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Abstract

We report a Rh-catalyzed hydrothiolation of 1,3-dienes, including petroleum feedstocks. Either 

secondary or tertiary allylic sulfides can be generated from the selective addition of a thiol to the 

more substituted double bond of a diene. The catalyst tolerates a wide range of functional groups, 

and the loading can be as low as 0.1 mol%. This method constitutes the first enantioselective 

hydrothiolation of 1,3-dienes.

Graphical Abstract

The pursuit of catalysts capable of forging carbon-sulfur linkages is a valuable goal, as 

molecules essential to life, from metabolites to macromolecules, contain sulfur atoms.1 In 

addition, approximately 20% of all FDA approved drugs are organosulfur compounds.2 The 

direct addition of a thiol to a double bond represents an attractive and atom-economical3 

approach for generating C-S bonds.4 Inspired by this challenge, we chose to focus on the 

hydrothiolation of conjugated dienes, which are readily available and include commodity 

chemicals, like butadiene and isoprene (Figure 1).5 One previous hydrothiolation of 1,3-

dienes was reported by He, where the application of Au catalysts resulted in racemic 

mixtures.6 By using Rh-catalysis, Breit pioneered an enantioselective hydrothiolation of 

allenes7 and Hull achieved a regiodivergent addition to allylic amine8. As a complement to 

these strategies, we herein communicate that Rh-catalysts generate allylic sulfides from 1,3-

dienes, in a regio- and enantioselective fashion, thus allowing petroleum feedstocks to be 

transformed into enantioenriched building blocks.9
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While asymmetric hydroamination of dienes has been demonstrated,10 thiols are more 

nucleophilic and acidic than amines, thus providing distinct challenges and opportunities for 

hydrofunctionalization.11, 12 In this study, we focus on Rh complexes I, which we imagined 

could bind and activate the diene 1 by η4-coordination (Figure 2). The resulting olefin-

complex II undergoes oxidative addition to a thiol 2 to yield III. From III, Rh-hydride 

insertion can occur via 1,4 or 1,2-insertion, wherein rhodium adds to the less-hindered 

position of the diene. In path a, Rh-hydride insertion provides a Rh-π-allyl IV after 1,4-

insertion. Because reductive elimination tends to favor branched products,13 we reasoned IV 
would yield tertiary allylic sulfides 3.14 In path b, 1,2-insertion provides V and reductive 

elimination gives homoallyic sulfides 4.

With this hypothesis in mind, we chose cyclohexadiene (1a) as the model substrate because 

its symmetric structure minimizes the number of isomers possible. We studied the coupling 

of 1a and thi-ophenol (2a) using different bidentate phosphine ligands in the presence of 

Rh(cod)2SbF6 (Table 1). With the JosiPhos (L1), DuPhos (L2), and BPE (L3) ligands, we 

observed a mixture of the allylic and homoallylic sulfides. In contrast, the BINAP family 

afforded excellent regioselectivity for the allylic sulfide 3aa (>20:1 rr) in high yields and 

enantioselectivity (>91% yields, and >85:15 er). With (S)-Tol-BINAP ligand (L5), we 

lowered the catalyst loading to 0.1 mol% and isolated (S)-sulfide 3aa15 on gram scale (1.2 g, 

95% yield, 99:1 er).

Table 2 showcases the scope of this method with eighteen different thiols and 1a, using 

catalyst Rh(L5). High reactivity (3ab–3as, 49–99%), enantioselectivity (96:4–>99:1 er), and 

regioselectivity (18:1 –>20:1 rr) are observed with both aliphatic and aromatic thiol partners. 

Tertiary thiols (such as tert-butylthiol and triphenylmethanethiol) are unreactive thus far, 

presumably due to steric hindrance. This method is compatible with heteroarene (3ao,16 

3as), hydroxyl (3aq), carboxyl (3ar), amino (3ad, 3ae), and ester groups (3aj).

Next, we investigated hydrothiolation of unsymmetric 1,3-dienes (Table 3A). For 1-

substituted (1b) and 1,2-disubstituted (1c) dienes, we found that a bulkier BINAP ligand 

(L6) afforded the best results (85% yield, 83:17 er and 78% yield 71:29 er, respectively). In 

contrast, the 2-substituted-1,3-dienes reacted poorly in the presence of BINAP ligands. In 

this case, the JosiPhos ligands provided a breakthrough. With L7, myrcene (3d) can be 

coupled with an aromatic thiol (3da, 68% yield, 96:4 er, >20:1 rr) and an aliphatic thiol 

(3dp, 71% yield, 90:10 er, >20:1 rr). 2-Aryl-1,3-dienes undergo hydrothiolation as well 

(3ea–3ga, 73–80%, 93:7–98:2 er); the presence of an electron-withdrawing group (3ea) on 

the phenyl ring exhibits higher regioselectivity (>20:1 rr) compared to electron-donating 

substituents (3ga, 7:1 rr).

