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Abstract

Each of the pathological stages (I-IIIa) in which surgically resected non-small cell lung cancer 

patients are classified conceals hidden biological heterogeneity, manifested in heterogeneous 
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outcomes within each stage. Thus, the finding of robust and precise molecular classifiers to assess 

individual patient risk is an unmet medical need. Here we identified and validated the clinical 

utility of a new prognostic signature based on three proteins (BRCA1, QKI and SLC2A1) to 

stratify early lung adenocarcinoma patients according to their risk of recurrence or death. Patients 

were staged following the new International Association for the Study of Lung Cancer (IASLC) 

staging criteria (8th edition, 2018). A test cohort (n=239) was used to assess the value of this new 

prognostic index (PI) based on the three proteins. The prognostic signature was developed by Cox 

regression following stringent statistical criteria (TRIPOD: Transparent reporting of a 

multivariable prediction model for individual prognosis or diagnosis). The model resulted in a 

highly significant predictor of five-year outcome for disease-free survival (P<0.001) and overall 

survival (P<0.001). The prognostic ability of the model was externally validated in an independent 

multi-institutional cohort of patients (n=114, P=0.021). We also demonstrated that this molecular 

classifier adds relevant information to the gold standard TNM-based pathological staging with a 

highly significant improvement of likelihood ratio. We subsequently developed a combined 

prognostic index (CPI) including both the molecular and the pathological data which improved the 

risk stratification in both cohorts (P≤0.001). Moreover, the signature may help to select stage I-IIA 

patients who might benefit from adjuvant chemotherapy. In summary, this protein-based signature 

accurately identifies those patients with high risk of recurrence and death, and adds further 

prognostic information to the TNM-based clinical staging, even applying the new IASLC 8th 

edition staging criteria. More importantly, it may be a valuable tool for selecting patients for 

adjuvant therapy.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide [1]. Usually, two out of 

three lung cancer patients are diagnosed at an advanced stage of the disease, when the 

curative options and survival rates are poor. Even among early stage patients, the mortality 

risk remains high, with 30–45% relapse rates within 5 years of diagnosis [2]. According to 

results from randomized clinical trials, adjuvant chemotherapy is recommended for stage II-

III patients. However, the indication of chemotherapy for stage I patients is still a matter of 

debate [3]. Early identification of patients with high risk of recurrence after surgery is 

crucial to design tailored management strategies to reduce lung cancer mortality. Moreover, 

lung cancer screening by low-dose computed tomography (LDCT) has been introduced into 

the routine clinical practice and it is entering in reimbursement schemes [4] to reduce lung 

cancer mortality [5]. Implementation of lung cancer screening will reasonably increase the 

number of surgically amenable lung cancer patients diagnosed in early stages within the next 

few years.

The tumor-node-metastasis staging system (TNM) is the current gold standard to estimate 

prognosis in non-small cell lung cancer (NSCLC) patients. However, it is not sufficient for 
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accurate survival prediction as heterogeneous clinical outcomes with identical TNM staging 

are commonly observed. Despite the efforts over the last decade, to date none of the many 

proposed biological features has been incorporated to the routine clinical practice [6,7]. In 

recent years, attention has shifted to high- throughput genomic tools; particularly microarray 

technology has been used to identify prognostic RNA-based profiles in NSCLC. More 

recently several PCR-based signatures have been developed and validated to define the risk 

of death although they have not yet been prospectively proved [8–11]. Of note, the 

requirement for good quality RNA samples may limit the outcome of these signatures in 

routine daily practice. Alternatively, the identification and quantitation of protein expression 

in tissue sections is a very well mastered technique, available in every hospital. Specifically, 

immunohistochemistry (IHC) has been used as an approved companion biomarker for 

several novel therapeutic strategies [12,13].

In the present study, we develop and validate a new molecular prognostic signature for lung 

adenocarcinoma (ADC). Specifically, we use immunodetection-based techniques to assess 

the expression of three prognostic proteins in our cohorts of patients. Using this signature, 

we are able to identify a subset of stage I-II patients with higher risk of recurrence and 

survival who may be in need of a more aggressive therapy or closer follow up. We clearly 

show that our classifier offers additional information to the TNM staging system. More 

importantly, our model gives insights into which patients may benefit from adjuvant therapy.

MATERIAL AND METHODS

Patients

Primary ADC tumor samples were collected from consecutive population cohorts from 

University of Texas MD Anderson Cancer Center (Houston, TX) (MDA), the CIBERES 

multi-institutional Pulmonary Biobank Platform (Spain) [14] and Clínica Universidad de 

Navarra (Pamplona, Spain) (CUN). The MDA cohort was composed of 239 ADC patients 

diagnosed from 1999 to 2008 at the MD Anderson Cancer Center (Houston, TX). A second 

cohort of 114 ADC patients was analyzed. These lung ADC patients were diagnosed from 

2000 to 2013. Inclusion criteria were as follows: patients with lung ADC, complete resection 

of the primary tumor, absence of cancer within the previous five years and absence of chemo 

or radio-therapy treatment prior to surgery. Tumors were classified according to the WHO 

2004 classification [15] and 8th TNM edition was used for tumor stratification [16]. Tissue 

microarrays (TMAs) were constructed by obtaining three cores from each tumor at three 

different areas using a manual tissue arrayer. REMARK guidelines were strictly followed 

throughout the study [17]. For survival analysis, the follow-up period was restricted to 60 

months in all cohorts. Disease-free survival (DFS) and overall survival (OS) were calculated 

from the date of surgery to the date of recurrence or death, respectively. The study was 

conducted according to the Declaration of Helsinki, and was approved by the Institutional 

Review Board and Ethical committee of MDA, CUN and CIBERES. Written informed 

consent was obtained from each patient. Characteristics of the cohorts are specified in 

supplementary material, Table S1.
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In silico analysis

Data from nine lung cancer microarray experiments (http://www.ncbi.nlm.nih.gov/geo) were 

downloaded and analyzed. The GEO accession numbers were: GSE3141 [18]; GSE8894 

[19]; GSE68465 [20]; GSE31210 [21]; GSE13213 [22]; GSE26939 [23]; GSE5828 [24]; 

GSE4573 [25]; GSE17710 [26]. Survival analysis was conducted by Kaplan-Meier curves 

(log rank test). Patients were divided according to mRNA expression levels using the median 

or tertiles as cut-off.

Cell culture

Human NSCLC cell lines (NCI-H1395, NCI-H23, NCI-H441, A549, NCI-H358, NCI-

H1299, NCI-H460, Calu-1, NCI-H1869, NCI-H520 and HCC15) were obtained from the 

American Type Culture Collection (ATCC, Manasas, VA, USA) and the German Collection 

of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). All the cell lines 

were grown in RPMI with 2 mM L-glutamine, 10% Fetalclone (Thermo Scientific, 

Waltham, MA, USA), 100 U/ml of penicillin and 100 mg/ml of streptomycin (Invitrogen, 

Barcelona, Spain). Cell lines were authenticated by analysis of their genetic alterations.

Antibody specificity validation

Specificity of the antibodies was assessed using western blotting (WB), IHC and siRNA 

knock-down technology in NSCLC cells. Nuclear and cytoplasmic protein fractions of 

different cell lines were isolated, and formalin-fixed paraffin-embedded (FFPE) blocks of 

the same cells were prepared. For each antibody, the fact that only specific molecular-weight 

bands of the expected size appeared in the WB was confirmed. In most cases, one band 

corresponding to the canonical isoform appeared. When two or more bands were detected, 

we checked whether they corresponded to gene splice isoforms. Antibodies recognizing non-

specific bands were discarded. Also, the expression of the protein was studied by IHC in the 

cell line FFPE blocks and the correlation of the expression detected by WB and IHC was 

analyzed. Additionally, the proper localization in the subcellular compartment was checked 

using both methods. In case of inconclusive results, antibody specificity was evaluated by 

siRNA knock-down. A pipeline with the steps followed in this point is shown in Figure 1.

Immunohistochemistry (IHC)

Immunohistochemical staining foPr BRCA1, CDC6, LIG1, QKI, RAD51, RAE1, RRM2, 

SIRT2, SLC2A1, SNRPE, SRSF1 and STC1 was performed on sections of FFPE tissues and 

cell blocks. After dewaxing, sections were hydrated through a graded series of ethanol. 

