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Abstract

The rapidly increasing availability of electronic health records (EHRs) from multiple 

heterogeneous sources has spearheaded the adoption of data-driven approaches for improved 

clinical research, decision making, prognosis, and patient management. Unfortunately, EHR data 

do not always directly and reliably map to medical concepts that clinical researchers need or use. 

Some recent studies have focused on EHR-derived phenotyping, which aims at mapping the EHR 

data to specific medical concepts; however, most of these approaches require labor intensive 

supervision from experienced clinical professionals. Furthermore, existing approaches are often 

disease-centric and specialized to the idiosyncrasies of the information technology and/or business 

practices of a single healthcare organization.

In this paper, we propose Limestone, a nonnegative tensor factorization method to derive 

phenotype candidates with virtually no human supervision. Limestone represents the data source 

interactions naturally using tensors (a generalization of matrices). In particular, we investigate the 

interaction of diagnoses and medications among patients. The resulting tensor factors are reported 

as phenotype candidates that automatically reveal patient clusters on specific diagnoses and 

medications. Using the proposed method, multiple phenotypes can be identified simultaneously 

from data.
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We demonstrate the capability of Limestone on a cohort of 31,815 patient records from the 

Geisinger Health System. The dataset spans 7 years of longitudinal patient records and was 

initially constructed for a heart failure onset prediction study. Our experiments demonstrate the 

robustness, stability, and the conciseness of Limestone-derived phenotypes. Our results show that 

using only 40 phenotypes, we can outperform the original 640 features (169 diagnosis categories 

and 471 medication types) to achieve an area under the receiver operator characteristic curve 

(AUC) of 0.720 (95% CI 0.715 to 0.725). Moreover, in consultation with a medical expert, we 

confirmed 82% of the top 50 candidates automatically extracted by Limestone are clinically 

meaningful.
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1. Introduction

The rapidly increasing availability of electronic health records (EHRs) from multiple 

heterogeneous sources has spearheaded the adoption of data-driven approaches for improved 

clinical decision making [1–4], prognosis [5–8], and patient management [9–12]. While 

knowledge discovery in EHRs show great promise towards providing better quality of care 

at lower costs [13–15], the vast information captured pose difficulties for both medical 

practitioners and data analysts [16]. EHR data offers many formidable challenges that has 

limited their utility for clinical research thus far. These include diverse patient populations 

from providers who may be using different, potentially incompatible EHR systems; 

heterogeneous information covering a variety of inter-related aspects of patients such as 

diagnoses, medication orders, and laboratory test findings [17,18]; sparsely sampled medical 

event sequences with different time scales across patients [19–21]; and noisy, incomplete, 

and inaccurate representation of patients [22,23]. Clinical research requires precise and 

concise medical concepts about patients. The process of mapping raw EHR data into 

meaningful medical concepts, or the task of learning the medically relevant characteristics of 

the data [24,25] is referred to as EHR-based phenotyping. The phenotyping process can not 

only be used to identify specific clinical characteristics important in the process of research 

subject selection [26,27], but also improve the discovery process such as optimizing 

interventions and predicting response to therapy [24]. While the term EHR-based 

phenotyping has various meanings [28], this paper focuses primarily on the process of 

extracting medical concepts, or phenotypes.

Phenotypes encompass the entire spectrum of EHR data, using both structured information 

(e.g. billing codes, laboratory reports, and medication orders) and unstructured documents 

(e.g. clinical notes, pathology and radiology reports) [27,29]. Significant progress has been 

made in the generation and sharing of phenotypes [29–33]. Examples of such large-scale 

phenotyping efforts are typified by the Electronic Medical Records and Genomics 

(eMERGE) Network [34] and the Observational Medical Outcomes Partnership (OMOP) 

[35]. Furthermore, the eMERGE process supports portability via a process that iteratively 

tests and refines the phenotype at different institutions [29].
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The development of EHR-derived phenotypes currently relies primarily on rule-based, 

heuristic and iterative based approaches, which take significant time and expert knowledge 

to develop [24,36,37]. Often, the phenotyping process requires a team effort from clinicians, 

domain experts, and IT experts [24,37,38]. However, phenotypes are often disease-centric 

and the development of a phenotype for a single disease can take months [39]. Furthermore, 

phenoytyping requires significant interaction between the domain experts and informaticians 

[37] and each team member may bring his/her own biases, ignoring potentially useful 

information [24]. Thus, high-throughput phenotyping, or efficient and automated phenotype 

extractions to reduce manual development, has gained recent attention [24,36,37,26]. Data 

mining and machine learning tools have been utilized to automate the phenotype generation 

process [24,36,37,26]. Yet, the current state of the art high-throughput phenotyping cannot 

generate large amounts of candidate phenotypes that simultaneously achieve good 

performance without human annotated samples [37]. Thus, the limitations of existing 

phenotyping efforts can be summarized as follows:

• A requirement for human annotation of case and control samples, taking 

substantial time, effort, and expert knowledge to develop.

