APOE4, but not APOE3 protein, to rat microglia cul-

tures alone stimulated the secretion of prostaglandin

E2 (PGE2), interleukin-1b (IL-1b), and nitric oxide

(NO) [100–103]. On the other hand, microglial and

astrocyte stimulation with APOE4 and Ab attenuated

the production of inflammatory mediators [103–105],

indicating a more complex interaction of microglia,

APOE, and Ab in vivo. A physiological concentration

of Ab may therefore be beneficial to glial functioning

by interacting with APOE.

LPS-activated microglia and astrocytes are a well-

characterized model of glial activation by mimicking

the inflammation seen in AD. Microglia induced with

LPS in the APOE4 background released greater

amounts of pro-inflammatory cytokines, like tumour

necrosis factor-a (TNF-a), IL-1b, and interleukin-6

(IL-6) [106], an effect replicated in AD-like models

[88,107]. Simultaneously, APOE4 treated LPS-induced

microglia suppressed the production of TNF-a less than

the APOE3 and APOE2 isoforms [108] while APOE-/-

mice secrete lower levels of anti-inflammatory cytokines

[109], showing a physiological role of APOE in modu-

lating inflammation. Indeed, knocking out murine Apoe

increases glial production of nitric oxide (NO) [110]

and other inflammatory mediators, like TNF-a, IL-1b
and IL-6 transcripts in the CNS [111]. Murine Apoe is

therefore required to suppress glial-mediated inflamma-

tion providing a physiological role in CNS homoeosta-

sis, which is disrupted in AD, potentially in an

age-dependent manner. This evidence points to APOE4

expressing microglia being both more pro-inflammatory

and less anti-inflammatory at the same time.

In contrast to the microglial data, astrocytes from

APOE2 and APOE3 animals treated with LPS produced

more of these pro-inflammatory cytokines than the

APOE4 counterparts (IL-1b, TNF-a, and IL-6) [112].

APOE4 astrocytes also produce more CCL3 (chemokine

C-C motif ligand 3) [113], similar to microglial Ccl3

mRNA upregulation in AD-like models [92], which is

downstream of the APOE-driven network while

APOE-/- mice produce less CCL3 [109]. Despite the

increase in CCL3, the chemoattraction ability of micro-

glia is impaired in the presence of the APOE4 allele, as

they are less migratory and receptive to immune sens-

ing [114–116]. Data so far suggest that APOE4 confers

a more pro-inflammatory and less anti-inflammatory

phenotype in microglia, with an opposing pattern in

astrocytes.
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APOE at the interface of inflammation and
neurodegeneration: glial-mediated synapse loss

The synaptic loss during the early phase of AD is

now thought to be partly due to aberrant microglial and

astrocyte complement-mediated phagocytosis [117,118].

Given APOE’s role in synapse loss and inflammation, we

postulate that the APOE4 genotype is implicated in synap-

tic loss through a glial-mediated mechanism (Figure 6).

LPS intracerebral injections in APOE4 mice led to

decreased pre- and post-synaptic protein levels as well

hippocampal gliosis and pro-inflammatory cytokine

release [119]. Moreover, APOE4 is accompanied by

greater complement activation [120], which is the

proposed synaptic tag for synaptic clearance. Still, this

evidence is correlative and there are other mediators

than could affect synaptic loss. In development, astro-

cytes of the APOE4 background were less phagocytic

towards pHrodo-labelled synaptosomes than those of

APOE3 and APOE2 [121], leading to the hypothesis

that some synapses are not pruned by APOE4 astro-

cytes, accumulating complement and making them

more vulnerable in AD. Whether these synapses are

defective or not is a key question, as loss of healthy

synapses with accumulated complement would explain

the initial synapse loss in AD, and the earlier onset of

APOE4 carriers.

Although a lot more evidence is required, particu-

larly from the human perspective, to understand if and

how glial cells drive the synapse loss during AD, under-

standing why APOE e4 carriers at greatest risk have

this extensive synapse loss and greater onset will be

crucial to tailor therapies for individuals of this geno-

type.

Potential role for spread of pathological proteins
through the brain

No studies were found in the systematic search that

specifically investigated the role of APOE in pathologi-

cal protein spread. Two of the current hypotheses

about the spread of tau through the brain are that tau

spreads trans-synaptically and that microglia eat tau-

containing synapses facilitating its spread (Figure 7).

