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Abstract

Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly 

specialized cells residing in a complex anatomic niche where they participate in bile production 

and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed 

cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport 

properties is increasingly understood, as is their anatomical and functional heterogeneity along the 

biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when 

hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive 

immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also 

emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. 

In chronic disease states, this repair response contributes to liver inflammation, fibrosis and 

carcinogenesis and is a subject of intense investigation. This Review highlights advances in 

cholangiocyte research, especially their role in development and liver regeneration, their functional 

and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and 

their engagement with the immune system. We aim to focus further attention on cholangiocyte 

pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.

Cholangiocytes line a complex network of interconnecting tubes extending from the Canals 

of Hering in the liver to the duodenum (FIG. 1). In humans, the total length of this network 

is estimated to be ~1.25 miles (2 km)1. As with other epithelial cells, cholangiocytes are 
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polarized with distinct apical and basolateral plasma membrane domains and multiple 

transport functions, many relevant to bile formation. Although cholangiocytes comprise a 

minority cell population in the liver, they are critical in bile generation, a life-sustaining 

function of the liver2. Bile is a secretory fluid product of the hepatobiliary system containing 

a variety of components, including bile acids, electrolytes, lipids, proteins and endobiotic 

and xenobiotic compounds. These factors contribute to health by aiding digestion, 

maintaining the enterohepatic circulation and helping to eliminate unwanted compounds 

from the body. The continuous and extensive network of these cells within and outside the 

liver results in considerable heterogeneity in cholangiocyte function along the biliary tract. 

The blood supply to cholangiocytes originates from the hepatic artery and forms a 

peribiliary plexus (PBP) consisting of a 3D network of blood vessels of homogeneous 

diameter surrounding bile ducts3. The intimate anatomic association of the PBP with 

cholangiocytes enables crosstalk that probably both helps regulate normal cholangiocyte 

function and is associated with cholangiocyte malfunction in disease4. Under healthy 

circumstances, cholangiocytes have major physiological functions: bile is modified within 

the ductal lumen via activities at their apical plasma membrane domain; they form a barrier 

to potentially damaging molecules and microorganisms in bile via their tight junctions and 

immunoglobulin A (IgA) secretion; and they enable access to the immune and vascular 

systems via their basolateral plasma membrane domain. These complex processes are 

regulated by extracellular signals (for example, peptides, nucleotides, hormones and 

neurotransmitters), biliary constituents (such as bile acids, glucose and vesicles) and 

physical forces (including flow and pressure) that are reflected in various intracellular 

pathways, relying mostly on cAMP and Ca2+ signalling as second messengers.

Cholangiocytes are affected during liver injury and participate in the pathobiology of various 

liver disease states. Although ample evidence demonstrates that hepatocytes, the 

predominant epithelial cell type in the liver, regenerate, cholangiocytes can also contribute to 

liver regeneration when hepatocyte regeneration is impaired5. Genetic, infectious, immune-

mediated, idiopathic, malignant and vascular diseases can also directly perturb 

cholangiocyte structure and function, resulting in impaired bile formation (cholestasis), 

followed by inflammation, fibrosis and liver dysfunction. Although the inflammation and 

fibrosis might initially be limited to the biliary tract, over time, portal fibrosis worsens and 

can culminate in hepatic dysfunction, cirrhosis and chronic liver failure. Collectively, these 

disease syndromes comprise the cholangiopathies, which are unsolved pathophysiological 

problems and important unmet needs in clinical hepatology6 (BOX 1). Although 

individually they are uncommon or even rare, as a group the cholangiopathies cause 

considerable morbidity and mortality, and curative therapies are not available; for example, 

primary sclerosing cholangitis (PSC) is the indication for 6% of liver transplants in the USA, 

with an approximate yearly cost of $125 million7.

Evolving information indicates that cholangiocytes are not necessarily innocent victims in 

these disease processes but might also initiate and/or actively participate in the 

cholangiopathies. For example, cholangiocytes participate in inflammation by secreting 

chemokines and cytokines and can directly modulate the biology of myofibroblasts, the cell 

type responsible for collagen deposition within the liver6. Thus, in this Review, we address 

cholangiocytes in development and liver regeneration, their functional and biochemical 
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heterogeneity, their activation and involvement in inflammation and fibrosis and their 

engagement with the immune system.

Cholangiocyte heterogeneity

The 3D network of ducts inside and outside the liver provides a very large surface area along 

which cholangiocytes perform fundamental secretory and absorptive processes that regulate 

bile flow and composition in its transport to the duodenum8–12. Throughout the biliary 

system, cholangiocytes exhibit morphological, biochemical and functional heterogeneity13. 

Immature cholangiocytes within the Canals of Hering, as well as from the intrahepatic and 

extrahepatic peribiliary glands, are poorly differentiated and are considered progenitor cells 

that participate in epithelium renewal and tissue regeneration. However, cholangiocytes 

progressively acquire a greater degree of differentiation along the biliary tree (from small to 

large bile ducts) in terms of cell polarity, expression of receptors and transporters and 

response to hormones13–17. This differentiation might also in part be due to the differences 

in vascularization of the cholangiocytes along the biliary tree3. Intrahepatic and extrahepatic 

bile ducts are surrounded by a complex network of vessels and capillaries derived from the 

hepatic artery and vein. The oxygen tension and metabolite and substrate composition differ 

along the biliary tree, promoting the differentiated metabolic, secretory and absorptive 

features of cholangiocytes. Differentiated cholangiocytes have distinct basolateral and apical 

(luminal) plasma membranes, the latter containing microvilli that provide a fivefold increase 

in cell surface area12,18,19 and a single primary cilium able to detect and transmit bile signals 

and regulate cell function20,21. Although cholangiocytes represent a minor proportion of all 

liver cells (3–5%), they are responsible for up to 30% of total bile flow in humans, with the 

other 70% originating from hepatocyte canalicular secretion11; however, their contribution to 

this process in rodents is probably less22. Bile flow regulation involves the action of multiple 

ion carriers (such as transporters, exchangers and channels) strategically distributed along 

the polarized structure of cholangiocytes, as well as various molecules (including hormones, 

neurotransmitters, peptides and nucleotides) that tightly regulate bile flow and composition 

through the interaction with intracellular signalling pathways and cascades (such as cAMP 

and Ca2+) (FIG. 2).