Isoprene and butadiene are petroleum feedstocks, produced on a million metric ton scale 

every year and used as monomers to make plastics.17 Hydrothiolation of isoprene (1h) with 

thiophenol and cyclohexanethiol gives the corresponding tertiary sulfides (3ha, 3ht), in 

>89% yield and >20:1 rr (Table 3B). A commercial diene, 2,3-dimethyl-1,3-butadiene (1i), 
transforms into the tertiary sulfide 3ia (93% yield, >20:1 rr). The construction of chiral 

products from butadiene remains a challenge that has inspired hydrohydroxyalkyation,5c 

cycloadditions18 and difunctionalizations19. To meet this challenge, we simply switched the 
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ligand to DTMB-GarPhos (L8). With Rh(L8), high reactivity (81–95%) and regioselectivity 

(>20:1 rr) are achieved using both aliphatic and aromatic thiols. The products derived from 

aromatic thiols (3ja, 3jc, 3jg, 3ju) are obtained in higher enantioselectivities (95:5–98:2 er) 
than those from aliphatic thiols (3jv, 3jw, 3js, 90:10–94:6 er)

Aside from enantioselective examples, we examined the addition of a L-cysteine ester 2x to 

1,3-cyclohexadiene (Figure 3). Either diastereomeric product, 3ax or 3ax’, can be generated 

with high diastereoselectivity (>20:1 dr), depending on the enantiomer of ligand L5 
employed.

In principle, the coupling of a thiol and unsymmetrical diene (e.g., 2-phenyl-1,3-diene 1f) 
can result in up to eleven different isomers.20 In addition to stereoisomers, constitutional 

isomers may arise due to competing 1,2 versus 1,4-addition, as well as anti-Mar-kovnikov 

versus Markovnikov type selectivity. By using a cationic rhodium precatalyst, we obtain 

allylic sulfides with high chemo-, regio-, and enantio-control. The catalyst loading can be 

lowered to 0.1 mol% and many functional groups can be tolerated, including heteroarene, 

hydroxyl, carboxyl, amino, and ester groups. By choosing the appropriate phosphine ligand, 

we can transform a wide-range of dienes into chiral sulfides. The regiocontrol observed 

supports a mechanism distinct from what was previously proposed for related 

hydroaminations.5h10a Further studies are warranted to elucidate the mechanism and develop 

access to other re-gioisomers.
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Figure 1. 
Inspiration for hydrothiolation of 1,3-dienes.
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Figure 2. 
Proposed Rh-catalyzed hydrothiolation of 1,3-dienes.
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Figure 3. 
Catalyst-controlled diastereoselective hydrothiolation.
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Table 1.

Ligand Effects on Asymmetric Hydrothiolation of 1a
a

a
Reaction conditions: 1a (0.2 mmol), 2a (0.1 mmol), Rh(cod)2SbF6 (1 mol%), ligand (1 mol%), DCE (0.2 mL), 3 h. Isolated yield. 

Regioselectivity ratio (rr) is the ratio of 3aa to 4aa, which is determined by 1H NMR analysis of reaction mixture. Enantioselectivity determined by 
chiral SFC.
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Table 2.

Hydrothiolation of 1a with Various Thiols
a

a
Reaction conditions: 1a (0.4 mmol), 2 (0.2 mmol), Rh(cod)2SbF6 (1 mol%), L5 (1 mol%), DCE (0.4 mL), 30 °C, 5 h. Isolated yields. 

Regioselectivity ratio (rr) is the ratio of 3 to 4, which is determined by 1H NMR analysis of reaction mixture. Enantioselectivity determined by 
chiral SFC.

b
18:1 rr.
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Table 3.

Hydrothiolation of Various 1,3-Dienes
a

(A) Hydrotholation of unsymmetric dienes
b

(B) Hydrotholation of feedstock dienes(> 20:1 rr)
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a
Reaction conditions: 1 (0.4 mmol), 2 (0.2 mmol), Rh(cod)2SbF6 (1 mol%), L (1 mol%), DCE (0.4 mL), 30 °C, 5 h. Isolated yields. Ligand used 

in parentheses. Regioselectivity ratio (rr) is the ratio of 3 to 5, which is determined by 1H NMR analysis of reaction mixture. Enantioselectivity de-
termined by chiral SFC.

b
Using Rh(cod)2SbF6 (5 mol%), L (5 mol%), 15 h.

c
13:1 rr
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