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Abstract

Tensor factorization is a methodology that is applied in a variety of fields, ranging from climate 

modeling to medical informatics. A tensor is an n-way array that captures the relationship between 

n objects. These multiway arrays can be factored to study the underlying bases present in the data. 

Two challenges arising in tensor factorization are 1) the resulting factors can be noisy and highly 

overlapping with one another and 2) they may not map to insights within a domain. However, 

incorporating supervision to increase the number of insightful factors can be costly in terms of the 

time and domain expertise necessary for gathering labels or domain-specific constraints. To meet 

these challenges, we introduce CANDECOMP/PARAFAC (CP) tensor factorization with Cannot-

Link Intermode Constraints (CP-CLIC), a framework that achieves succinct, diverse, interpretable 

factors. This is accomplished by gradually learning constraints that are verified with auxiliary 

information during the decomposition process. We demonstrate CP-CLIC’s potential to extract 

sparse, diverse, and interpretable factors through experiments on simulated data and a real-world 

application in medical informatics.

1. Introduction

As many researchers will attest to, applying machine learning to domain-specific problems 

to extract interpretable and actionable insights is a challenging endeavor. Consider, 

unsupervised methods can lead to learned models that lack validity. Supervised and semi-

supervised methods, by contrast, often lead to models that inform domain experts more 

about what they already know, leading to minor contributions in knowledge discovery, if 

any. Moreover, creating the gold-standard labels, as well as the guidance necessary to orient 

the learning process, is often quite costly in terms of domain expert labor and time.
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However, there are many sources of publicly available information (e.g., census data, online 

journals, and forums) that can serve as weak proxies for domain expertise. In this paper, we 

introduce an approach for extracting domain-specific constraints during the learning process 

and validating their ability to serve as proxies. Without a priori knowledge of the 

supervision, we show how candidate constraints can be gradually discovered and accepted 

(or rejected) during the learning process.

We engineer this process specifically for a tensor decomposition learning situation. Tensor 

factorization is a class of data-driven approaches for discovering interesting patterns that has 

been widely applied in many application domains. Tensors are ideal for succinctly capturing 

multidimensional relationships inherent in the world [1]. Take for example data from 

electronic health records (EHR), our primary motivation. A 3-dimensional (or 3-mode) 

tensor can store the number of times a patient was prescribed a medication and given a 

diagnosis in a specified window of time, thereby encapsulating the relationship between 

patients, diagnoses, and medications. The most popular tensor analysis method, 

CANDECOMP/PARAFAC (CP) factorization [2] decomposes a tensor into a sum of rank-

one components that represent the latent concepts (see the top lefthand corner in Figure 1 for 

an illustration). The intuitive output structure and uniqueness property of this factorization 

make the factors easy to interpret and useful for real-world applications [1]. For example, 

the CP factorization of EHR tensors can help researchers identify patients for various studies 

[3, 4, 5].

However, CP factorization has several challenges. First, the low-dimensional components 

can be highly correlated with each another and consist of many overlapping elements [6]. 

Lack of diversity between components makes them harder to interpret as a whole and less 

useful in real-world applications. Second, there can be noise within and between the modes 

(i.e., elements appear together that do not belong together). In the medical domain, this noise 

could manifest as a medication and diagnosis co-occurring in a component where the pairing 

does not make clinical sense. Some tensor decomposition methods have relied upon 

supervision or domain expertise to increase the number of interpretable components [7, 8, 9, 

10], but incorporating supervision can be challenging and costly in terms of the time and 

expertise necessary for gathering domain-specific constraints. Yet, proxies for domain-

expertise can be gathered from many sources, and harnessing this information can improve 

tensor decomposition methods.