• A lack of formalized methodology for deriving novel phenotypes such as disease 

subtypes.

• A failure to incorporate an automated process to support portability across 

institutions.

To create a high-throughput phenotyping environment, the phenotyping process needs to 

shift towards a more data-driven, high-throughput approach, where multiple candidate 

phenotypes are generated while minimizing human intervention [24]. Our paper directly 

addresses all but the last limitation by focusing on dimensionality reduction to automate the 

generation of phenotypes.

One possible approach to automatically discover phenotypes from EHR data is to use 

dimensionality reduction techniques [24], which represent the original data using lower 

dimensional latent space. Phenotyping takes high-dimensional EHR data and maps it to 

medical concepts, where an “ideal” phenotype (i) is concise and easily understood by a 

medical professional, (ii) represents complex interactions between several sources (e.g. 

diagnosis and medication), and (iii) maps to domain knowledge. Each phenotype can be 

viewed as the definition of a particular latent space along the multiple sources. Matrix 

factorization is a common dimensionality reduction approach in high-dimensional settings, 

but it may not concisely capture structured source interactions, such as multiple medications 

prescribed to treat a single disease. Thus, a more natural transformation is tensor 

factorization which utilizes the multiway structure to produce concise and more interpretable 

results.

This paper presents Limestone, a nonnegative tensor factorization method to generate 

phenotype candidates without expert supervision. Our algorithm is named after a 

sedimentary rock obtained via geology mining, the extraction of valuable resources from 

earth. Limestone (rock) has a wide diversity of uses and is an excellent building stone. We 
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view our nonnegative tensor factorization model as a building block for high-throughput 

phenotyping from EHR data. Our proposed model:

1. Achieves high-throughput phenotyping by deriving multiple candidate 

phenotypes simultaneously from EHR data without any user supervision or 

domain expertise.

2. Captures data source interaction, such as the diagnosis and medication 

interaction from the same medical visit.

3. Generates concise and clinically meaningful phenotypes.

4. Produces stable phenotype definitions across multiple factorizations and small 

perturbations of the data.

We apply Limestone on real EHR data from Geisinger Health System. The case-control 

dataset contains 31,815 patients. We use our method to automatically derive multiple 

candidate phenotypes from the dataset and analyze the factors for stability, conciseness, 

predictive power, and clinical relevance. We also show that only 40 candidate phenotypes 

are needed as features to obtain better predictive accuracy of patients at risk of heart failure 

than the original set of medical features (640), achieving an area under the receiver operator 

characteristic curve (AUC) of 0.720 with a 95% confidence interval of (0.715, 0.725). 

Furthermore, 82% percent of the first 50 Limestone-derived phenotypes from the control 

population are confirmed by a medical expert to be clinically meaningful.

The remainder of the paper is structured as follows. Section 2 presents existing work on 

matrix factorization and summarizes relevant existing tensor factorization approaches. Next, 

we detail Limestone in Section 3. Section 4 demonstrates and evaluates our proposed 

method on real EHR data. This is followed by a discussion of the limitations and proposed 

future work in Section 5. Finally, we summarize our work in the Section 6.

2. Background and related work

Notation details

Table 1 provides a key to the symbols used in this paper. We adopt the notation from [40] to 

maintain consistency with the referenced tensor decomposition papers.

2.1. Matrix factorization: PCA and NMF

Structured EHR data can be represented using a feature matrix. The simplest representation 

for the data is a source independent feature matrix, where each row denotes a patient and 

each column represents a feature from a single source. Fig. 1a shows two matrices from a 

diagnosis source and a medication source. For context, in the Geisinger dataset, the 

diagnosis feature matrix contains 169 columns, where each column represents a single 

diagnosis such as asthma. However, the source independent feature matrix ignores potential 

interactions between the various sources, such as medications prescribed to treat a specific 

diagnosis. To incorporate “same visit” interactions,1 a matrix whose column contains the 

combinations between the sources can be used. Fig. 1b illustrates a source interaction matrix 

for all diagnosis-medication combinations. This matrix introduces two problems: (1) the 
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data is sparse because patients generally only experience a fraction of the diagnosis-

medication combinations and (2) the data is high-dimensional (e.g. 149 × 471 possible 

combinations in the Geisinger case). Thus, dimensionality reduction can assist both 

interpretability and scalability of the data.

Matrix factorization (MF) is a common dimensionality reduction approach, which represents 

the original data using a lower dimensional latent space. Standard MF approaches, which 

focus primarily on numeric data, find two lower dimensional matrices such that when 

multiplied together approximately produce the original matrix. The mathematical 

formulation is as follows, given an N × M matrix X, find matrices W and H of size N × R 
and R × M such that:

X ≈ WH . (1)

Fig. 1b illustrates the use of matrix factorization to derive phenotypes using the source 

interaction matrix. Although many matrix decomposition techniques exist [41], principal 

component analysis (PCA) and nonnegative matrix factorization (NMF) are two common 

algorithms used to reduce the feature dimension.

PCA calculates a set of basis vectors, or principal components, that minimizes the loss of 

information (i.e., the optimal approximation of the data in terms of least squared error). 

Generally, the number of principal components (R) is much smaller than the number of 

dimensions, which enables an encoding of the data as linear combinations of the basis 

vectors. Thus, PCA transforms the original, high-dimensional data to a lower-dimensional 

space defined by the principal components. One pitfall with PCA is the loss of 

“interpretability” which stems from several issues: (i) the principal components can have 

negative elements and (ii) the observed data can be approximated using both positive and 

negative combinations of the principal components. These are problematic because, in 

certain domains, negative elements and/or negative combinations are not easily interpretable 

[42,43]. For example, imagine the EHR feature matrix where each element represents the 

number of times a diagnosis or medication is recorded. Performing PCA on such a matrix 

results in a set of phenotypes, where each principal component defines the phenotype. A 

positive value in the principal component indicates the presence of a feature (diagnosis/

medication) and a zero value denotes the absence. However, a negative entry does not 

readily map to some understanding about the feature’s relationship to the phenotype.

The desire to prevent negative components motivated NMF [43]. Given a nonnegative matrix 

X, the NMF finds two nonnegative matrices W and H that approximate X. Furthermore, the 

nonnegative constraint often leads to a sparse representation [43]. The enhanced semantic 

interpretability of NMF has led to its use across various fields such as mathematics, data 

mining, computer vision, and chemometrics [44]. Applications of NMF to biomedical data 

include discriminative feature selection from time–frequency representation of EEG data 

1Note that we do not explicitly define “same visit”, as what constitutes a same visit (e.g. a doctor visit, a hospital stay, etc) depends on 
the particular application.
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[45], feature extraction from brain CT images [46], and microarray gene data reduction for 

visualization and clustering purposes [47].

2.2. Tensor factorization

A tensor, or multiway array, is a generalization of a matrix (and a vector and a scalar) to 

higher dimensions. A mode of a tensor refers to a dimension, or way, of the tensor. The 

number of modes in a tensor is also known as the order of the tensor. Tensor representations 

are powerful because they can capture relationships for high-dimensional data. An overview 

of tensors can be found in [48–50].

A rank-one tensor can be written as the outer product of N vectors, where the outer product 

is defined as follows:

Definition 1—The outer product of N vectors, a(1) ∘ a(2) ∘ ··· ∘ a(N), produces a Nth order 

tensor 𝓧 where each element x
i

= xi1, i2, …, iN
= ai1

(1)ai2
(2)⋯aiN

(N).

Tensor factorization or decomposition is a natural extension of matrix factorization and 

utilizes information from the multiway structure that is lost when modes are collapsed to use 

matrix factorization algorithms [48,49,51,52]. One of the common tensor decompositions, 

CANDECOMP/PARAFAC (CP) [53,54], can be considered a higher-order generalization of 

singular value decomposition [48]. The CP model approximates the original tensor 𝓧 as a 

sum of R rank-one tensors:

𝓧 ≈ ∑
r = 1

R
λrar

(1) ∘ ⋯ ∘ ar
(N) = ