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Introduction

Lignin is widely considered as a potential feedstock for the

future production of renewable chemicals, materials and
energy as industries transition away from fossil fuels.[1–8] Going

forward, it is likely to be increasingly produced and isolated on
industrial scales as a co-product from both the pulp and paper
industry[9–11] and from 2nd generation (lignocellulosic) biorefi-

neries producing ethanol or other sugar derivatives. One major

challenge in (technical) lignin valorization is that the lignin
structure is highly complex and variable. In particular, it de-

pends strongly on the botanical origin and the pretreatment
process used in its isolation.[6, 12, 13] This makes detailed structur-
al characterization of lignin feedstocks very important for the

development and implementation of optimal downstream
processing strategies that cater to the (variation in the) struc-
ture of the lignin feedstock.

Many different qualitative and quantitative analysis methods

have been developed and are employed in the characteriza-
tion of native and technical lignins, including wet-chemical,

spectroscopic and chromatographic techniques. NMR spectros-

copy (1D: 1H, 13C, 31P, 19F; 2D: heteronuclear single quantum
coherence (HSQC), heteronuclear multiple bond correlation

(HMBC); 3D: HSQC–total correlation spectroscopy
(TOCSY)),[14, 15] FTIR/near infrared (NIR) spectroscopy,[16–18] thioa-

cidolysis,[19] DFRC (“derivatization followed by reductive cleav-
age”),[19, 20] nitrobenzene oxidation,[19] pyro-GC/MS,[21] gel-per-

meation chromatography (GPC)[12, 22, 23] and Klason lignin analy-

sis[24] are especially frequently employed. In most cases, these
analysis methods reveal information on only specific structural

features or properties, rather than the global lignin structure,
meaning combinations of various techniques are required to

fully characterize a sample. This, therefore, requires access to
both extensive analytical instrumentation and significant time
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inputs for data acquisition and analysis. Clearly, it would be ad-
vantageous to develop simple, time- and cost-effective tech-

niques that allow many different chemical and physical fea-
tures of a lignin sample to be determined in a single measure-

ment, using broadly available instrumentation and allowing
rapid, high-throughput analysis.

In this respect, FTIR analysis is particularly interesting as
each measurement, in principle, provides information on all

chemical bonds present in the lignin structure. The spectra are

thus not only very rich in information but the technique is also
simple to operate, fast and widely available. Indeed, also for

lignin characterization, FTIR analysis is commonly used in a
qualitative fashion, for example, to identify different functional

groups;[25–28] however, due to the complex patterns and severe
peak overlap, it is seldom used to extract detailed structural in-

formation in a way that, for example, NMR spectroscopy does.

Nor is it often used for quantitative measurements, although
Schultz and Glasser have demonstrated some success in this

direction.[29] By applying chemometrics to FTIR datasets it is
possible to overcome these complexities and perform much

more in-depth and quantitative analyses. For example, partial
least squares (PLS) multivariate regression analysis can be used

to predict, with good accuracy, the hydroxyl group content

(e.g. , phenolic, aliphatic, COOH), lignin purity, syringyl/guaiacyl
(S/G) ratio and radical scavenging ability of different technical

lignins from their FTIR spectra.[30, 31] The technique has also
been applied extensively for the characterisation of whole bio-

mass, for example, to predict wood and in planta lignin com-
position.[18, 32–37] The objective of this present study was to fur-

ther extend the scope of this approach and to extract more

detailed structural information from the FTIR spectra of techni-
cal lignins.

Here, we show that PLS regression models developed for
technical lignins from their attenuated total reflection (ATR)-

FTIR spectra and a calibration set of GPC and NMR data can be
used to quantitatively predict a remarkable amount of addi-

tional structural information, including Mn, Mw and inter-unit

linkage abundances, critical information that has not previously
been obtained using FTIR/multivariate analyses. Thus, once
these models are in place, this approach, together with the
previously reported efforts on functional group content and S/

G ratio,[30, 31] potentially allows the entire suite of traditional
lignin analysis methods to be replaced with a single ATR-FTIR

measurement. This would be particularly advantageous when
routine structural characterization is required, for example,
during lignin fractionation processes, in quality control applica-
tions or when access to, for example, high-end NMR equip-
ment is limited.