To increase the meaningfulness of the tensor factorization results, we introduce CP 

decomposition with Cannot-Link Intermode Constraints (CP-CLIC), a tensor decomposition 

model that gradually builds cannot-link constraints between different modes during the 

decomposition process and refines these constraints using domain expertise via auxiliary 

information. Using computational phenotyping as an example, we show that CP-CLIC 

achieves sparser, more cohesive components compared to state-of-the-art baseline models. 

The contributions of this work can be summarized as follows:

• Flexible, automated guidance framework: We introduce adaptive, cannot-link 

constraints that use auxiliary information to refine the guidance information.
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• Generalized constraint framework: Our learning algorithm generalizes to 

many data types and can incorporate guidance information, as well as a variety 

of constraints including non-negativity, simplex, and angular, to uncover sparse 

and diverse factors on a large-sized tensor.

• Real-world case and simulated study: We present a case study of CP-CLIC on 

computational phenotyping. We show that the CP-CLIC-discovered phenotypes 

are sparse, diverse, and clinically interesting. Additionally, using data simulated 

from multiple distributions, we demonstrate CP-CLIC can recover components 

accurately.

2. Background and Motivation

2.1. Mathematical Preliminaries

We use bold-faced lowercase letters to indicate vectors (e.g., a), bold-faced uppercase letters 

to indicate matrices (e.g., A), and bold-faced script letters to indicate tensors with dimension 

greater than two (e.g., 𝒳 where x
i

 is the tensor element with index i ). The nth matrix in a 

series of matrices is denoted with a superscript integer in parentheses (e.g., A(n)). Often 

tensors are unfolded or matricized along the nth mode during the decomposition process, 

which is denoted X(n) (for more details see [1]).

DEFINITION 2.1.—The Khatri-Rao product of two real-valued matrices A⊙B of sizes IA × R 

and IB × R respectively, produces a matrix Z of size IAIB × R such that 
Z = a1 ⊗ b1 ⋯ aR ⊗ bR , where ⊗ is the Kronecker product. The element-wise 

multiplication (and division) of two same-sized matrices A ∗ B (A ⊘ B) produces a matrix Z 

of the same size such that the element c
i

= a
i

b
i

(c
i

= a
i

/b
i

) for all i .

DEFINITION 2.2.—𝒳 ∈ ℝ
I1 × I2 × …IN is an N-way rank one tensor if it can be expressed as 

the outer product of N vectors, a 1 ∘ a 2 ∘ … ∘ a N , where each element 

x
i

= xi1, i2, …, iN
= ai1

1 ai2
2 ⋯aiN

N .

2.2 CP Tensor Decomposition

CP decomposition [2] approximates the original tensor 𝒳 with a model tensor 𝒵, which can 

be expressed as a sum of R rank-one tensors,

𝒳 ≈ 𝒵 = ∑
r = 1

R
λrar

1 ∘ … ∘ ar
N = 〚 λ; A 1 ; …; A N 〛 .

The latter representation is shorthand notation with the weight vector λ = λ1⋯λR  and the 

factor matrix A n = a1
n ⋯aR

n , where we refer to the ar
n  as the rth factor vector of A(n). 
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Each column, ar
n , of the A(n) matrices is normalized and the length is represented as the 

scalar λr.1

Fitting a CP decomposition involves minimizing an objective function between the tensor 𝒳
and a model tensor 𝒵. The objective function is usually chosen based on assumptions about 

the underlying distribution of the data. Least squares approximation (CP-ALS), the most 

popular formulation, assumes a Gaussian distribution and is well-suited for continuous data 

[1]. For count data, it may be more appropriate to use nonnegative CP alternating Poisson 

regression (CP-APR) [11], wherein the objective is to minimize the KL divergence (i.e., data 

follows Poisson distribution). The least squares approximation and KL divergence are both 

examples of Bregman divergences, a generalized measure of distance [12].