Endogenous peroxidase activity was quenched with 3% H2O2 for 10 min. Heat-mediated 

antigen retrieval was conducted in a Lab Vision PT module at 95 °C for 20 min either with 

citrate buffer (pH 6) (Thermo Scientific) or Tris-EDTA (pH 9) (Thermo Scientific) as 

indicated. Sections were incubated with primary antibodies diluted in a special buffer 

(Antibody diluent, Dako, Glostrup, Denmark) overnight at 4 °C in a humidity chamber. 

After a rinse with TBS, sections were incubated for 30 min with mouse or rabbit EnVision 

complex (Dako) or Streptavidin HRP complexes (1:200) after incubation with biotinylated 

anti-goat Ig. A color was developed with liquid diaminobenzidine (Dako) under microscopic 

control. Finally, tissue samples were counterstained with hematoxylin, and mounted with 
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DPX. Antibodies characteristics and conditions for detection by IHC in FFPE samples are 

summarized in supplementary material, Table S2.

Evaluation of immunostaining

Tumors were evaluated by two experienced observers (E.M.T and M.J.P). The expression of 

the proteins was scored as the percentage of positive cells (0% to 100%), and the intensity of 

staining (1, weak; 2, moderate; and 3, strong). The final H-score was calculated by adding 

the products of the percentage of cells stained at a given intensity (0–100) and the staining 

intensity (0–3), as previously described [20]. Staining at different subcellular compartments 

(N, nuclear; C, cytoplasmic; MB, membrane) was evaluated independently for each marker. 

The agreement between the two observers was verified by Gwet’s AC1. Discordant 

independent readings were resolved by simultaneous review by the two observers.

Western blotting

Proteins were denatured in SDS sample buffer (Bio-Rad) at 95 °C for 5 min, separated by 

SDS-PAGE on NuPAGE Novex 10%, 12% or 4–12% Bis-Tris gels (Invitrogen) in MOPS or 

MES buffer and transferred to nitrocellulose membranes (0.45 μm pore size; Bio-Rad). 

Membranes were blocked in 5% non-fat milk for 1 h and incubated overnight at 4 °C with 

the primary antibodies at 1:500 for anti-SIRT2 and anti-SNRPE, 1:1000 for anti-BRCA1, 

anti-SLC2A1, anti-RRM2, anti-CDC6, anti-RAE1, and anti-STC1, 1:2000 for anti-QKI and 

anti-LIG1, 1:4000 for anti-β-actin, 1:5000 for anti-lamin A/C, 1:8000 for anti RAD51 and 

1:10000 for anti-GAPDH and anti-SRSF1. Secondary antibodies (anti-rabbit IgG NA934 or 

anti-mouse IgG NA931; 1:2000; GE Healthcare) were applied for 1 h at room temperature 

and chemiluminescent detection was performed using Lumi-Light PLUS (Roche, Manhein, 

Germany).

Statistics

TRIPOD criteria were followed in our study [21] and statistical analyses were performed 

using SPSS 22.0 (IBM Corp, Armonk, NY, USA) and STATA/IC 12.1 (StataCorp, College 

Station, TX, USA). Generation of the prognostic signatures was performed in the MDA 

cohort using regression Cox analysis [22]. Discriminative ability of the PI was assessed by 

Harrell’s Concordance coefficient (C-index) and log-rank test for the PI dichotomized at the 

median [30]. The prognostic model was internally validated to quantify any optimism in the 

predictive performance through a shrinkage penalization strategy [31]. Univariate and 

multivariate Cox proportional hazards analyses including clinical and pathological variables 

were used to assess the prognostic role of the molecular model (PI). Only variables with 

P<0.25 in the univariate analysis were included in the multivariate analysis. The external 

validation of the prognostic models was performed in the second cohort (CIBERES-CUN). 

We calculated the C-index and the survival curves with the Kaplan-Meier method, which 

differences were compared using log-rank test as previously described. Clinical utility of the 

model was tested by comparing the likelihood ratio of the stage alone to that after the 

addition of the molecular model (PI) through a bivariable Cox analysis in the MDA cohort. 

The combined prognostic model (CPI) was also developed by Cox regression. Also, the 

discriminative ability of the CPI was assessed as described above (Harrell’s C and the log-
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rank test for the CPI dichotomized at the median). Statistical methods are detailed in 

supplementary material, Supplementary materials and methods.