Results and Discussion

To develop a robust model, it is important to use a training set
that includes a sufficient number of samples of adequate diver-

sity so that it covers the expected range of lignin structures for
which the model will be applied. This can potentially include

intra- and inter-feedstock variability depending on the intend-
ed final application of the model. Therefore, as a proof of con-

cept, we generated a library of 54 different lignin samples
from different botanical sources and isolation methods. All

these samples were then analysed by 2D HSQC NMR spectros-
copy and GPC measurements and a subset by 31P NMR spec-

troscopy, giving the calibration data required for subsequent
PLS modelling. This data can be found in full in Tables S1 and

S2 in the Supporting Information, along with the details of the
exact origin of each lignin sample.

For our studies, FTIR spectra were collected in ATR mode,

which is both simpler and much faster than traditional trans-
mission mode measurements as it does not require the prepa-

ration of KBr pellets and is readily available in most laborato-
ries. The assignment of the FTIR spectra of lignin has been well

reported previously[17] and allows identification of some char-
acteristic bands that can be useful for manually differentiating

lignin samples. The differences between samples can, however,

be very subtle. For example, Figure 1 shows that the spectrum
obtained from an Indulin AT lignin (a softwood, G-type kraft

lignin, Table S1, entry 9) is quite different from those obtained
from either P1000 (herbaceous, SGH-type soda lignin, Table S1,

entry 34) or Alcell (hardwood, SG-type organosolv lignin,
Table S1, entry 49) lignins, as evidenced by differences in the

bands at around 1330–1325 (vibrations attributed to S plus

condensed G rings), 1270–1266 (G ring) and 1128–1125 cm@1 (S
ring).[17] The spectra of the Alcell and P1000 lignins are, howev-

er, very similar and would be difficult to differentiate based on
visual inspection of the spectra alone.

To extract any additional information contained, principle
component analysis (PCA) can be applied to identify and em-

phasise variations in the spectra. As also previously reported,[30]

groups of lignin samples can be clearly discerned after PCA
and trends in the samples start to emerge. Initial PCA showed

that the softwood lignins could be resolved from the hard-
wood and herbaceous ones; however, the latter two groups

were not resolved from each other (Figure S1 a). Interestingly,
we found that by using the 1st derivative spectra, which can

improve resolution and eliminate some background problems,

much better separation of the lignin groups could be ach-
ieved, allowing all three categories to be differentiated

(Figure 2). Based on mainly principal component 1 (PC1) load-
ings it is possible to group samples according to their botani-

cal origin, with increasingly positive loadings on PC1 being ob-
served from softwood- to herbaceous- to hardwood-derived

lignin samples. Furthermore, a comparison of the PCA with the
NMR data showed that higher proportions of b-O-4 linkages in
a lignin correlated with more positive loadings on PC2 (see
also Figure S1 b). In line with previous studies,[30] this suggests
that PCA of FTIR spectra can provide a quick and simple

method to classify lignin feedstocks according to botanical
origin and basic structure. The apparent structure dependence

of the PC2 loadings also suggested that multivariate analysis

may be a useful tool for extracting detailed information on the
structural features of lignin as well, for example, on inter-unit

linkage abundance.
We therefore aimed to extend the application of multivariate

approaches to the quantitative modelling and prediction of
specific structural characteristics beyond those previously re-
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Figure 1. ATR-FTIR spectra of (a) Indulin AT kraft (softwood); (b) Alcell organosolv (hardwood) and (c) P1000 soda (herbaceous) lignin.

Figure 2. Principal component analysis plot of the 54 lignin samples used in this study. The ATR-FTIR spectra were pre-processed by applying baseline correc-
tion, 1st derivative transformation, normalization and mean centering. Shading shows how the lignins are grouped according to their different botanical ori-
gins. The colored ellipses are intended for illustrative purposes only.
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ported, especially ones that might be of particular industrial or
academic relevance. In particular, we chose to focus on molec-

ular weight and inter-unit linkage abundance as these proper-
ties have not yet been obtained directly from FTIR spectra by

chemometrics and are closely associated with the potential to
valorise lignins. For example, b-O-4 content can significantly

affect the potential to generate monomeric aromatic com-
pounds from lignins[13, 38, 39] and molecular weight may play a
role in determining whether lignins are suitable for use in ma-

terials applications, for example in carbon-fibre production.[40]