2.3 Related Work

Constrained Tensor Decomposition Methods—Some CP tensor decomposition 

methods have included constraints in their fitting processes with the goal of tailoring the 

results to the needs of the applications in question. Carroll et al. [7] used domain knowledge 

to put linear constraints on the factor matrices. Peng [13] incorporated cannot-link and must-

link constraints into a non-negative tensor factorization but only put the constraints on 

individual factor matrices and did not put constraints between the factor matrices. In the 

clinical domain, Wang et al. [8] incorporated constraints into their objective function in the 

form of guidance factor matrices that are constructed using clinical knowledge. Their 

guidance only functions within modes and not between modes, and it requires domain 

expertise, which may not always be available. Kim et al. [14] proposed a supervised tensor 

factorization method that uses a user-supplied similarity matrix to encourage elements of 

components within a mode to be similar.

Few tensor factorization methods incorporate between-mode constraints even in the non-

medical domain. Davidson et al. [9] used intermode constraints in supervised and semi-

supervised ways to discover network structure in spatio-temporal fMRI datasets. However, 

construction of their intermode constraints required domain expertise. Narita et al. [10] used 

within-mode and between-mode regularization terms to constrain similar objects to have 

similar factors in 3-mode tensors. This method requires between-mode constraints on all of 

the modes, whereas CP-CLIC can be applied to subsets of modes and is therefore flexible 

and adaptable to a variety of different situations. Additionally, for three modes, Narita et al. 

[10]’s method requires the formation of an I1I2I3 × I1I2I3 matrix.

Computational Phenotyping via Tensor Factorization—Using CP decomposition to 

derive computational phenotypes has gained in popularity over the past few years [15]. A 

computational phenotype is a set of clinical characteristics that define a condition of interest 

and is often derived from EHRs [5]. Examples of computational phenotypes are shown in 

Figure 2. In a CP decomposition, each rank-one component depicted in Figure 1 can be 

interpreted as a phenotype. The nonzero elements (i.e., the orange, green, and purple 

squares) in each factor vector of each component make up the phenotype. Ho et al. [16] 

1It is common practice to find R through a grid search.
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showed tensor decomposition could be applied to tensors constructed from count data 

extracted from EHRs to derive phenotypes, a large number of which were clinically relevant. 

Subsequent models have been developed with the goal of deriving sparse, diverse, and 

interpretable phenotypes [17, 8, 14]. Henderson et al. [6] introduced a CP decomposition 

model called Granite with angular constraints to encourage diversity and sparsity constraints 

to derive succinct phenotypes. However, we observed in our experiments that tensor 

decompositions could result in noisy interactions across modes (e.g., medications and 

diagnoses appeared together that did not belong together).

3 Methods and Technical Solutions

Unlike existing constrained tensor decomposition models, CP-CLIC gradually learns 

constraints about intermode relationships within tensors and refines these constraints using 

auxiliary information. Automatically discovering the relevant constraints reduces the up-

front guidance costs associated with domain experts and guards against overfitting to 

existing domain knowledge. Moreover, it allows the decomposition to discover the multiway 

relationships in a data-driven fashion. Furthermore, users can encode their uncertainty in the 

auxiliary information without necessitating domain expert supervision throughout the entire 

process. CP-CLIC is formulated to accommodate a large family of objective functions that 

work in concert with sparsity- and diversity-encouraging constraints to derive meaningful 

components.

The objective function is formulated as follows. Let 𝒳 denote an I1 × I2 × ⋯ × IN tensor and 

𝒵 represent a same-sized tensor where each element z
i

 contains the optimal parameters of 

the observed tensor x
i

. The full objective function of CP-CLIC is as follows:

f 𝒳 = minℒ 𝒵 𝒳 (3.1)

+β1 ∑
n = 1

N
∑

m = 1

n − 1
Tr A m ΤM m, n A n (3.2)

+
β2
2 ∑

n = 1

N
∑

r = 1

R
∑

p = 1

r
max (0,

(ap
n )Τar

n

ap
n

2 ar
n

2
− θn)

2

(3.3)

