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ABSTRACT: The protein—water—ice contact angle is a

|
controlling parameter in diverse fields. Here we show that [ 7
data from three different experiments, at three difterent length | 8 8 O/ ‘
scales, with three different proteins, in three different : R4 Water
laboratories yield a consistent value for the protein—water— r\' Ice
ice contact angle (88.0 + 1.3°) when analyzed using the | =
Gibbs—Thomson equation. The measurements reinforce the Protein ‘c,d“ ‘ & e
validity of each other, and the fact that similar values are -
obtained across diverse length scales, experiments, and proteins nm 0 0.7 1.5 7-35

yields insight into protein—water interactions and the
applicability of thermodynamics at the nanoscale.

B INTRODUCTION

The interaction of water with proteins and other biological

molecules is fundamental to biology and a subject of intense

current interest.'~* Knowledge of the contact angle that an

ice—water interface makes with a protein could add new Water
insight to this interaction. Also, the protein—water—ice contact
angle is a controlling parameter in processes in diverse fields
including cloud physics,” cell” and tissue cryopreservation,®’
food processing,w artificial snow making,5 and natural
biological adaptions in cold-climate-resilient plants, animals,
and bacteria."" Even though this property can be determined
indirectly from the Gibbs—Thomson equation (the thermody-
namic relationship that describes freezing-point depression due <
to interfacial curvature), this approach requires knowledge of

geometric dimensions that are difficult to estimate at the

nanometer length scales associated with protein—water—ice

interactions. Consequently, it is common to assume speculative

values for the contact angle”® or to use phenomenological

parametrizations that lump the contact angle with other

. . 512 . . .
phy51cal properties. Spec1ﬁcally in the field of cry OblOlogY ’ Figure 1. Schematic of ice in a cylindrical confining pore. The pore

inaccurate values of the protein—water—ice contact angle may diameter, d, and the ice—water—wall contact angle, 6, are identified.
lead to errors in the prediction of intracellular ice formation

temperatures or of ice-binding protein activities.
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B GIBBS—THOMSON EQUATION confining cylindrical pore of diameter d is given by the Gibbs—
Thomson equation'”
The growth of ice in a confined space is limited by the

geometrically imposed ice—liquid interface curvature and the
ensuing freezing-point depression. See Figure 1. The relation-
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AT = 4yv'T; cos O
dL; (1)
where T¢ = 273.15 K is the equilibrium freezing point of

unconfined pure water, v' = 1.091 X 107> m®/kg is the specific
volume of ice at Ty Ly = 3.337 X 10° J/kg is the specific latent
heat of fusion of pure water at T}, y is the ice—water interfacial
tension, and @ is the contact angle that the ice—water interface
makes with the confining pore wall as measured through the
liquid water. There are some important things to note in the
application of the Gibbs—Thomson equation. First, because of
the action of interfacial tension, the shape of the equilibrium
ice—water interface is indeed approximately spherical when
confined within a cylindrical pore. Liu et al. showed explicitly
that the ice interface was spherical in glass capillaries of 6 to 20
pm diameter.'* Second, because of the elegant construction of
the Gibbs dividing surface and the Gibbs surface of tension
(whereby all effects of the existence of an interface are assigned
for accounting purposes to surface excess groperties), the
composite system thermodynamics of Gibbs,"> on which eq 1
is based, is expected to be valid down to length scales (phase
dimensions, radii of curvature, pore diameters) significantly
smaller than the depth to which interface effects (such as the
ordering of water molecules) extend into the bulk. To date, the
validity of eq 1 has been experimentally confirmed for pore
diameters down to 3.6 nm.'® Third, eq 1 predicts that the
curvature-induced freezing-point depression does not become
appreciable until the curvature reaches length scales below
those easily accessible optically, making visual verification of
the contact angle barely possible. That is, in systems for which
the curvature-induced freezing-point depression is significant,
the contact angle appearing in eq 1 is not known a priori.

B RESULTS

The authors and their co-workers have independently
undertaken three different experiments that examine the
temperature at which ice can grow through pores formed by
animal proteins.””'” Each study used a temperature-controlled
cryomicroscope to observe a biological material in which one
or more proteinaceous pores separated a crystallized aqueous
compartment from a supercooled aqueous compartment,
allowing the temperature of ice growth through the pore to
be determined by the visual detection of ice crystal formation
in the adjoining liquid compartment. Thus, each paper
reported a measurement of AT for a known circumstance of
ice propagation in a confined space; the experimental methods
and circumstances are elaborated in the paragraphs below and
given in full in the cited references. In this work, using these
previously published AT data together with the Gibbs—
Thomson equation (eq 1) and suitable values for the constants
appearing in that equation, we obtained estimates of the
protein—water—ice contact angle. For the analysis of all three
data sets, we used a single value for the ice—water interfacial
tension of 30 mJ/m? which has broad independent
experimental support,' ' *~** and then performed a sensitivity
analysis to determine the impact of uncertainties in this least-
well-known parameter of eq 1.