Thus, PLS regression models were built and optimised using
the PLS Toolbox within MATLAB. PLS regression determines a
linear regression model for the relationship between depen-

dent variables (ATR-FTIR) and predictor variables (NMR spec-
troscopy, GPC), which can then subsequently be used for

making predictions based on ATR-FTIR measurements on new

samples. Beyond baseline correction, normalization and mean
centring, a number of other pre-processing options for the

spectral data were evaluated based on spectral range and
using 1st and 2nd derivative spectra. Additionally, the number of

latent variables used for calculating the PLS models were indi-
vidually optimised for each variable of interest. In most cases

this optimum corresponded to the number of latent variables

that gave the lowest root mean squared error of cross-valida-
tion (RMSECV) value; however, where an obvious minimum

was not observed, the number of latent variables (LVs) was
chosen were the RMSECV no longer significantly improved (ca.

<2 % improvement) and/or where additional latent variables
accounted for very little additional variance.[41] These results

are summarised in Table S3. In our case, we found that the

best results were generally obtained using truncated (750–
2000 cm@1) spectra, combined with taking the 1st derivative

(Table 1). Additionally, using the results of our 31P NMR analyses
we could also validate the ability of this technique to predict

lignin hydroxyl group content (Table S4), as previously report-
ed by Boeriu et al.[30, 31]

The results of the PLS regression show that the properties of

interest are, in general, well modelled. Good correlation coeffi-
cients of determination for the calibration (R2 Cal.) were ob-

tained for all properties (>0.85), except dispersity (D = Mw/Mn)
which had a lower R2 Cal. (entry 5, 0.72, Table 1). Relatively

lower coefficients of determination for cross-validation (CV)
were observed for Mw (entry 3), b-5 (entry 7), b-b (entry 8) and

especially D (entry 5), resulting in higher relative errors (REs).
Interestingly we found that significantly improved models

were obtained when using log(Mn) and log(Mw) (entries 2 and
4), compared to the non-logarithmic values (entries 1 and 3),

which may indicate that non-linearity exists in the molecular-
weight data. One explanation for this relates to the GPC

method used for determining the Mw and Mn values of the cali-

bration set. We,[12] and others,[22, 42, 43] have previously found
that the results of lignin GPC measurements are very sensitive
to the exact method and equipment used for their determina-
tion. Additionally, GPC results using multi-angle light scattering
detection at 785 nm have recently shown that standard detec-
tion methods (e.g. , refractive index) in combination with sulfo-

nated polystyrene standards are subject to substantial (non-
linear) errors in the molecular-weight results.[44] While the con-
ditions used for our GPC analysis (UV detection, polystyrene

standards, acetylated lignin) are not identical to those used in
the referenced study, the same type of errors will undoubtedly

be present. As for the linkage abundance accuracy, it is also
important to appreciate that HSQC NMR quantification is only

semi-quantitative, relying on internal lignin aromatic signals

(G2, S2/6, H2/6) for reference. Due to the differences in dispersity,
nature and degree of lignin condensation as function of the

extraction process applied, this method is also likely subject to
varying magnitudes of errors, introducing scatter in the data.

With this in mind, it is very encouraging to see that such good
PLS models can already be obtained for this very diverse set of

technical lignins. To see if the modelling could be improved

further a more focused set of lignins was analysed, where the
effects of the potential errors in the NMR analysis and GPC

measurements serving as the calibration data should be less
significant. Therefore, the initial set of 54 lignins was reduced

in size to 28 lignins of similar origin (Table S1). These lignins
had all been generated by solvent fractionation of three differ-

ent softwood kraft lignins: two different Indulin AT batches

and one BioChoice lignin (see the Supporting Information for
fractionation details), with the latter being generated from a

harsher pulping process.[45] Such a situation is in fact highly rel-
evant as most pulp mills or biorefineries are specialised to-

Table 1. Results of PLS regression between molecular weight and inter-unit abundances as determined by GPC and 2D HSQC NMR spectroscopy, respec-
tively, for the 54 lignin samples and their ATR-FTIR using 1st derivative pre-processing.