RESULTS

Gene selection to develop the prognostic signature

With the aim of generating a protein-based signature to predict disease outcome, we firstly 

identified in the literature genes whose expression was associated with clinical outcome. A 

flowchart with all the steps followed in this work is shown in Figure 1. We selected those 

genes significantly associated with prognosis in at least two previously published gene 

expression signatures (20 genes out of 967). Moreover, based in our previous publications, 

nine additional biomarkers were added to the list. In the next step of the gene-selection 

process, we conducted an in silico survival analysis to validate the prognostic value of these 

genes at the RNA level using different NSCLC databases. Twenty one genes showing 

prognostic value in at least 2 databases were selected (supplementary material, Table S3). 

Subsequently, those genes (n=5) that lacked reliable commercial antibodies in the 

antibodypedia database (www.antibodypedia.com) were discarded. In the last step, the 

antibody specificity for the 16 remaining genes was evaluated by IHC, WB and siRNA 

technology (supplementary material, Figures S1–S12). Finally we selected 12 cancer-related 

genes (BRCA1, CDC6, LIG1, QKI, RAD51, RAE1, RRM2, SIRT2, SLC2A1, SNRPE, 
SRSF1 and STC1) for which specific antibodies met our requirements and developed the 

prognostic model. The strategy conducted for the gene selection is described in more detail 

in supplementary material, Supplementary materials and methods and Table S4.

Development of a protein-based signature for risk stratification in lung adenocarcinoma

First, we analyzed the expression of the 12 selected proteins by IHC in patients from the 

MDA cohort. We studied each subcellular localization (N, nuclear; C, cytoplasmic; MB, 

membrane) as independent variables (supplementary material, Table S5). Figure 2 shows 

representative images of the immunostained tumors. Next, we performed Cox regression 

analysis to generate 20 statistically significant prognostic models. We calculated the 

Prognostic Index (PI) for each patient and subsequently Harrell’s concordance coefficient 

(C-index) to evaluate the quality of each model. Finally, the best model was selected as the 

model that yields high C-index and high parsimony. The selected model was composed by 

three proteins (BRCA1, QKI and SLC2A1) divided in four variables (BRCA1N, QKIN, 

QKIC and SLC2A1MB). The algorithm was: PI= −0.004 × QKIN H Score + 0.006 × QKIC 

H-Score + 0.005 × SLC2A1MB H-Score + 0.006 × BRCA1N H-Score. The model showed a 

good discrimination [C-index=0.63 for DFS and 0.66 for overall survival (OS)]. To avoid a 

potential overfitting effect we performed a bootstrapping-based internal validation and 

obtained the adjusted C-indexes (0.62 for DFS and 0.65 for OS) (supplementary material, 

Table S6-S7).The model satisfied the proportional hazards assumption (P=0.532).

The predicted low-risk group had a significantly longer DFS (P=0.004) and OS (P<0.001) 

than the high-risk group in the training cohort (Figure 3A). Univariate Cox regression 

analysis showed that the molecular PI was significantly associated with both DFS (P<0.001, 

HR=2.89 (95% CI, 1.82–4.57) and OS (P<0.001 HR=3.95 (95% CI, 2.32–6.72) for OS). As 

Martínez-Terroba et al. Page 6

J Pathol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.antibodypedia.com/


expected, the prognostic significant of stage was very high for both DFS (P<0.001) and OS 

(P=0.001). After a multivariate adjustment (stage, gender and adjuvant treatment), the 

molecular PI remained a significant predictor of five-year outcome: P<0.001, HR=2.56 

(95% CI, 1.56–4.20) for DFS and P<0.001, HR=3.69 (95% CI, 2.10–6.50) for OS. All the 

results from the Cox proportional hazards analysis are summarized in Table 1.

Usefulness of the 3-protein prognostic signature to stratify risk in early lung ADC patients

In order to evaluate the potential utility of the PI for estimation prognosis in early stage lung 

ADC, we conducted a specific analysis of our signature on samples from stage I-II patients 

(n=187) of the MDA series (n=239). Kaplan-Meier survival curves and log-rank tests 

showed statistical differences between the two groups on both DFS (P=0.030) and OS 

(P=0.003) (Figure 3B).

We next tested the independent prognostic ability of the PI from other parameters with 

prognostic value in this subgroup of patients. The molecular PI remained an independent 

risk factor, after adjusting for stage, for both DFS [P=0.024, HR=1.99 (95% CI, 1.10–3.62)] 

and OS [P=0.007, HR=2.54 (95% CI, 1.29–5.01)]. The results of the univariate and 

multivariate Cox proportional hazards analysis are summarized in Table 2.