Bicarbonate secretion.

Biliary bicarbonate (HCO3
−) secretion is the central event of bile-salt-independent flow, 

which is stimulated by the gastrointestinal hormone secretin during the postprandial 

period11,12,23. Interaction of secretin with its specific G protein-coupled receptor localized to 

the basolateral membrane of cholangiocytes induces elevated intracellular cAMP levels24 

and subsequent protein kinase A activation25. This activation subsequently stimulates the 

trafficking of intracellular vesicles containing the Cl− channel cystic fibrosis transmembrane 

conductance regulator (CFTR), the Cl−/HCO3
− anion exchange protein 2 (AE2; also known 

as SLC4A2) and the water channel aquaporin 1 (AQP1) to the apical membrane26. CFTR 

mediates the apical release of Cl−, which is exchanged with HCO3
− by AE2 (REF.23). 

Biliary bicarbonate secretion drives the movement of water through AQP1, resulting in the 

alkalization and fluidization of the bile23 (FIG. 2). The biliary secretion of bicarbonate 

creates an alkaline barrier, the so-called ‘biliary bicarbonate umbrella’, that renders bile 
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acids polar, de-protonated and membrane impermeable27. Biliary bicarbonate neutralizes the 

acidic pH resulting from meal digestion in the duodenum and favours the absorption of 

nutrients12. Secretin-stimulated biliary bicarbonate secretion is dependent on the 

maintenance of the bile acid pool23 and is inhibited by hormones such as somatostatin28,29, 

gastrin30 and endothelin31. Of note, this choleretic mechanism can be impaired under certain 

pathological conditions, as in cholestatic disorders such as primary biliary cholangitis 

(PBC), an immune-mediated disease that results in damage to intrahepatic interlobular bile 

ducts. PBC is characterized by the downregulation of AE2 expression in cholangiocytes32, 

resulting in impaired secretin-stimulated biliary bicarbonate secretion33,34. Downregulation 

of AE2 in PBC cholangiocytes probably has a major aetiopathogenic role, as its 

experimental downregulation in human cholangiocytes in vitro35,36 or in mice in vivo37–39 

results in the development of multiple PBC-like features, such as periportal lymphocytic 

infiltrates and bile duct damage; increased serum IgM, IgG and hepatic alkaline phosphatase 

levels; and spontaneous development of specific anti-mitochondrial autoantibodies. The 

characteristic downregulation of AE2 in PBC cholangiocytes is linked to miR-506 

overexpression35,36. Additionally, CFTR mutations occurring in cystic fibrosis might also 

contribute to cholestasis in these patients40.

The biliary tree is controlled by neurovegetative innervations. Several neurotransmitters 

regulate the baseline and/or secretin-stimulated biliary bicarbonate secretion. Gastrin-

releasing peptide29 and vasoactive intestinal peptide (VIP)41 stimulate baseline biliary 

bicarbonate secretion, whereas acetylcholine (ACh)11,42 and the α1-adrenergic agonist 

phenylephrine43 stimulate secretin-dependent biliary bicarbonate secretion. By contrast, 

dopamine44, α2-adrenergic agonists45 and GABA46 all inhibit secretin-dependent biliary 

bicarbonate secretion (FIG. 2). Several factors present in bile are also able to influence 

biliary bicarbonate secretion. Extracellular nucleotides and nucleosides interact with P2Y 

receptors localized to the apical membrane of cholangiocytes and promote an increase in 

intracellular Ca2+ levels and subsequent Cl− secretion through apical Ca2+-activated Cl− 

channels (such as transmembrane protein 16F (TMEM16A; also known as ANO1)) that 

further promote bicarbonate secretion11,47–49 (FIG. 2).

Cholangiocyte transport.

Cholangiocytes participate in the absorption of different molecules from bile, including bile 

acids, glucose, amino acids and ions. Bile acids (that is, steroid acids) exist as either a free 

acid or conjugated to taurine or glycine. Unconjugated bile salts secreted through the 

canalicular membrane of hepatocytes can be protonated and passively diffuse across the 

apical membrane of cholangiocytes. They can then be transported by the basolateral 

membrane into the PBP, from which they can return to hepatocytes via the cholehepatic 

shunt, an alternative mechanism to the enterohepatic circulation of bile acids50,51. In rat 

cholangiocytes, conjugated bile acids might be absorbed through the apical sodium-

dependent bile salt transporter (ASBT)52 and subsequently via the basolateral truncated 

ASBT (t-ASBT)53, multidrug resistance protein 3 (MRP3)54,55 and/or the organic solute 

transporters OSTα and OSTβ12,56–59. Moreover, the vectorial transport of glucose through 

the apical Na+–glucose cotransporter 1 (SGLT1) and the basolateral glucose transporter 1 

(GLUT1) provides an osmotic gradient that favours the reabsorption of water from bile60. 
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Amino acids resulting from the γ-glutamyltranspeptidase (γGT)-dependent degradation of 

glutathione (including glutamine, cysteine and glycine) promote canalicular bile-salt-

independent bile flow. These molecules can then be reabsorbed by sodium-dependent and 

sodium-independent mechanisms that generate osmotic gradients that favour water 

absorption and glutathione resynthesis in hepatocytes61,62. Additionally, cholangiocytes 

possess a variety of transporters able to bidirectionally transport various molecules, 

including organic and inorganic anions and cations as well as proteins (multidrug resistance 

proteins perform the majority of these transport functions)12.

Role of the primary cilium.

The primary cilium of cholangiocytes is an antenna-like organelle containing a well-tuned 

system of receptors and channels able to detect signals in bile that subsequently regulate 

intracellular signalling mechanisms, ultimately modifying bile flow and/or composition19,63. 

This non-motile protuberance functions as a mechanosensor (via polycystin 1 and 2 (PC1 

and PC2, respectively))64, a chemosensor (via P2Y12 and G protein-coupled bile acid 

receptor 1 (TGR5; also known as GPBAR1))65,66 and an osmosensor (via transient receptor 

potential channel vanilloid subfamily 4 (TrpV4))67. Of note, extracellular vesicles (EVs) 

found in bile can also act as chemosignals that interact with the primary cilium and regulate 

cell biology68. For example, EVs binding to cilia have been shown to inhibit cholangiocyte 

proliferation, promoting the quiescent status of the biliary system in normal conditions68.

Cholangiocytes in development and liver repair

The embryological origin of the liver has been studied for many decades; thus, the 

developmental events that regulate liver organogenesis are becoming well-understood69. 

However, although the regenerative capacity of hepatocytes has been studied equally as 

long70, the molecular mechanisms governing biliary regeneration have been more clearly 

defined in the past decade with the advent of lineage-tracing techniques. Importantly, it 

seems that many of the key developmental pathways governing liver development become 

active during the processes of biliary regeneration and/or repair71. This dual role suggests 

that a better understanding of the developmental biology of the biliary tree might provide 

insights into therapeutic targeting of these processes during biliary disease. The biliary tree 

has played a central part in our efforts at understanding liver regeneration as it shares 

developmental origins with parenchymal hepatocytes, harbours a niche of stem or 

progenitor-like cells and is activated and expanded in the context of many liver pathologies. 

Thus, in this section, we briefly outline what is known about human biliary development and 

how the biliary system is altered during regeneration and repair.

Biliary development.

Around embryonic day (E) 13, bipotent hepatoblasts begin to differentiate towards mature 

hepatic epithelial cells (hepatocytes or cholangiocytes)69. By E15.5, hepatoblasts nearest the 

portal mesenchyme become cholangiocyte-like and coalesce to form the ductal plate that 

then gives rise to primitive ductal structures and ultimately the intrahepatic bile ducts72. The 

remaining parenchymal hepatoblasts, which lie further from the influence of the portal 

mesenchyme, differentiate towards hepatocytes. The adoption of the biliary phenotype is 

Banales et al. Page 5

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



orchestrated through spatiotemporal gradients of Notch73, Wnt74, transforming growth 

factor-β (TGFβ)75 and FGF signalling76, which arise from endothelial cells and/or 

mesenchymal cells within the portal tract (FIG. 3a). By contrast, differentiation of 

hepatoblasts towards mature hepatocytes relies on factors such as oncostatin M generated by 

haematopoietic cells expanding in the fetal liver77, endothelial cell-derived hepatocyte 

growth factor (HGF)78 and tumour necrosis factor (TNF) generated by Kupffer cells79,80. 

Jagged 1, a cell surface Notch ligand of principal importance in bile duct development, 

exerts effects on both differentiation and tubulogenesis72 during cell–cell contact between 

periportal hepatoblasts and the portal mesenchyme. Indeed, Jagged 1 or Notch 2 mutations 

lead to the biliary abnormalities seen in patients with Alagille syndrome81, a liver disease 

associated with ductopenia of intrahepatic interlobular bile ducts.

Notably, the extrahepatic bile ducts (consisting of the common bile duct, cystic duct, 

gallbladder and hepatic ducts) have an embryological origin distinct from that of the 

intrahepatic bile ducts that develops in concert with the ventral pancreatic ductal system and 

only later anastomoses with the intrahepatic system. At E8.5, a subset of pancreatic 

endodermal cells that express both SOX17 and PDX1 represent a pancreatobiliary 

progenitor compartment that ultimately gives rise to the extrahepatic system. SOX17 seems 

to be critical in this process and works in concert with several other mediators, including 

HES1, HNF6 (encoded by ONECUT1), HNF1β and homeobox protein HEX (HHEX)82,83.

Liver regeneration.

In addition to its role in liver development, the biliary system has also been central in 

discussions related to liver regeneration and repair84, partly owing to the recognition that the 

biliary tree might harbour hepatic progenitor cells (HPCs) in the terminal ductules and the 

Canals of Hering85. In general, however, it is thought that maintenance of the normal liver 

simply requires occasional self-replication of existing adult epithelial cells (hepatocytes and 

cholangiocytes) through mitosis as opposed to HPC differentiation86. Through this 

mechanism, a very slow normal rate of liver cell turnover is able to counterbalance 

occasional apoptotic events to achieve a homeostatic equilibrium (FIG. 3b).

Following partial hepatectomy, a robust liver regeneration programme is activated to 

accelerate liver cell turnover and restore the lost mass and function. This phenomenon has 

been recognized for millennia, but the molecular mechanisms have been dissected in more 

considerable detail only over the past few decades87. Our understanding of liver regeneration 

has centred primarily on hepatocyte biology, but clearly the biliary system must also be 

regenerated. The presence of multiple temporal waves of DNA synthesis during the 

regeneration process suggests that other liver cell types, such as cholangiocytes and non-

parenchymal cells, undergo a similar type of accelerated replication after resection to 

hepatocytes88. Although the bipotent liver stem cell compartment is known to reside in the 

periportal region, there does not seem to be substantial activation of these cells in the context 

of normal liver regeneration82,86. This observation suggests that normal liver regeneration is 

achieved primarily through hypertrophy and proliferation of mature liver cells (FIG. 3c), as 

opposed to expansion and maturation of the biliary compartment of HPCs. However, HPCs 

are more prominently expanded in the context of liver injury and repair. The existence of 
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these specialized stem-like cells naturally led to the historical view that HPCs can expand 

and differentiate into both hepatocytes and cholangiocytes when the normal mechanisms of 

liver regeneration are overwhelmed89 (FIG. 3d). These small oval-shaped cells (termed oval 

cells in rodents) have scant cytoplasm and the ability to differentiate into both hepatocytes 

and cholangiocytes when isolated in vitro. More recently, additional stem cell niches have 

been described along the larger bile ducts in the peribiliary glands90. Furthermore, most 

forms of chronic liver disease in humans (especially biliary diseases) and several mouse 

models of liver disease (especially 3,5-diethoxycarbonyl-1,4-dihidro-collidine (DDC) 

feeding and the choline-deficient, ethanolamine supplemented diet) are associated with a 

robust expansion of HPCs91.