+
β3
2 ∑

n = 1

N
∑

r = 1

R
ar

n
2
2

(3.4)
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s.t 𝒵 = 〚 λ; A 1 ; ⋯; A N 〛

λr ≥ 0, ∀r; A n ∈ 0, 1
In × R

, θn ∈ 0, 1 ∀n

(3.5)

ar
n

1 = 1, ∀n (3.6)

The parameters z
i

 can be determined by minimizing the negative log-likelihood of the 

observed x
i

 and model the parameters z
i

 (see Equation 3.1). We augment the Equation 3.1 

with constraints to encourage rank-one components that are sparse, diverse, and meaningful.

3.1 Bregman Divergence

While least squares is commonly used to fit the CP decomposition, it is not well-suited for 

all types of data. A large number of other useful loss functions such as KL divergence, 

logistic loss, and Itakura-Saito distance may be more appropriate for count data or binomial 

data. As such, we propose the generalization of the loss, ℒ 𝒵 𝒳  in Equation 3.1, in terms of 

the Bregman divergence. Bregman divergences encompass a broad range of useful loss 

functions, with common ones listed in Table 1.

3.2 Constraints

Stochastic Constraints—The column stochastic constraints (Equation 3.6) allow each 

non-zero element to be interpreted as a conditional probability given the component (e.g., 

phenotype and mode). A high (close to 1) value indicates a strong relationship for this 

element in the component. Alternatively, a low probability (close to 0) represents a weak 

relationship.

Cannot-link Constraints—The cannot-link constraints, expressed in Equation 3.2, are 

motivated by the probabilistic interpretation of the components. During the fitting process, 

CP-CLIC identifies the elements with low probabilities in each mode in each component 

(i.e., probabilities less than α) and discourages them from appearing together in the 

component through the penalty imposed by Equation 3.2. In Equation 3.2, M m, n ∈ 1
Im × In

is a binary cannot-link matrix between modes m and n, defined as follows:

M jk
m, n = 1, if a jr

m < α and akr
n < α for any r

0, otherwise

The terms in Equation 3.2 are of the form, a jr
m M jk

m, n akr
n , and only contribute to the 

objective function if the jth object in mode m and the kth object in mode n appear in at least 

one of the R components. This constraint may also encourage sparsity in the number of 
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elements per component since it is penalizing the smaller elements of the factors. We set α 
to be an exponential loss function of k, the number of non-zeros per factor, and the epoch l. 
If all elements have equal probability (i.e., the are equally uninformative), they will have 

probability 1/k. However, we exponentially increase α to 1/k over the epochs in order to be 

more aggressive as the fit continues.We describe how to refine M(m,n) in Section 3.4.

Sparsity and Diversity Constraints—We follow Henderson et al. [6] and incorporate 

Equations 3.3 and 3.4, which are used to encourage diversity of the components through an 

angular penalty on the vectors within each factor matrix, and to control the size of the λ 
weights that are fit, respectively. Equation 3.3 calculates the cosine similarity between each 

pair of factor vectors in a mode and adds to the penalty if the similarity is greater than θn. A 

smaller θn encourages factor vectors to be orthogonal to one another whereas a larger θn 

allows for more overlap between factor vectors. To encourage sparse solutions, we project 

the largest k terms in each factor vector onto an ℓ1 ball.

Algorithm 1 CP‐CLIC fitting process

1: Randomly initialize 〚 λ; A 1 ; A 2 ⋯; A N 〛

2: Sall = ∅ ; M m, n = zeros Im, In for each m, n pair

3: for l = 1:L do
4: Run epoch of SGD with Adam
5: for m, n pairs do
6: S = ∅
7: for r = 1:R do
8: # 𝙵𝚒𝚗𝚍 𝚕𝚘𝚠 𝚙𝚛𝚘𝚋. elements