Validation of the protein-based prognostic score

We performed a further analysis to validate this promising prognostic model in an 

independent set of lung ADC patients (CIBERES-CUN cohort; supplementary material, 

Table S1). We analyzed by IHC 99 stage I-II patients with available paraffin embedded 

surgery specimens and clinical information (DFS data only were available for the CUN 

cohort). The model was applied and the patients were stratified into two risk groups as above 

(P=0.041 for DFS and P<0.001 for OS, log-rank test; Figure 3C). In a Cox multivariate 

analysis, PI remained a significant independent risk factor [P=0.015, HR=3.25 (95% CI, 

1.26–8.41) for DFS, and (P=0.021, HR=2.10 (95% CI, 1.12–3.93) for OS (supplementary 

material, Table S8).

Clinical utility of the prognostic signature

To study the clinical relevance of the proposed molecular model, we analyzed the benefit of 

combining the pathological stage with the molecular prognostic model (PI) in the MDA 

cohort, employing a bivariable Cox model. As expected, stage alone was a highly significant 

prognostic factor for both DFS and OS (P<0.001) (supplementary material, Table S9). 

Moreover, the likelihood ratio significantly increased after adding the molecular information 

based on the three proteins (PI) (P<0.001 both for DFS and OS). This improvement showed 

that the molecular model complements the stage, enriching the prognostic information.

We next performed a Cox regression analysis to develop a new prognostic model combining 

stage and the molecular model which we named “combined prognostic index” (CPI). The 

formula to calculate it was CPI = 1.019 × PI + B, where B is a coefficient that changes for 

each stage (IA, B=0; IB, B=0.421; IIA, B=0.937; IIB, B=1.063 and IIIA, B=1.598). The 

model performance was significantly improved (C-indexCPI=0.71 vs C-indexPI=0.62 for 

DFS; C-indexCPI=0.70 vs C-indexPI=0.65 for OS). The five-year survival differences 
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between two groups according to the CPI median were significant in both DFS and OS 

(P<0.001) (Figure 4A). Moreover, CPI was independent of clinicopathological parameters 

[P<0.001 HR=2.95 (95% CI, 2.13–4.08) for DFS, and P<0.001 HR=2.56 (95% CI, 1.88–

3.49) for OS] (supplementary material, Table S10). We further extended this combined 

model to the CIBERES-CUN cohort to validate the prognostic value of the CPI. As 

expected, the OS risk stratification was significantly increased when PI was combined with 

stage (P<0.001, Figure 4B; C-indexCPI=0.70 vs C-indexPI=0.67). We additionally studied 

recurrence in the CUN independent cohort. Noticeably, the outcome differences between 

low and high CPI segmentation were also significant (P=0.001, Figure 4B; C-indexCPI=0.71 

vs C-indexPI=0.59). After multivariate analysis, CPI was an independent risk factor for OS 

[P<0.001 HR=2.36 (95% CI, 1.58–3.51)]; supplementary material, Table S11] and DFS 

[P=0.011 HR=2.17 (95% CI 1.20–3.92); supplementary material, Table S11].

Finally, we analyzed the potential ability of our prognostic model to go beyond the mere 

prognostic information. We interrogated our data in order to infer whether the model was 

able to predict which stage I-IIA patients would benefit of adjuvant therapy following 

surgical resection. We stratified the MDA cohort by CPI median into two groups (high/low). 

Then we analyzed the clinical outcome in both groups according to post-surgical treatment. 

This analysis revealed that patients with a high CPI who received platinum-based adjuvant 

chemotherapy had better survival (P=0.013 for DFS and P=0.009 for OS, Figure 4C), 

whereas no differences were observed in patients with a low CPI (P=0.657 for DSF and 

P=0.153 for OS). These findings suggest that the CPI may be useful for selecting stage I-IIA 

patients with poor prognosis who may benefit from adjuvant therapy.