Cholangiocyte proliferation is regulated through complex mechanisms involving the effects 

of various autocrine and paracrine factors. These molecules include, but are not limited to, 

growth factors (for example, TGF and TNF), cytokines (such as IL-6), neuropeptides (such 

as ACh) and hormones (for example, testosterone and oestrogen)92. Interestingly, 

cholangiocytes contain receptors for both male and female sex hormones, which have been 

shown to promote cholangiocyte proliferation. Oestrogens seem to prevent cholangiocyte 

apoptosis while also potentiating secretory and proliferative pathways93,94. Likewise, 

progesterone binds to specific progesterone receptors on cholangiocytes to increase the 

biliary mass, and anti-progesterone therapy prevents the cholangiocyte growth caused by 

bile duct ligation95. The role of testosterone was highlighted by work showing that castration 

or anti-testosterone therapy decreases intrahepatic bile duct mass, reduces secretin-

stimulated cAMP levels and blocks ductal secretion in bile-duct-ligated rats96.

Notably, many of the developmental morphogens that regulate liver organogenesis also seem 

to regulate cell fate decisions in the adult organ (for example, Wnt, SHH and Notch)97. 

Many genetic lineage-tracing studies have attempted to reconcile the origin and fate of HPCs 

with mixed results98–108. Currently, the prevailing view is that most parenchymal hepatocyte 

regeneration is hepatocyte-derived and that HPCs themselves might be derived from de-

differentiated hepatocytes109,110, despite their apparent biliary phenotype. However, studies 

in zebrafish111,112 and in mice102,113 demonstrate that biliary-derived cells can expand and 

differentiate into parenchymal hepatocytes when mature hepatocytes cannot proliferate or 

are heavily damaged. Similarly, transdifferentiation of hepatocytes can also form biliary 

structures in mice with developmental disruption of Notch signalling114. Definitive 

resolution of any apparent discrepancies between these findings is difficult as none of the 

animal models precisely recapitulate human disease and because Cre–lox-based lineage 

tracing, although powerful, has some technical limitations115. Overall, it is clear that the 

liver is unique in its ability to respond to diverse insults, partially as a result of the profound 

cellular plasticity that it displays in various contexts116. The remaining challenges will be to 

reconcile which processes are active in various pathological situations in humans and to 

devise logical therapeutic interventions on the basis of this underlying pathobiology.

Cholangiocytes in inflammation and fibrosis

Cholangiocytes can be activated by a variety of insults, including infections, cholestasis, 

ischaemia and xenobiotics117, 118. In many cholangiopathies, PSC and PBC included, the 
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activating insult is unknown. Features that characterize the activated cholangiocyte include 

increased proliferation and pro-fibrotic and pro-inflammatory secretions119,120. Activated 

cholangiocytes are also involved in recruitment and crosstalk with immune, vascular and 

mesenchymal cells, and upon chronic activation the development of biliary fibrosis and 

cholangiocarcinoma121,122. The broad changes in protein expression and the activated 

cholangiocyte secretome make the cholangiocyte an active participant in ongoing 

immunological reactions to biliary injury through pleiotropic autocrine and paracrine 

mechanisms123. Furthermore, secondary effects of cholestasis on immune cell function 

through nuclear receptor signalling (for example, via the FXR pathway and/or the vitamin D 

receptor) further mould this microenvironment124.

Most cholangiopathies share similar pathophysiological mechanisms, including cholestasis, 

proliferation, apoptosis, inflammation, fibrogenesis and eventually carcinogenesis. At the 

heart of biliary repair is inflammation. Persistent biliary cell damage and malfunction cause 

an inflammatory reaction that fuels a pathological reparative reaction, with excessive 

deposition of scar tissue around the injured ducts and eventually biliary cirrhosis. This 

complex of inflammatory cells (innate immune cells and T and B cells), mesenchymal cells 

and activated cholangiocytes is called ductular reaction. Activated cholangiocytes are able to 

participate in the inflammatory response by secreting chemokines, cytokines and angiogenic 

growth factors.

The biliary epithelium is exposed to cytokines and chemokines secreted by innate and 

adaptive immune cells in response to danger-associated molecular patterns (DAMPs), 

released by damaged liver cells, and/or to pathogen-associated molecular patterns (PAMPs) 

that originate in the intestine or the bloodstream125. In addition to infection and tissue 

injury120, epithelial inflammatory reactions might also be stimulated by autonomous cell 

mechanisms126. In these cases, attempts at restoring normal cell homeostasis sustain a 

chronic inflammatory response of low-magnitude ‘parainflammation’ (for example, an 

adaptive response to a persistent cell dysfunction, as shown, for example, for cholangiocytes 

with defective fibrocystin (congenital hepatic fibrosis)127–129); if normal biliary homeostasis 

is not restored, the process becomes maladaptive and stimulates the deposition of scar tissue.

Thus, depending on the type (infectious, toxic, autoimmune or inflammatory) and duration 

(acute or chronic) of the damage, epithelial cells, inflammatory cells and mesenchymal cells 

are activated and their crosstalk is orchestrated by a variety of autocrine and paracrine 

signals mediated by chemokines, cytokines and angiogenetic factors. It is important to 

remember that what is being repaired is an epithelial wound130–132 and that the repair 

process is driven by signals arising from loss of the homeostatic equilibrium in 

cholangiocytes. These signals are detected by innate inflammatory cells (such as 

macrophages and neutrophils) and by cells generating the scaffold (myofibroblasts and 

portal fibroblasts) and its vasculature (endothelial cells). Together, these cells and their 

corresponding signals comprise the biliary reparative complex, also called the ductular 

reaction.