9: Sm = a jr
m < α, 0 ≤ j ≤ Im

10: Sn = akr
n < α, 0 ≤ k ≤ In

11: # 𝙾𝚋𝚝𝚊𝚒𝚗 𝚊𝚕𝚕 𝚌𝚘𝚖𝚋𝚘𝚜 𝚘𝚏 Sm and Sn

12: S = S ∪ Sm × Sn
13: end for
14: Send S to auxiliary tool

15: Slift = li f t(m, n) = P(m ∩ n)
P(m)P(n) > 1

16: Sall = Sall ∪ (S − Slift)

17: # 𝚂𝚎𝚝 𝚎𝚕𝚎𝚖𝚎𝚗𝚝𝚜 𝚒𝚗 S equal to 1

18: M jk
(m, n) = 𝟙: j, k ∈ Sall

19: end for
20: Check convergence
21: end for
22: return 〚 λ; A 1 ; A 2 ⋯; A N 〛

3.3 Minimizing the objective function

We minimize the objective function using Stochastic Gradient Descent (SGD) with Adam 

[18]. We follow the work on Generalized CP Decomposition presented by Kolda et al for the 

implementation [19]. Using SGD to minimize a CP gradient is equivalent to a sparse 
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implementation of CP decomposition where a subset of data points are taken to be the non-

zero entries. We use the work of Acar et al. [20] to implement operations on sparse tensors. 

After each epoch, CP-CLIC finds the low probability elements in each component and 

updates the cannot-link matrix, M(m,n) (outlined in Algorithm 1 and Figure 1).

For the gradient of Equation 3.1, we give several examples of widely used loss functions in 

Table 1. We refer the reader to [6] for the gradients for Equations 3.3 and 3.4. For Equation 

3.2, the derivative with respect to the factor matrix A(m) is:

∂Tr A m ΤM m, n A n

∂A m = M m, n A n (3.7)

∂Tr A m ΤM m, n A n

∂A n = M m, n ΤA m (3.8)

3.4 Incorporating insights from auxiliary information

One possible drawback of building the cannot-link matrix in an unsupervised manner is that 

it is possible for two elements to have low probability in a component but actually have a 

relationship in the domain in question. To mitigate the chance of this occurrence, CP-CLIC 

uses auxiliary information to accept or reject the cannot-link constraints. Figure 1 gives a 

stylized view of how CP-CLIC incorporates auxiliary information. Algorithm 1 specifies 

how the cannot-link penalty matrix is built through the fitting process. After each epoch, CP-

CLIC extracts the intermode pairs that have a probability below a threshold.2 Then, for each 

pair, if there is insufficient evidence that the relationship exists according to auxiliary 

information, CP-CLIC puts a 1 in the cannot-link matrix for that pair. The updated cannot-

link penalty matrix is then incorporated into the next epoch of the fitting process.

In practice, auxiliary information could come in many forms (e.g., online forums). In 

Section 4 we show how to incorporate information from a corpus of medical journals. It may 

be possible to use the auxiliary information to build a cannot-link matrix and hard-code the 

constraints into M(m,n) from the beginning of the fit instead of gradually building the cannot-

link matrix as the fit progresses. This approach, which we refer to as CP-CLIC-1-Shot, may 

be appropriate in situations where the user has confidence in the veracity of the auxiliary 

information. In other applications, however, the user might not have as much confidence in 

the auxiliary information. Using CP-CLIC-1-Shot in these applications may introduce noise 

into the decomposition and degrade the quality of the fit. Thus, gradually building the 

constraints in CP-CLIC may be more robust to introducing noise in M(m,n) matrix.