To assess the utility of the signature in stage I patients, we conducted a sub-analysis in this 

subgroup and demonstrated that the classifier is able to separate the patients according their 

risk of recurrence and/or death in both the test and the training cohorts (supplementary 

material, Figure S13). Moreover, in this subgroup of stage I patients we observed a benefit in 

high CPI patients who received adjuvant chemotherapy (P=0.044 for DFS and P=0.011 for 

OS), whereas no benefit was observed in the low CPI patients (P=0.440 for DFS and 

P=0.180 for OS) (supplementary material, Figure S14).

DISCUSSION

Optimal lung cancer management in surgically resected patients requires the refinement of 

individualized treatment decisions. The development of biological discrimination criteria to 

select early stage patients based on their risk of relapse will help to determine the best 

treatment options. In this study we identify and validate a protein-based signature as a 

reliable prognostic tool for the classification of early lung ADC patients. Our signature 

presents some remarkable novelties in comparison to previously reported prognostic 

signatures: 1) it is based on the expression of proteins, which are the functionally relevant 

end-products in the gene expression process; 2) the technology uses simple and affordable 

immunodetection techniques on FFPE tissue samples; 3) multiple quality controls have been 

applied to test the specificity of the commercially available antibodies used; 4) stringent and 

robust statistical methods guarantee the validity of the results; 5) concordant results are 

found in different independent cohorts of patients; 6) the clinical utility of our model for risk 
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stratification in early stage ADC patients and the subsequent demonstration of the added 

value of the signature to the staging information provided by the TNM staging system is 

clearly shown; and 7) the suggestion of the potential clinical utility of our signature to select 

patients who could benefit from platinum-based adjuvant chemotherapy.

Through a series of filters and strict selection criteria we chose a group of genes previously 

associated with lung cancer prognosis alone or in combination with others [8,9,20,22,25,32–

41]. After applying a thorough method based on Cox regression we have developed a robust 

prognostic algorithm for early lung ADC prognostication. Several published signatures for 

ADC comprise dozens to hundreds of genes. By contrast, our parsimonious classifier is 

formed of just three proteins. The model stratifies the patients into two risk groups according 

to recurrence or death and clearly provides additional information to the staging prognostic 

tool. Moreover, we have also developed a combined prognostic index (CPI), including the 

molecular PI and the pathological stage. Our CPI is able to stratify the risk of recurrence or 

death better than stage or PI separately. A similar analysis was conducted by Grinberg et al., 
combining a four-protein model and clinicopathological data (stage, age and performance 

status). In that study the protein markers fail to outperform the clinical parameters [42], 

although the addition of the protein markers to the clinicopathological features increased the 

prognostic power of the signature. Using a different statistical approach, bivariable Cox 

analysis, we were able to demonstrate that our CPI not only improves the performance of the 

PI (higher C-indexes) but also complements the prognostic information provided by the 

stage (better likelihood ratio).

Several studies have proposed mRNA signatures to characterize prognosis in lung ADC 

[43]. Two of the most developed ones were proposed by Kratz et al. and Wistuba et al, 
which use microdissected mRNA from FFPE lung cancer tissues [8,9]. By contrast, our 

classifier uses the protein expression, which is the functionally relevant end product. 

Moreover, detection of protein expression levels was carried out by IHC, a well mastered 

microscopy-based method that allows the assessment of the protein expression in a specific 

subcellular compartment. This issue has been proved to be relevant, as two (SLC2A1 and 

QKI) of the three proteins included in the signature are present in two different subcellular 

locations. In the case of SLC2A1 (also known as GLUT1), a glucose transporter that is 

located in the cytoplasm and the membrane of the cells, but herein only the membrane 

expression is relevant to predict the prognosis of the ADC patients. The expression and 

subcellular distribution of SLC2A1 is regulated by different signaling molecules, such as 

components of the PI3K-AKT pathway, HIF1, Ras, c-Myc and p53. Moreover, SLC2A1 has 

been previously reported as a predictor of poor survival in lung cancer [44]. On the other 

hand, QKI, a RNA-binding protein that has been shown to be a master regulator of splicing 

in lung cancer [34], is present in the nucleus and/or the cytoplasm of the cell. We have 

observed that both expression levels are related to prognosis but in a different way, with high 

levels of nuclear QKI being associated with good prognosis, whereas high levels of 

cytoplasmic QKI being related with worse outcome. We hypothesize that the opposite 

prognostic role that we have observed in the nuclear and the cytoplasmic levels of QKI in 

lung tumors could be related with the presence of different isoforms recognized by the 

antibody in both subcellular compartments [45]. BRCA1 is a nuclear protein involved in 

essential cellular processes, including DNA repair and cell cycle regulation. It has been 
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described as a tumor suppressor in different malignant neoplasias [46]. However, in lung 

cancer, several studies have shown that BRCA1 is strongly associated with poor survival and 

sensitivity to chemotherapy NSCLC [47].