All evidence suggests that inflammation is the primer of the reparative response and biliary 

fibrosis. Signals from the inflamed ducts activate liver mesenchymal cells and attract them to 
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the bile ducts; in turn, cells in the bile ducts respond to soluble factors or vesicles released 

by the activated mesenchymal cells. This epithelial– mesenchymal crosstalk requires the 

complementary expression of an array of agonists and their receptors by epithelial and 

mesenchymal cells. TGFβ1 and TGFβ2 (REFS133–135), IL-6 and PDGFB134 and CC-motif 

chemo-kine 2 (CCL2) (REF.135) are some of the most well-studied factors secreted by 

reactive ductular cells (RDCs) that stimulate myofibroblast activation.

The epithelial component of ductular reaction — RDCs136,137 — displays a biliary 

phenotype and is organized into irregularly shaped structures. These richly anastomosed 

structures, usually without a recognizable lumen, are located at the periphery of the portal 

space, eventually extending into the lobule, following a portal-to-portal pattern. RDCs are a 

distinct cell population from HPCs and possess reparative rather than regenerative functions, 

as indicated by several studies showing a strong correlation between the amount of RDCs 

and portal fibrosis138–140. In addition to the mechanisms described above, RDCs might in 

part derive from cholangiocytes undergoing senescence, a cell reaction in which the cell is 

protected from apoptosis and carcinogenesis at the expense of a parainflammatory reaction, 

or from the ductular metaplasia of periportal hepatocytes, a phenomenon that has been 

clearly shown for intrahepatic cholangiocarcinomas130,136,137, 141. Thus, RDCs are 

generated through multiple, highly adaptable mechanisms depending on the nature and 

intensity of biliary damage. Independently from their histogenesis, RDCs progressively 

accumulate as an effect of ongoing pathological repair137. More than 20 years after Desmet 

suggested that RDCs are “the pacemaker of biliary fibrosis”142, several aspects of RDC 

biology remain elusive. RDCs possess different biological properties from normal 

cholangiocytes and can acquire a number of morphological and functional features of 

mesenchymal cells (FIG. 4). De novo expression of epithelial-to-mesenchymal transition 

(EMT) markers including S100A4, vimentin, Snail and matrix metalloproteinase 2 (MMP2), 

along with downregulation of the epithelial marker E-cadherin, was observed in RDCs in 

tissue sections obtained from patients with chronic cholangiopathies131. This ability of 

RDCs to express EMT markers and increase mobility is necessary to repair the wound. 

These features led to the concept of ‘partial EMT’ to underline the phenotypic plasticity of 

RDCs143. Notably, the secretory profile of ductular cells is similar to the senescence-

associated secretory response (SASP) of senescent cells. RDCs show heterogeneous 

expression of senescence markers such as p16 (REF.144). This observation is functionally 

important as RDC senescence might be a driver of disease processes via the SASP 

mechanism. This ability to secrete pro-inflammatory cytokines typical of senescent cells 

might promote progression of the disease by amplifying the inflammatory and fibrotic 

responses145; therefore, targeting of senescent RCD cells might be a viable therapeutic 

strategy in cholestatic liver diseases146.

An important requisite of biliary repair is the ability of RDCs to re-create the biliary 

architecture. This mechanism is mediated by morphogenetic pathways that are also involved 

in biliary development. Among them, Notch and the Yes-associated protein (YAP) and 

transcriptional co-activator with PDZ-binding motif (YAP– TAZ) pathway deserve special 

consideration because of their known role in maintaining biliary architecture during biliary 

repair140,147–151.
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Notch signalling is heavily involved in biliary repair, specifically in tubulogenesis and 

biliary transdifferentiation of hepatocytes140. Direct cell–cell interaction between Notch-

expressing HPCs and Jagged-1-expressing portal myofibroblasts induces the conversion of 

HPCs to RDCs. Notch signalling, particularly the Notch 2 receptor, is involved in the 

generation of branching tubular structures in bile duct repair97,141,148. Although defective 

Notch signalling negatively affects biliary repair, persistent Notch overactivation might 

result in liver epithelial cell dysplasia and malignant transformation149. Furthermore, 

activation of Notch in adult hepatocytes induces their transdifferentiation into biliary 

phenotype cells that express the biliary markers SOX9 and HNF1β147.

Immunobiology of cholangiocytes

The liver and the bile ducts comprise complex immunological machinery, closely integrated 

with the mucosal immune system of the gut. Cholangiocytes contribute to homeostasis in 

this system through the secretion of IgA and various antimicrobial peptides (for example, β-

defensin 2, lactoferrin and cathelicidin) into bile152–155. As described earlier, cholangiocytes 

also participate in the response to injury and repair132. Driven by developments in the 

understanding of secretory functions of epithelia156,157, research in the past few years has 

focused on activated cholangiocytes and their immunological functions119,120 (FIG. 5).

Immunobiology of quiescent cholangiocytes.

Luminal cholangiocyte secretion comprises IgA and a broad range of other proteins with 

potential antimicrobial and immunological functions158. In rodents, hepatocytes effectively 

transport secretory IgA into bile157, whereas in humans hepatocytes do not express the 

secretory component and biliary IgA secretion is performed by cholangiocytes159. 

Immunoglobulins are the second-most abundant protein fraction in human bile after albumin 

(which also harbours immune function properties)160. The biliary immunoglobulins, 

secretory IgA in particular, contribute to the local antimicrobial defence systems in the bile 

ducts and upper intestine and might be involved in the clearance of systemic antigens161,162. 

Alterations in the hepatobiliary IgA system are observed in chronic liver diseases, in 

particular chronic alcoholic liver disease163. Other luminal secretions from cholangiocytes 

(such as defensins, mucins, lactoferrin and cathelicidin) contribute to the basic antimicrobial 

defence systems of bile152,153,158 and are typically upregulated during infections.