2We observed empirically that it required several epochs for the factors to stabilize. Thus, we adopted a process similar to burn-in 
iterations in Markov Main Monte Carlo methods. For a set of specified epochs, the fit progresses without the cannot-link matrix.
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4 Empirical Evaluation

4.1 Simulated Data

First, we demonstrate that the CP-CLIC framework is general enough to be used with 

different loss functions. We evaluate CP-CLIC’s performance against three types of 

synthetic tensors, where elements are drawn from a Poisson, Normal, or Exponential 

distribution, and we compare the performance to CP-ALS [1], a popular tensor 

decomposition method that uses mean-squared loss between the observed tensor and the fit 

tensor as the objective function. Specifically, we simulate third-order tensors of size 

80×40×40 with a rank of 5 (R = 5). For each vector in the factor matrix A(n), we sample 

non-zero element indices according to a chosen sparsity pattern (20, 12, and 12 non-zero 

elements in mode 1, 2, and 3, respectively) and then randomly sample along the simplex for 

the non-zero indices, rejecting vectors that are too similar to those already generated (i.e., 

their normalized cosine angle is greater than θn). We draw the model parameters zijk from a 

uniform distribution. Finally, each tensor element xijk is sampled from a Poisson, Normal, or 

Exponential distribution with the parameter set to zijk. For each tensor type, we simulated 40 

tensors and calculated the factor match score with the known vectors where a value of 1 

representing a perfect match [11].

Table 2 shows the factor match scores for fits with and without β1. In all cases, CP-CLIC 

improves the quality of the fit and makes the biggest impact in the Exponential case. Thus, 

for common data types, CP-CLIC can recover the original factors. CP-ALS’s poor 

performance on the tensors containing count and exponential data underscores the 

importance of choosing a loss function that aligns with how the data are generated. 

Computational phenotyping methods that use the same loss function as CP-ALS but on 

tensors of count data, which we use as baselines in the next section, may sacrifice quality of 

fit.

4.2 CP-CLIC in Computational Phenotyping

Dataset Description—We constructed a tensor from a set of de-identified EHRs from the 

Vanderbilt University Medical Center (VUMC) in Nashville, TN, a medical system that 

serves a wide area of the south-eastern United States through a collection of hospitals, 

clinics, and other healthcare facilities. To build the tensor, we counted the medication and 

diagnosis interactions that occurred two years before the date of the patient’s last interaction 

with the medical center. The diagnosis codes are from the International Classification of 

Diseases - version 9 (ICD-9) system, which captures detailed information for billing 

purposes. We use Phenome-Wide Association Study (PheWAS) coding to aggregate the 

diagnosis codes into broader categories [21]. We group the medication codes into more 

general categories using the Medical Subject Headings (MeSH) pharmacological terms 

provided by the US National Library of Medicine’s RxClass RESTful API.3 Aggregating 

the codes allows for larger trends to emerge in the components and makes it possible for 

future use in various types of association investigations, such as genomic studies. These 

groupings resulted in a tensor with the following dimensions: 1622 patients (mode 1) by 

3https://rxnav.nlm.nih.gov/RxClassAPIs.html
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1325 diagnoses (mode 2) by 148 medications (mode 3). Within the set of patients, domain 

experts previously identified 304 as resistant hypertension case patients and 399 control 

patients.

Since the EHR tensor contains counts, we use KL-divergence for ℒ 𝒵 𝒳 . For feasibility 

and numerical stability, we augment the R components with a rank-one bias tensor, a strictly 

positive rank-one tensor. We refer the reader to [17] for details. Parameter values for CP-

CLIC variants and Granite were chosen using a grid search and the KL-divergence as a 

measure of performance. The grid search was over the following ranges: R = [20, 50], β1 = 

[.01, 100], β2 = [0, 10], β3 = [.0001, 10], θn = [.15, 1], for n = {1, 2}, θ1 = 1.