Interestingly, in this review, APOE genotype is shown

to affect both tau and microglia in multiple ways,

Figure 6. APOE at the interface of inflammation and neurodegeneration via glial-mediated mechanisms. Microglia and astrocytes

expressing APOE4 promote parenchymal gliosis and release pro-inflammatory signals that are potentially associated with synaptic and

neuronal loss. The paracrine signalling of microglial mediators along with the APOE-TREM2 pathway induces a pro-inflammatory

phenotype, creating a vicious-cycle of inflammation and neurodegeneration. Ineffective clearance of excess synapses by astrocytes in

APOE4 mice allows accumulating levels of C1q that can act as a tag for synaptic elimination later in life.
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implicating APOE4 as a potential facilitator of misfolded

proteins spreading between brain regions.

Conclusion

Our systematic literature search revealed strong links

between APOE and synapse degeneration, which is fur-

ther supported by relevant literature that did not fall

into our search terms. The impaired phagocytic capac-

ity of TREM-/- microglia for synapses and synapto-

somes in development [122] highlights yet again the

TREM2/APOE pathway as a potential AD-related mech-

anism of synaptic elimination. The interplay between

glia cell types in relation to APOE genotype is also a

new avenue to be assessed considering that astrocytic

IL-33 induces microglial synaptic engulfment of both

excitatory and inhibitory synapses [123]. Conversely,

microglia have been shown to induce a neurotoxic

astrocyte phenotype via IL-1a, C1q, and TNF [124],

the two latter being increased with APOE4 expression.

Moreover, APOE4-elevated soluble factors released by

microglia like NO and IL-6 can induce synapse loss in

neurone culture systems [125], suggesting microglia

may alter synaptic numbers both by phagocytosis and

their secretome.

In studies identified by our systematic search, APOE4

was consistently associated with increased neurodegen-

eration within the medial temporal lobe; this region

includes the entorhinal cortex, where tau pathology

begins [126]. APOE4-associated degenerating synapses

may release tau seeds via exosomes, stress-produced

nanotubes [127], or passively as terminals degenerate.

These may be taken up by recipient cells therefore

propagating tau trans-synaptically. However, our

recent data indicate that presynaptic terminal degener-

ation is not necessary for the spread of tau through

neural circuits [128], making it important to investi-

gate other mechanisms of pathological protein spread.

Microglia have also been suggested to mediate tau

spread [129]. The exacerbated neurodegeneration in

APOE4 likely induces microglia and astrocytes to

phagocytose degenerating tau-containing synapses and

Figure 7. Schematic diagram of pathological protein spread. While direct evidence for APOE influencing the spread of tau through the

brain is lacking, the papers in our systematic literature search implicate APOE in many processes that could influence spread. These

include synaptic transfer through the synaptic cleft (1), via nanotubes (2), by glial phagocytosis (3) or vesicular secretion (4 & 5).
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neurones. Exosomes synthesized from these microglia,

containing synaptic-impairing micro-RNA [130] and

tau seeds, may propagate tau pathology and neurode-

generation [131]. Astrocytes may also be involved in

this, given their role in a-synuclein transfer via tun-

nelling nanotubes in Parkinson’s disease [132].

APOE, therefore, is potentially at the interface of

inflammation, neurodegeneration, and the pathological

protein spread (summarized in Figures 6 and 7). Tau

pathology and synapse loss are the strongest correlates

with cognitive impairments [133]; therefore, preventing

these processes could have significant impact on disease

progression. Further evidence is, however, needed to

directly link APOE to these spreading mechanisms.

Our systematic literature search and review of the

resulting papers highlights the need for multiple

approaches to understand the complex role of APOE in

disease, as has been observed recently for many fields

in science [134]. Many findings remain contradictory

and will need further support and investigation using

different model systems to warrant moving forward to

therapies targeting APOE. These caveats notwithstand-

ing, our review of the literature supports the idea that

understanding how APOE influences multiple patholog-

ical features of AD will be important for developing

effective therapeutics to prevent or treat the disease.

Currently, there is debate as to whether lowering or

increasing levels of APOE will be beneficial in treating

AD. Increasing astrocytic APOE levels can help displace

synaptic Aß [135] and prevent subsequent synaptotoxi-

city. Such interventions, with the recent example of

Bexarotene, have had mixed outcomes in mouse mod-

els of AD [136–139] and no direct benefits so far in

human trials [140]. In contrast, lowering levels of

APOE4 and increasing levels of APOE2 [59] and

APOE3 [141], or decreasing total APOE [142] are

promising alternative avenues for maintaining brain

resilience and synaptic integrity.
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