Cholangiocytes constitutively express Toll-like receptors (TLRs) that respond to conserved 

PAMPs (for example, lipopolysaccharide (LPS) binds TLR4)164,165. In quiescent 

cholangiocytes, TLR expression is most pronounced at the luminal membrane164, and biliary 

infections lead to upregulation of relevant TLRs164,166–168. TLR signalling pathways (such 

as NF-κB signalling) have important roles in cholangiocyte activation under these 

conditions117. Activation of TLRs has also been implicated in a variety of other biliary 

disease states, from cystic fibrosis and biliary atresia169,170 (a paediatric liver disease of 

unknown aetiology characterized by loss of intrahepatic and extrahepatic bile ducts) to PSC 

and PBC171–173. In PSC, a predominant hypothesis for disease development has been gut 

leakage of LPS and other bacterial products into the portal circulation due to concomitant 

IBD174,175. Although there is some evidence of TLR activation occurring in PSC173,176,177, 
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this might also occur as a secondary phenomenon such as bacterial colonization following 

endoscopic retrograde cholangiography. Cholangiocytes also express cytoplasmic pattern 

recognition receptors (for example, NOD-, LRR- and pyrin domain-containing 3 (NLRP3)), 

and the NLRP3 inflammasome has been suggested to have a similar role in cholestatic liver 

disease as the TLRs
173,178,179.

A potential role of the cholangiocyte as a professional antigen-presenting cell has been much 

debated. As with other nucleated cells, cholangiocytes constitutively express HLA class I 

molecules180. Upon activation, cholangiocytes also express HLA class II molecules181,182 

but lack the B7 family members B7.1 (CD80) and B7.2 (CD86) co-stimulatory molecules 

that enable interactions with CD28 and CTLA4 on T cells. This finding probably means that 

the HLA class II expression on activated cholangiocytes is an epiphenomenon, but 

alternative co-stimulatory or inefficient class II antigen presentations remain theoretical 

possibilities. More recently, however, it has been shown that cholangiocytes are capable of 

presenting antigens to unconventional T cells such as mucosa-associated invariant T (MAIT) 

cells and natural killer T (NKT) cells. These T cells are enriched in compartments proximal 

to the gut microflora, the intestine and the liver in particular183, and their invariable T cell 

receptors react to antigens presented by pre-set HLA class I-like molecules. The target 

antigens for MAIT cells are bacterial B vitamins (riboflavin derivatives) presented on the 

MR1 molecule, whereas NKT cells react to lipids presented by the CD1d molecule. After 

exposure to bacteria, cholangiocytes activate MAIT cells, causing pro-inflammatory 

cytokine release184. Similarly, cholangiocytes have been shown to activate NKT cells upon 

exposure to relevant lipids185. Although both NKT and MAIT cells have been suggested to 

be involved in autoimmune liver diseases186–189, it is not clear whether this involvement is 

driven by antigens presented by cholangiocytes.

Immunobiology of the activated cholangiocyte.

Cholangiocytes can be activated by a variety of insults, including infections, cholestasis, 

ischaemia and xenobiotics117,118, although in most human cholangiopathies the insult is 

unclear. Activated cholangiocytes are characterized by increased proliferation and pro-

fibrotic and pro-inflammatory secretions119,120. In this context, cholangiocytes are an active 

participant in the ongoing immunological processes123. Furthermore, secondary effects of 

cholestasis on immune cell function also occur124.

Crosstalk between activated cholangiocytes and T cells has been explored primarily in the 

context of autoimmune liver diseases. The interaction involves cholangiocyte expression of 

relevant adhesion molecules (such as intercellular adhesion molecule 1 (ICAM1) and 

vascular cell adhesion molecule 1 (VCAM1))181,190 and other contact-dependent 

mechanisms (for example, programmed cell death 1 ligand 1 (PD-L1))191, as well as 

bidirectional cytokine and chemokine communication (for example, activation of CXC-

chemokine receptor 6 (CXCR6)-expressing T cells by cholangiocyte-derived CXC-

chemokine ligand 16 (CXCL16))190. The crosstalk recruits T cells to the sites of biliary 

injury (for example, by CCL20 released by cholangiocytes positioning CC-chemokine 

receptor 6 (CCR6)-expressing T cells)192 and modulates relevant T cell activity — for 

example, by inducing persistence of effector T cells at sites of injury193. In PSC and PBC, in 
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which T cell-mediated cholangiocyte destruction has been proposed to be involved in 

pathogenesis194,195, the crosstalk between cholangiocytes and T cells might hold clues for 

therapeutic interventions. Crosstalk between activated cholangiocytes and macrophages is 

involved in the chemoattraction of monocytes (via signalling molecules such as CCL2, IL-1 

and a broad variety of chemokines including CXCL10 and CXCL12)119,196,197 and the 

regulation of macrophage effector functions. These functions include cytokine secretions 

(for example, TNF)181, amplification of apoptotic signalling to cholangiocytes198 and the 

resulting signalling cascades that generate a pro-fibrotic peribiliary microenvironment that 

also involves hepatic stellate cells and portal myofibroblasts135,199. The presence of proteins 

including CD14 in bile and immunohistochemistry support the involvement of macrophages 

in the biliary microenvironment in disease states such as PSC200,201. IL-8 (REFS202,203), 

probably derived largely from activated cholangiocytes, is another protein consistently found 

upregulated in the bile of patients with cholestatic liver disease204–206. Although it serves as 

a potent chemoattractant for monocytes, IL-8 secretion could also be involved in shaping the 

strong neutrophil signature observed in biliary disease states such as PSC200,207. Numerous 

proteins found in bile probably reflect neutrophil activation in the biliary microenvironment 

(for example, S100A8, S100A9, S100A12 and MMP9), albeit more so in PSC than other 

biliary diseases200,207. Additional cytokines secreted by cholangiocytes (such as IL-6) are 

probably involved in autocrine signalling208, reinforcing the cholangiocyte–immune system 

crosstalk, promoting cholangiocyte proliferation and, over time, facilitating 

cholangiocarcinoma development during chronic biliary inflammation209,210.

