Table 4.
Comparison of different strategies of feature selection on benchmark training datasets.
Strategy | Sensitivity | Specificity | Precision | Accuracy | MCC | F1 | AUC | Number of features | |
---|---|---|---|---|---|---|---|---|---|
Combination of all features | Average stdev p-value | 0.707 ± 0.017 6.9e-10 | 0.716 ± 0.010 5.2e-10 | 0.713 ± 0.008 5.6e-11 | 0.711 ± 0.009 1.4e-11 | 0.423 ± 0.018 1.4e-11 | 0.710 ± 0.011 2.4e-11 | 0.765 ± 0.010 4.7e-19 | 470 N/A N/A |
LASSO | Average stdev p-value | 0.734 ± 0.016 5.6e-05 | 0.750 ± 0.004 1.6e-05 | 0.746 ± 0.006 2.2e-06 | 0.742 ± 0.009 1.2e-06 | 0.484 ± 0.017 1.1e-06 | 0.740 ± 0.011 2.2e-06 | 0.784 ± 0.006 2.3e-18 | 74 ± 11 1.8e-20 |
GA | Average stdev p-value | 0.752 ± 0.024 0.16 | 0.755 ± 0.009 5.2e-04 | 0.754 ± 0.009 4.8e-04 | 0.753 ± 0.013 3.3e-03 | 0.507 ± 0.025 3.2e-03 | 0.753 ±0.016 0.01 | 0.813 ± 0.006 9.4e-16 | 233 ± 11 3.2e-05 |
DPSO | Average stdev p-value | 0.752 ± 0.013 0.0248 | 0.752 ± 0.005 4.7e-05 | 0.753 ± 0.006 5.7e-05 | 0.751 ± 0.008 1.7e-04 | 0.504 ± 0.016 1.7e-04 | 0.752 ±0.009 4.7e-04 | 0.819 ± 0.004 1.4e-16 | 280 ± 6 5.8e-10 |
DFA | Average stdev p-value | 0.763 ± 0.007 N/A | 0.777 ± 0.014 N/A | 0.774 ± 0.012 N/A | 0.770 ± 0.009 N/A | 0.540 ± 0.018 N/A | 0.768 ±0.008 N/A | 0.876 ± 0.005 N/A | 254 ± 4 N/A |
The threshold is set where the MCC achieve the maximum value. LASSO, DFA, DPSO, and GA stand for least absolute selection and shrinkage operator, discrete firefly algorithm, discrete particle swam optimization, and genetic algorithm, respectively.