Drori, Davies, and Braslavsky correlated measurements of
thermal hysteresis (the difference between the melting point of
ice and the lower temperature of an ice growth burst) with the
surface density of hyperactive antifreeze protein from Tenebrio
molitor adsorbed on the surface of ice crystals, and interpreted
the thermal hysteresis as being due to the curvature-induced
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freezing-point depression AT resulting from the constraint that
ice grow through voids between adsorbed antifreeze proteins.'”
See Figure 2. It is important to understand that these antifreeze

Water
-
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Figure 2. Schematic of ice blocked by ice-binding proteins (shown in
red), depicting interactions between the curved ice—water interface
and the protein surface.

proteins have a unique interaction with the ice surface that
enables them to adhere to ice crystals. Whereas the ice-binding
domain of the protein has a high affinity for ice over liquid
water, the outward-facinig domains of the protein do not have
this preference for ice.' "'’ Here, we consider the contact angle
resulting from interactions of the water—ice interface with the
nonbinding surfaces of the antifreeze protein.

If the spatial distribution of the ice-binding proteins is
modeled as a Poisson point process, then the expected value of
the diameter of circular voids is given by d = 1/./6, where o is
the average surface density of adsorbed antifreeze protein.”!
For protein densities that yielded mean void diameters ranging
from 7 to 35 nm, the thermal hysteresis was well fit by the
relationship

AT = (4.65 + 0.35nm K)/d (2)

When this expression is substituted into eq 1, the resulting
value of the protein—water—ice contact angle is found to be
87.5 + 0.2°. An estimate of the contact angle from a similar
analysis was first published in ref 17; the value reported here
differs slightly (by ~2.5°) from the value given in ref 17
because the previous calculation assumed regular spacing of
the adsorbed proteins and thus applied a different form of the
Gibbs—Thomson equation.

Higgins and Karlsson used high-speed imaging techniques to
observe the mechanism of initiation of intracellular ice
formation in pairs of genetically modified MIN6 (mouse
insulinoma) cell strains, and found that intracellular freezing
was preceded by a paracellular ice penetration process in which
growing extracellular ice crystals inoculate pockets of super-
cooled solution that are trapped between apposing membranes
at the cell—cell interface.” See Figure 3. They observed that
although the rate of incidence of paracellular ice penetration
events varied by nearly an order of magnitude in the four
different MING strains investigated, the probability of para-
cellular freezing vanished abruptly at temperatures above a
threshold temperature that fell within a narrow range (—5.92
to —5.41 °C) for each of the four cell strains. Following the
evidence and arguments presented in ref 9, we assume that
paracellular ice penetration events occur when ice grows
through claudin pores that regulate the paracellular perme-
ability of tight junction strands. Paracellular claudin pores are
estimated to have diameters in the range of 0.65—0.8 nm.***’
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Figure 3. Schematic diagram of cell—cell interface with tight junctions
(tight junction proteins shown in red) depicting the paracellular
growth of extracellular ice through a claudin pore (which results in the
inoculation of a liquid pocket located between the two cell
membranes).

Substituting that value for d in eq 1 along with the measured
freezing-point depression for paracellular ice penetration
relative to the freezing point of the unconfined aqueous
solution, which was —1.5 °C, i.e.,”

AT = (541-5.92°C) — 1.50°C = 3.91—4.42°C 3)

we calculate a protein—water—ice contact angle of 88.4 + 0.3°.
The value reported here is slightly different from the
corresponding one previously reported in ref 9 (by ~0.1°)
due to improved estimates of the pore diameter and the ice—
water interfacial tension value in eq 1.

Acker, Elliott, and McGann observed the spatiotemporal
pattern of intracellular ice formation in monolayer cultures of
Madine—Darby canine kidney (MDCK) cells and interpreted
the appearance of directed wavelike patterns of ice formation
as evidence of ice growth through gap junctions.® See Figure 4.
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Figure 4. Schematic illustration of ice growth from one cell to an
adjacent cell through a gap junction pore. Gap junction proteins are
shown in red.