Future directions

Much remains to be understood regarding the mechanisms of cholangiocyte pathobiology. 

Future advances will need to both exploit new technical advances and address fundamental 

gaps in our knowledge. The field of cholangiocyte biology has been held back by the 

absence of a cholangiocyte-specific promoter to develop and examine the phenotypes of 

cholangiocyte gene modifications using Cre recombinase technology. One strategy to gain 

cell specificity for cholangiocyte Cre expression could use liver-specific promoters in 

transgenic animals to drive expression of a flippase (FLP) recombinase in hepatoblasts 

during embryonic development. The FLP recombinase would be expressed in the 

descendants of the hepatoblasts, including both hepatocytes and cholangiocytes. A second 

construct expressing a Cre recombinase driven by cytokeratin 19 (which is expressed only in 

cholangiocytes within the liver) and held in check by a FLP recognition target (FRT)-flanked 

stop codon would then be introduced into the animals. The FLP recombinase would excise 

the stop codon, permitting expression of Cre only in cholangiocytes. Although conceptually 

attractive, we are not aware of anyone establishing this mouse to date, and other approaches 

would be welcome and are encouraged.

Two validated and now established technical advances include the development of patient-

derived induced pluripotent stem cells (iPSCs), which can be differentiated into 

cholangiocytes, and the generation of 3D organoids. Several groups have now reported on 

iPSCs differentiated into cholangiocytes and cholangiocyte organoids with considerable 

success and insight211–223. For example, organoids have been used to identify a clonogenic 

subpopulation of mouse cholangiocytes and unique surface markers for this proliferative cell 

Banales et al. Page 12

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population213. In addition, iPSC-derived cholangiocytes have been used to regenerate the 

extrahepatic bile duct in the mouse224. These new tools will allow further mechanistic 

studies to improve our understanding of the mechanisms of human cholangiocyte biology 

and generate more functional in vitro models.

A myriad of pertinent questions persist regarding cholangiocyte pathobiology (BOX 2). This 

list is certainly not exclusive but rather highlights many relevant knowledge gaps that can be 

addressed with current methodologies. We hope these questions will help guide future 

research priorities and emphasize to funding agencies the importance of these questions to 

human health. We look forward to the future answers to these and other questions.

Conclusions

Despite comprising only ~5% of the cells in the liver, cholangiocytes are essential for health. 

Considerable information now exists regarding their highly complex and regulated transport 

functions and contributions to bile composition and flow. The role of cholangiocytes in liver 

regeneration has also become more sharply defined. Current scientific investigation is 

focused on their role in liver immunobiology, inflammation and fibrosis, a line of enquiry 

that is important in unravelling the pathogenic mechanisms causing the cholangiopathies. 

We encourage more work on these processes, which will hopefully result in better therapy 

for these diseases.
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Key points

• Cholangiocytes are epithelial cells lining the intrahepatic and extrahepatic bile 

ducts; they are heterogeneous in size and function and contribute to bile 

composition and flow by solute transport processes.

• Cholangiocytes contribute to liver regeneration, especially when hepatocyte 

regeneration is compromised, as is often the case in human chronic liver 

diseases.

• Cholangiocytes can become activated and participate in inflammation by 

secreting chemokines and cytokines and can also directly modulate the 

biology of myofibroblasts, the cell type responsible for collagen deposition 

within the liver.

• Cholangiocytes can become senescent and participate in the senescence-

associated secretory phenotype, a cell fate also characterized by cytokine 

generation and release.

• Cholangiocytes participate in hepatic immunobiology, particularly by 

expressing Toll-like receptors (TLRs), contributing to immunoglobulin A 

(IgA) biology, and by cellular crosstalk with the innate and adaptive immune 

system.

• Cholangiocytes are damaged in a variety of human liver diseases termed the 

cholangiopathies, which are in need of optimized therapies and represent a 

current unmet need in clinical medicine.
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Box 1 |

Selected cholangiopathies

Genetic cholangiopathies

• Alagille syndrome

• ABCB4 deficiency

• Caroli syndrome

• Cystic fibrosis

• Polycystic liver disease (ADPLD, ADPKD and ARPKD)

Infectious cholangiopathies

• Cryptosporidium-associated cholangiopathy

• Recurrent pyogenic cholangitis

• Recurrent cholangitis in patients with a choledochoduodenostomy

Immune-mediated cholangiopathies

• Primary biliary cholangitis

• Primary sclerosing cholangitis

• IgG4-associated cholangitis

• Autoimmune cholangitis

• Graft versus host disease involving the liver

• Eosinophilic or mast cell cholangiopathy

Idiopathic cholangiopathies

• Biliary atresia

• Sarcoidosis

Malignant cholangiopathies

• Cholangiocarcinoma

Vascular cholangiopathies

• Hepatic artery thrombosis after liver transplantation

• Portal hypertensive biliopathy

ADPLD, autosomal dominant polycystic liver disease;

ADPKD, autosomal dominant polycystic kidney disease;

ARPKD, autosomal recessive polycystic kidney disease;

IgG4, immunoglobulin G4.
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Box 2 |

Key questions

• How is cholangiocyte regeneration regulated?

• What cholangiocyte cell death processes occur and predominate?

• Does elimination of reactive ductular cells reverse liver injury?

• How do cholangiocytes interact with innate and adaptive immune cells?

• How do cholangiocytes interact with the intestinal and biliary microbiome?

• How do cholangiocytes modify and engage the biomatrix of the biliary 

system?

• What is the effect of changes in cholangiocyte-mediated alterations of bile 

duct permeability?

• What is the role of cholangiocytes in drug and xenobiotic metabolism and 

transport?

Banales et al. Page 26

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Ductal bile formation.
Bile produced by hepatocytes (primary or hepatic bile) is delivered into bile ducts. The 

Canals of Hering provide the continuum between the hepatocyte canaliculus and the 

ductules or cholangioles, the small bile ducts and the large bile ducts in which hepatic bile is 

modified to become ductal bile. A hepatic progenitor cell (HPC) niche is also thought to 

reside at the interface of the cells lining the Canals of Hering and the hepatocyte plate. 