Entry Unit Range Num. LV[a] Variance captured [%] RMSEC[b] RMSECV RE[c] [%] R2 Cal. R2 CV[d]

X (FTIR) Y (Cal.)

1 Mn 4626 7 94 94 260 400 8.7 0.94 0.85
2 log(Mn) 0.95 7 94 98 0.034 0.059 6.2 0.98 0.94
3 Mw 29 984 10 96 92 1500 3000 10 0.92 0.70
4 log(Mw) 1.7 6 93 94 0.091 0.13 7.6 0.94 0.88
5 D 5.03 5 89 72 0.69 1.0 20 0.72 0.44
6 b-O-4 34 4 85 94 1.8 2.8 8.2 0.94 0.85
7 b-5 10 4 86 88 0.74 1.1 11 0.88 0.75
8 b-b 3.9 5 90 85 0.33 0.53 14 0.85 0.61

[a] Num. LV = number of latent variables. [b] RMSEC = root mean squared error of calibration. [c] RE = RMSECV/range. [d] Venetian blinds with 10 splits and
1 sample per split ; values reported to 2 significant figures; see Figure S2 for the associated regression vectors.
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wards specific types of feedstocks (i.e. , soft or hardwoods) and
chemical processes tend to be optimised towards specific

input streams. This means that, in reality, most processes will
probably be dealing with quite defined lignin streams and any

quantitative analysis tool would not typically have to span the
range of highly diverse ones analysed above. To test the pre-

dictive ability of the new kraft sample-based PLS models, an in-
dependent validation set of seven lignins was generated from

another set of Indulin AT lignin fractions (Table S5).

Using the previously determined optimal method for proc-
essing the IR spectra, this focused set of lignins produced sig-

nificantly improved results with higher R2 Cal. , R2 CV and lower
REs for the PLS models (Table 2). Stilbenoid units (SB1 and SB5)

were additionally included in this analysis, as we have recently
identified them as particularly abundant units in softwood

kraft lignin.[12, 46] The improved correlation results suggested

that the models should be able to predict the properties of
new, lignin samples obtained independently from the original

calibration set with reasonably high accuracy. This is demon-
strated by the analysis of a validation set of lignins. Two ATR-

FTIR spectra were recorded for each sample, giving a total of
14 samples for testing. The coefficients of determination (R2

Pred.) were all excellent and similar to the R2 CV values where-
as the root mean squared error of prediction (RMSEP) values
were slightly higher (worse) than the RMSECV values, but still

suggested good accuracy in the predictions. To illustrate this,
Figure 3 provides plots of the measured against PLS-model

predicted values for the calibration (red circles) and validation
(blue diamonds) sets, and Table 3 shows the mean predicted
values of the properties of interest for the validation lignins.
The results show that in most cases the predicted values are

very close to the NMR analysis and GPC measured values and

Table 2. Results of PLS regression between molecular weight and inter-unit abundances determined by GPC and 2D HSQC NMR spectroscopy for the 28
kraft lignin samples and their ATR-FTIR spectra using 1st derivative pre-processing.[a]

Entry Unit Range Num. LVs Calibration (28 samples) Validation (2 V 7 samples)
RMSEC RMSECV RE [%] R2 Cal. R2 CV RMSEP R2 Pred.

1 Mn 4570 6 210 410 9.0 0.97 0.89 810 (510)[c] 0.87 (0.98)[c]

2 log(Mn) 0.91 5 0.025 0.046 5.0 0.99 0.97 0.087 (0.050)[c] 0.96 (0.99)[c]

3 Mw 29 984 6 1430 3100 10 0.96 0.81 3400 0.89
4 log(Mw) 1.7 6 0.039 0.097 5.8 0.99 0.95 0.094 0.98
5 D 4.9 6 0.22 0.51 10 0.97 0.84 0.72 0.98
6 b-O-4 12 6 0.25 0.46 3.8 1.00 0.99 0.56 0.98
7 b-5 3.8 6 0.095 0.18 4.7 0.99 0.98 0.27 0.97
8 b-b 1.8 3 0.13 0.19 10 0.94 0.87 0.15 0.94
9 SB5 8.0 3 0.79 1.0 13 0.87 0.79 1.2 0.90
10 SB1 7.9 5 0.26 0.48 6.1 0.98 0.94 0.39 0.94

[a] Values reported to 2 significant figures; see Figure S3 for the regression vectors associated with these models. [b] Pred. = predicted. [c] The relatively
large RMSECV/RMSEP ratio can indicate overfitting. In this case it results from an outlier sample in the Mn measurements due to the poor solubility of the
acetone/MeOH fraction in the GPC solvent. Exclusion of this data results in a better prediction (shown in brackets).