Incorporating auxiliary information in practice—We use a tool called Phenotype 

Instance Verification and Evaluation Tool (PIVET) to evaluate the cannot-link constraints 

[22]. When phenotypes have been derived through automatic machine learning methods, it is 

necessary to verify that they map to clinically relevant concepts. This task is usually 

performed by domain experts who volunteer their time to annotate the clinical validity of 

sets of phenotypes. The annotation task can sometimes lead to ambiguity and experts may 

disagree about the clinical relevance of a set of phenotypic characteristics [22]. PIVET was 

developed to aid in the phenotype verification task. PIVET analyzes an openly available 

medical journal article corpus to build evidence sets for the clinical relevance of provided 

phenotypes. The analysis is built on the concept of lift [23], where the lift between objects m 

and n is defined as lift m, n = P m ∩ n
P m P n . A lift value of greater than one suggests that the 

objects co-occur often. We use lift as calculated by PIVET to prune lists of possible cannot-

link pairs of diagnoses and medications.

Computational Phenotyping Results—We evaluate CP-CLIC quantitatively and 

qualitatively to determine their utility to clinicians. First, we compare features of 

decompositions of three variations of CP-CLIC (i.e., CP-CLIC, CP-CLIC-1-Shot, and CP-

CLIC without PIVET) with four baselines: Granite (fit using SGD), CP-APR, Rubik [8], and 

DDP, which refers to the model presented by Kim et al [14].4 Second, we evaluate each 

method’s ability to discriminate between case and control patients. Third, we qualitatively 

analyze a subset of phenotypes extracted using CP-CLIC-1-Shot and Granite in a case study. 

We show results for the fits resulting from the parameter values of R = 30, θ1 = 1, θ2 = .45, 

θ3 = .75, β1 = .01, β2 = {0, 10},5 β3 = .001, and a burn-in of 5 epochs.

Table 3 shows the average cosine similarity between the factor vectors in each mode and the 

average number of non-zeros per mode. CP-CLIC finds diverse factors with respect to the 

tensor. For this particular tensor, experiments showed the diversity penalty could be strict for 

the diagnosis mode because there were many diagnoses (θ2 = .45), but the relatively few 

medications benefited from a more lax diversity penalty (θ3 = .75). All CP-CLIC variations 

produce diagnosis and medication modes that are comparably diverse to those derived 

4For Rubik’s guidance matrix, we set three non-zero elements, one in each of the first three factor vectors in the diagnosis mode 
corresponding to essential hypertension, primary pulmonary hypertension, and hypertension. For DDP’s similarity matrix, we 
constructed a similarity matrix for the diagnosis mode for DDP using embeddings provided by [24].
5β2 = 0 corresponds to the case where there is no diversity enforced
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through GraniteSGD. Table 3 shows the diagnosis mode is quite diverse and there is more 

overlap in the medication mode.6 Rubik, which has orthogonality constraints, had 

comparable diversity to Granite and CP-CLIC in modes 2 and 3, but had a much more 

diverse patient mode (mode 1), which may stem from the fact that there were so few patients 

in each component. CP-CLIC’s patient vectors have more in common with each other (i.e., 

higher cosine similarity scores) indicating that similar groups of patients belong to the same 

phenotypes overall.

In terms of sparsity (Table 3), the unconstrained method CP-APR has on average the most 

non-zero elements in the factor vectors of mode 3 (medication) with 21.86 elements. In 

mode 2 (diagnosis), DDP has the largest number non-zero elements in each factor vector 

with an average of 44.01 elements. Overall, in the diagnosis and medication modes, CP-

CLIC-1-Shot model has sparsest factors with an average of 9.55 and 8.61 nonzero elements 

per factor vector, respectively, followed by CP-CLIC. Sparse components are generally 

easier for clinicians to interpret and utilize.

Additionally, we evaluated the discriminative capabilities of CP-CLIC on a prediction task 

where the patient factor matrix served as the feature matrix. We compared the performance 

of CP-CLIC, CP-CLIC-1-shot, Granite, Rubik, and DDP using logistic regression to predict 

which patients were resistant hypertension cases. The model was run with 5-fold cross 

validation with 80–20 train-test splits, and the optimal LASSO parameter for the model was 

learned using 10-fold cross-validation on a holdout set. Table 4 shows the area under the 

receiver operator characteristic curve (AUC) for the task. The patient factor matrix derived 

using CP-CLIC-1-shot resulted in the most discriminative model. Both Rubik and DDP 

performed quite poorly, and this may be related to the diverse patient mode (Table 3).