Active biliary epithelial transport of electrolytes and solutes occurs in small and large bile 

ducts and determines the vectorial water movement (that is, absorption or secretion) across 

cholangiocytes, thus altering ductal bile composition and flow. Adapted with permission 

from REF.6, Elsevier.
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Fig. 2. Molecular mechanisms regulating biliary secretion and absorption.
Cholangiocytes regulate the flow, composition and pH of the primary bile generated at the 

canaliculi of hepatocytes through different mechanisms, including the absorption of bile 

acids (BAs), glucose and amino acids (step 1) and the secretion of bicarbonate (HCO3 −) 

and water (step 2). Secretin (step 3) stimulates the apical insertion of intracellular vesicles 

containing anion exchange protein 2 (AE2), cystic fibrosis transmembrane conductance 

regulator (CFTR) and aquaporin 1 (AQP1), resulting in chloride secretion through CFTR 

that is exchanged with bicarbonate via AE2. This bicarbonate generates osmotic force for 

the movement of water via AQP1. Biliary bicarbonate secretion creates the biliary 

bicarbonate umbrella that protects cholangiocytes against the damaging effect of toxic 

protonated BAs (BAHs). Hormones such as bombesin and vasoactive intestinal peptide 

(VIP) stimulate biliary bicarbonate secretion, whereas somatostatin, gastrin and dopamine 

inhibit this process. Extracellular nucleotides and nucleosides, via P2Y receptors, and 

acetylcholine (ACh) also promote baseline and secretin-stimulated bicarbonate secretion, 

respectively (step 4). The cholangiocyte primary cilium acts as a (step 5) mechanosensor 

(via polycystin 1 (PC1)), (steps 6–8) chemosensor (via G protein-coupled bile acid receptor 

1 (TGR5), P2Y purinoceptor 2 (P2Y2) and extracellular vesicle (EV)) and (step 9) 

osmosensor (via transient receptor potential channel vanilloid subfamily 4 (TrpV4)), 

detecting signals in bile and subsequently modifying cell biology and bile flow and 

composition. AC5, adenylyl cyclase type 5; InsP3, inositol 1,4,5-trisphosphate; PKA, 

protein kinase A; PKC, protein kinase C; TMEM16A, transmembrane protein 16F.
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Fig. 3. Potential sources of cholangiocytes in development and liver regeneration.
a | Cholangiocytes develop via differentiation from hepatoblasts in response to 

developmental morphogens. b | Cholangiocyte homeostasis is based on self-replication of 

pre-existing mature cholangiocytes. c | Cholangiocyte regeneration occurs through an 

accelerated replication in response to regenerative hormones, growth factors and cytokines. 

d | Cholangiocyte differentiation from hepatic progenitor cells can occur during biliary 

injury and repair after reactivation of developmental pathways.
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Fig. 4. Ductular reaction and ductular-reactive cells.
Extensive research has identified many of the morphogenetic mechanisms and molecules 

involved in the complex signalling and cellular crosstalk network of biliary repair. This 

crosstalk involves many cytokines, chemokines and signalling molecules. Most of these 

factors have both paracrine and autocrine effects and can act on multiple cell types. For 

example, vascular endothelial growth factor (VEGF) can autocrinally stimulate 

cholangiocyte proliferation, as the VEGF2 receptor is also expressed in cholangiocytes, but 

VEGF has paracrine effects on the endothelial cells (stimulation of neoangiogenesis) and 

stimulates mesenchymal cells. At the same time, IL-6 can stimulate cholangiocyte growth 

and the recruitment of neutrophils. The coexistence of reactive ductular cells and a rich 

mesenchymal and immune infiltrate constitutes the ductular reaction. The signals between 

the different infiltrating cell types are integrated into morphogenetic cues enabling 

cholangiocytes to re-create the biliary architecture owing to the re-expression of Wnt, 

Hedgehog and Notch signalling. CCL2, CC-chemokine ligand 2; CTGF, connective tissue 

growth factor; CXCL, CXC-chemokine ligands; DAMPs, damage-associated molecular 

patterns; EGF, epidermal growth factor; HGF, hepatocyte growth factor; IGF1, insulin-like 

growth factor 1; nitric oxide (NO); PAMPs, pathogen-associated molecular patterns; 

PDGFBB, platelet-derived growth factor B homodimer B; TGFβ2, transforming growth 

factor-β2; TNF, tumour necrosis factor.
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Fig. 5. Key aspects of cholangiocyte immunobiology.
Quiescent cholangiocytes secrete antimicrobial molecules into bile (such as immunoglobulin 

A (IgA)) and express a range of innate immune receptors (for example, Toll-like receptors 

(TLRs) and NOD-like receptors (NLRs)) that recognize conserved pathogen-associated 

molecular patterns. The antigen-presenting capacities of cholangiocytes remain disputed 

regarding class II and T cell receptor (TCR) interactions, but CD1d and MR1 on 

cholangiocytes have been shown to effectively present lipid antigens and riboflavin 

derivatives to natural killer T (NKT) cells and mucosa-associated invariant T (MAIT) cells. 

Activated cholangiocytes engage in extensive paracrine crosstalk with cells of the immune 

system, including monocytes and macrophages, neutrophil granulocytes and T cells. 

Furthermore, autocrine signalling loops (for example, IL-6 signalling) provide further 

stimulation to augment and modify the activated cholangiocyte phenotype. CCL, CC-

chemokine ligand; CCR, CC-chemokine receptor; CXCL, CXC-chemokine ligand; CXC-

chemokine receptor; ICAM1, intercellular adhesion molecule 1; iTCR, invariant T cell 

receptor; LPS, lipopolysaccharide; MMP9, matrix metallopeptidase 9; PD-L1, programmed 

cell death 1 ligand 1; TH17 cell, T helper type 17 cell; TNF, tumour necrosis factor; Treg 

cell, regulatory T cell; VCAM1, vascular cell adhesion molecule 1.
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