They found that ice grew readily from cell to cell at —3 °C but
not at higher temperatures. Because the unconfined isotonic
solution produces a colligative freezing-point depression of 0.6
°C, the gap junction channels can be assumed to have
contributed a curvature-induced freezing-point depression of

AT = 3.0-0.6°C = 2.4 °C (4)

When this AT together with a diameter for gap junction
pores of 1.5 nm is used in eq 1, the protein—water—ice contact
angle is found to be 88.1°. While 1.5 nm is an accepted
estimate of the gap junction pore diameter in mammalian
cells,”* gap junction pore diameters have been measured to
range from 0.8 to 2.4 nm.”’ Taking into account this
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uncertainty in the pore diameter, the contact angle resulting
from this third experiment can be given as 88 + 1°.

B DISCUSSION AND CONCLUSION

Herein we used the Gibbs—Thomson equation together with
data from three different experiments on ice propagation
through protein pores and obtained estimates for the protein—
water—ice contact angle with error bounds of 1° or less for
each experiment. Significantly, all of the contact angles thus
obtained agree with each other very closely, giving a contact
angle of 88 + 1° (in which the value and error represent the
range of obtained results). We note that these experiments
involve three different types of protein, in three different
experiments, with three different geometries, in three different
laboratories and with pore sizes spanning almost 2 orders of
magnitude (0.65—35 nm). Furthermore, as the ice—water
interfacial tension is the least well known constant in eq 1,
performing a sensitivity analysis on the effect of varying the
ice—water interfacial tension from 27 to 34 mJ/ m? (the largest
range supported by the different results in refs 18—20 and
more than adequate to cover any temperature dependence of
the interfacial tension'®) broadens our precision of the
protein—water—ice contact angle reported here only slightly,
to 88.0 + 1.3°

The results in this article are important for two reasons.
First, the fact that the contact angle is close to 90° indicates
that the protein—water interfacial tension is very similar to the
protein—ice interfacial tension, which is consistent with the
known phenomenon of water structuring by proteins.”®”**
Because the precision of our reported value of the contact
angle is high (£1.5%), it may be possible to use this parameter
value to calibrate molecular dynamics simulations to gain
additional insight into protein—water interactions.””*° Second,
the high degree of consistency among our three independent
contact angle estimates justifies the application of eq 1 to each
of the experimental systems. Specifically, within the limits of
experimental uncertainty, the contact angles obtained from the
two experiments with the smallest pore sizes (in the range
0.65—2.4 nm) are in agreement with each other, and these
nanoscale measurements also agree with the values found from
the experiments with larger pore sizes of up to 35 nm.
Inasmuch as the validity of the Gibbs—Thomson equation is
not in doubt for the larger pore dimensions, the agreement
among all three experimental studies suggests that eq 1 is also
valid for the nanometer-scale pores. Thus, our results represent
the smallest length scale to which the Gibbs—Thomson
equation has found support for validity.'*"**

The results of our article beg the question, what is the
smallest length scale at which it is possible for the Gibbs—
Thomson equation to be valid? The Gibbs—Thomson
equation has been previously experimentally verified for
water in porous glass down to a diameter of 3.6 nm, and it
was further shown that water molecules moved rather freely in
pores of this dimension.'® For systems such as water in glass
with contact angles near 0°'* the first limit of validity of
Gibbsian composite system thermodynamics is set by the scale
at which disjoining pressure, which keeps the interface from
approaching the pore wall, becomes an appreciable effect. For
our systems, in which the contact angle is near 90° the
interface comes straight out from the wall and disjoining
pressure makes no contribution to the contact angle. The next
limit of possible validity of thermodynamics occurs as the pore
size approaches the molecular size and molecules are excluded
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from the pore. The effective diameter of a water molecule has
been estimated to be 0.274 nm,** meaning that our smallest
pore size is only 2.4 molecular diameters across. It is therefore
unlikely that agreement with the Gibbs—Thomson equation
will be found with length scales any smaller than the smallest
pore size in this article.

The applicability of eq 1 to nanoscale phase transformations
is a testament to the careful structure of Gibbsian
thermodynamics of composite systems,'> which, because of
the prescient constructs of the Gibbs dividing surface and the
Gibbs surface of tension, is valid even in systems with
dimensions comparable to or smaller than the length scale of
the interface effects. Thus, beyond their importance for
applications in biology and cloud physics, our results are
broadly significant for the fundamental disciplines of
thermodynamics and nanoscale science.
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