To evaluate the effect of the cannot-link matrix M on the decomposition process we 

initialized CP-CLIC-1-shot and Granite fits with the same factors and then examined the 

differences between the fitted factors. For the sake of brevity, Figure 2 shows only one 

phenotype from each method initialized from the same factors. Two clinicians reviewed the 

two phenotypes in Figure 2 and concluded the CP-CLIC-1-Shot phenotype aligns with their 

definition of a typical cardiovascular patient. While a patient with the CP-CLIC-1-Shot 

phenotype may have the same comorbidities as the Granite phenotype, the Granite 

phenotype also contains items that seem more incidental (e.g. cardiovascular issues with 

Lymphoma). Thus, the focused and succinct CP-CLIC-1-Shot phenotype has potential for 

more general use in future clinical research.

5 Signiftcance and Impact

This research shows that adding guidance, in the form of constraints, to tensor 

decompositions can improve the quality of the derived components in terms of 

interpretability, sparsity, and diversity. However, obtaining informative constraints can be 

expensive in regard to time and effort required by domain experts. This work shows that 

6We do not put a diversity penalty on the patient mode in this application. This decision is motivated by the idea that patients should 
be allowed to belong to any phenotype that fits their observations.
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features of the CP decomposition process can be utilized to discover constraints through the 

learning method. The framework, CP-CLIC, gradually uncovers between-mode cannot-link 

constraints and then validates the constraints using domain expertise in the form of auxiliary 

information. CP-CLIC is a flexible framework in that it 1) works on all or a subset of modes 

of the tensor and 2) is well-suited for many different types of data. In situations where the 

quality of the auxiliary information is high, it may be appropriate to forgo the gradual 

discovery of cannot-link constraints and supply the dense cannot-link matrix at the 

beginning of the learning process (CP-CLIC-1-Shot). We show that in both simulated and 

computational phenotyping experiments, gradually discovering the constraints can improve 

the quality of the results.
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Figure 1. 
A cartoon illustration of the CP-CLIC process. The outlined items represent an action being 

taken, while text above arrows represents data moving through the constraint matrix-

building process. Starting in the upper lefthand corner, after an epoch of the CP-CLIC SGD 

fitting process is complete, CP-CLIC finds the elements in modes 2 and 3 of each 

component that have probabilities below a predetermined threshold. These (mode 2, mode 3) 

pairs are valued as a 1 in the cannot-link matrix. The pairs are evaluated using auxiliary 

information. If the auxiliary information finds there is a relationship, these pairs are removed 

from the cannot-link matrix.

Henderson et al. Page 14

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Two phenotypes, one derived using CP-CLIC-one-shot (left) and one using Granite (right) 

where both methods were initialized with the same factor vetors.
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Table 2:

Factor match scores between fitted factor vectors and known factor vectors generated using Poisson, Normal, 

and Exponential distributions.

Data Mode CP-ALS CP-CLIC

β1 = 0 β1 = 0.01

Real 1 0.940 0.988 0.991

2 0.921 0.994 0.997

3 0.939 0.995 0.997

Count 1 0.555 0.934 0.977

2 0.629 0.946 0.958

3 0.620 0.946 0.967

Exponential 1 0.121 0.883 0.945

2 0.167 0.894 0.967

3 0.199 0.902 0.963
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Table 4:

AUC for predicting resistant hypertension case patients.

Method AUC (st. dev.)

Rubik 0.5398 (0.03)

DDP 0.6466 (0.12)

Granite 0.6545 (0.08)

CP-CLIC-1-shot 0.7015 (0.10)

CP-CLIC 0.6755 (0.09)
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