In the emerging era of personalized medicine, well-established IHC assays might be the 

optimal method to introduce molecular markers in the routine clinical practice [48,49]. 

Nonetheless, a potential caveat for our study is the interpretation of the IHC staining. The 

semi-quantitative method used here was performed by two experienced readers 

independently, and this makes it significantly time-consuming. Quantitative automated 

image analysis tools could solve this inconvenience, also reducing inter-observer variability 

between facilities, an important issue for implementing these signatures in routine clinical 

practice.

The benefit of adjuvant treatment in stage I-IIA patients remains controversial. Some PCR-

based predictive signatures have been proposed to date [7,50], but so far none has been 

incorporated into clinical practice. We demonstrated that our classifier is able to discriminate 

those stage I-IIA patients at high risk of recurrence and/or death who may benefit from 

platinum-based adjuvant therapy. Moreover, the signature also identifies those good-

prognosis patients that could be spared adjuvant treatment. Further validations in 

independent cohorts and prospective studies are required to fully confirm these findings.

In summary, our study identifies and validates a three protein-based signature for early lung 

ADC patients. Moreover, the CPI, a combination of both molecular and clinical criteria, 

shows potential clinical utility and exerts a great feasibility to be translated to clinical 

practice. Finally, the use of the protein-based prognostic signature proposed in this study 

could help clinicians to select the optimal treatment for early stage patients, improving their 

clinical outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flowchart showing the main steps followed in the study.
We first selected a source of genes previously related with lung cancer prognosis. We 

analyzed the prognostic value at the mRNA level for each gene individually. After validation 

of commercial antibodies, we carefully chose those genes with specific antibodies that met 

the above requirements. We studied the expression of 12 selected proteins and developed the 

prognostic model by Cox regression in the training cohort (MDA cohort). The model was 

internally validated by bootstrapping & shrinkage methods in the training cohort and it was 
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externally validated in an independent cohort of early lung ADC patients (CIBERES-CUN 

cohort).
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Figure 2. Representative immunostaining for the proteins included in the prognostic signature.
Representative images of primary tumors with high (A, C, D) or low (B, D, F) expression of 

BRCA1 (A, B), QKI (C, D) and SLC2A1 (E, F). BRCA1 was found predominantly in the 

nucleus; QKI appeared in both nuclear and cytoplasmic compartments; whereas SLC2A1 

was located in the cell membrane and cytoplasm of tumor cells. Scale bar: 60 μm.
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Figure 3. Identification and validation of the prognostic model.
(A-B). Kaplan Meier survival curves for high and low prognostic index (PI) groups in MDA 

patients for DFS (left panel) and OS (right panel), respectively. Each set of patients was 

stratified into two risk groups according to the median of the PI. Differences between groups 

were evaluated using the log-rank test. (A). Entire MDA cohort. (B). Early stage (I-II) 

patients of MDA cohort. (C). DFS plots in CUN series (left panel) and OS in CIBERES-

CUN cohort (right panel) for stage I-II patients. The low PI group defines a subgroup of 

patients with higher survival in all cases.
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Figure 4. Assessment of the clinical utility of the prognostic signature.
(A) Association between the combined prognostic index (CPI) and survival in patients from 

MDA cohort. Kaplan-Meier survival plots of DFS (left panel) and OS (right panel) 

stratifying patients into two risk groups according to the median of the CPI are shown. (B) 

Validation of CPI model. Kaplan-Meier curves for DFS (left panel) and OS (right panel) in 

CUN and CIBERES-CUN patients, respectively. Patients were stratified into two risk groups 

according to the median of the CPI.(C) Study of the predictive value of the prognostic 

signature in MDA cohort (stage I-IIA patients). Kaplan-Meier curves for high and low CPI 
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groups comparing differences between patients treated or not treated with adjuvant 

chemotherapy for DFS (top panels) and OS (below panels). Patients were stratified into two 

groups according to the median of the CPI. Differences between groups were evaluated 

using the log-rank test.
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