Figure 3. Scatterplots of measured versus predicted lignin properties based on PLS modelling. Inter-unit abundances are measured and predicted on a per
100Ar basis.
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that the trends observed in the values are faithfully repro-

duced by PLS modeling of the IR spectra. For most practical
purposes, the analytical accuracy obtained using this method-

ology should be more than adequate, especially when the
time (minutes versus hours), cost and human input savings are

taken into consideration.

Conclusions

The results presented here thus demonstrate that attenuated

total reflection (ATR)-FTIR analysis of lignins, combined with
multivariate analysis techniques such as principal component

analysis (PCA) and partial least squares (PLS) modelling, can

provide a wealth of structural information. To the best of our
knowledge, we show for the first time that this can be used to

predict Mn, Mw and inter-unit linkage abundance in technical
lignins with good accuracy, as demonstrated for fractionated
kraft lignins. A further advantage of this method is that the
effect of operator bias is completely removed. Usually, gel-per-

meation chromatography (GPC) analysis requires at least some
manual adjustment of baselines and integrals and similarly,

processing of heteronuclear single-quantum coherence spec-

troscopy (HSQC) NMR spectra is an interactive process requir-
ing manual inputs. In both cases differences in operator proce-

dures can lead to significantly different results reducing repro-
ducibility. With no manual processing inputs, the FTIR–PLS ap-

proach has the potential to significantly improve the reprodu-
cibility of routine lignin characterisation measurements across

the lignin field, at the same time reducing time, cost and

equipment requirements.
Going forward, we believe that this analysis method can find

broad application in industry and academia. For example, as
the lignin market grows, pulp mills and biorefineries will in-

creasingly have to provide detailed structural characterisation
of their lignin co-streams to customers as well as ensuring

strict quality control is implemented to ensure product consis-

tency. Furthermore, in academia as well as in industrial re-
search and development, lignin analysis is still often a bottle-

neck in process development and therefore a quick, easy and
widely available analysis method, such as this, will be a valua-

ble tool for future lignin valorisation efforts.

Experimental Section

Lignins: All lignins used in this study were commercially available,
prepared in house or kind donations and were all used as is, that
is, without grinding or any special drying step to remove absorbed
water. Full details of the origin and NMR and GPC characterization
of the lignins are provided in the Supporting Information.
NMR analysis: High-field NMR spectra were acquired on a Bruker
Avance II 600 MHz spectrometer equipped with a 5 mm CPTCI
(proton-optimized triple resonance) 1H–13C/15N–2H cryogenic probe
with z-gradients at 25 8C. 1H–13C HSQC spectra were recorded
using either the Bruker pulse program ‘hsqcetgpsp.3’ (using the
following parameters: acquired from 13 to @1 ppm in F2 (1H) with
2048 data points, 160 to 0 ppm in F1 (13C) with 256 increments
with a 1 s interscan delay (D1); cnst2 was set to 145 Hz) or the Q-
CAHSQC pulse program[47] (using the following parameters: ac-
quired from 13 to @1 ppm in F2 (1H) with 2048 data points, 160 to
0 ppm in F1 (13C) with 128 increments with a 6 s interscan delay
(D1); cnst2 was set to 145 Hz). In both cases processing used Gaus-
sian apodization (GB = 0.1, LB = 0.3 Hz) in F2 and squared cosine-
bell and one level of linear prediction (32 coefficients) in F1.
Volume integration of HSQC signals used Bruker’s TopSpin 3.5 typi-
cally following manual phase correction and automatic baseline
correction. [D6]DMSO was used as the NMR solvent and the central
DMSO solvent peak was used as internal reference (dC = 39.6 ppm,
dH = 2.49 ppm). The relative quantity of side chains was calculated
on a per 100 aromatic units (100Ar) base (based on comparison to
the G/S/H aromatic integrals as previously reported).[48] Integrals
from symmetrical units (i.e. , b-b units) were halved to calculate the
number of units per 100Ar.

Table 3. Results measured by GPC and HSQC NMR spectroscopy and predicted by the PLS model for the validation set of kraft lignins. Predicted values
are an average of two ATR-FTIR measurements.[a]

Property EtOAc/MeOH Acetone/MeOH
0 % 5 % 10 % 20 % 30 % 40 % 50 %

Mn
[b] measured 710 1100 1400 2000 2500 2700 2400[c]

predicted 690 1100 1600 2200 2800 3300 3700

Mw
[b] measured 1100 1900 2700 4400 8100 11 000 14 000[c]

predicted 950 1600 2500 4300 7100 11 000 24 000

D
measured 1.6 1.7 1.9 2.1 3.3 4.0 6.03[c]

predicted 1.2 1.1 1.0 1.5 2.3 3.2 5.6

b-O-4
measured 1.5 3.3 5.5 8.5 9.6 13 12
predicted 1.2 3.7 6.0 8.3 10 12 12

b-5
measured 0.7 1.2 2.2 3.0 3.5 4.2 3.6
predicted 0.5 1.5 2.3 3.1 3.8 4.0 4.1

b-b
measured 1.1 1.5 1.9 2.1 2.3 2.8 2.4
predicted 1.3 1.6 1.9 2.2 2.4 2.6 2.6

SB5
measured 9.4 9.7 7.9 4.5 5.1 4.1 3.2
predicted 10 8.4 6.6 5.0 3.7 2.8 1.8

SB1
measured 4.6 2.0 1.1 0.9 0.4 0.5 0.3
predicted 4.4 2.5 1.7 1.2 0.8 0.5 0.05

[a] Values >1 reported to 2 significant figures, <1 reported to 1 significant figure. [b] Calculated from log[X]-predicted values; see Table S6 for raw values.
[c] Sample not fully soluble in THF after acetylation and values most likely underestimated with respect to the whole sample.
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GPC: GPC measurements were performed on a Polymer Labs GPC
50 system, equipped with a series of three PLGel Mixed-E columns
and a guard column, using THF spiked with 0.1 vol % acetic acid as
the mobile phase. Detection was with an external Knauer UV de-
tector at 280 nm and molecular weight determinations were based
on calibration with polystyrene standards (Mn = 162, 570, 1060,
1400, 2240, 3690, 4760, 7130, 12 800 and 19 690). Samples were
acetylated (pyridine/acetic anhydride overnight, dried under a
stream of N2), then dissolved in the THF eluent (ca. 1.5 mg mL@1)
and filtered (45 mm PTFE syringe filter) prior to analysis.
ATR-FTIR analysis: ATR-FTIR spectra of the lignin samples were re-
corded on a PerkinElmer Frontier FTIR spectrometer equipped with
a LiTaO3 mid-IR detector using a PerkinElmer Universal ATR Sam-
pling Accessory with a diamond/ZnSe plate. Spectra were collected
in the range 4000–600 cm@1 with a resolution of 4 cm@1 and with
16 co-added scans. Spectra were recorded in batches over several
different days, and new background spectra were recorded after
every 10–15 min of measurements. All lignin samples were used
‘as-is’—that is, no special preparation procedures were applied
(e.g. , drying or grinding).
Data analysis: PCA and PLS modelling were performed using the
PLS_Toolbox (Version 8.6, Eigenvector) within the MATLAB environ-
ment (R2017a). Spectra were pre-processed using baseline correc-
tion (automatic weighted least squares, order = 2), normalization
and mean-centering. When 1st- (order: 2, filter width: 7 pt, tails :
polyinterp) or 2nd-order (order: 2, filter width: 7 pt, tails : polyin-
terp) derivative processing was used this was applied after baseline
correction but before normalization. CV used venetian blinds with
10 splits and 1 sample per split. Baseline correction can be omitted
when using derivative spectra, giving essentially identical results
(Table S7).
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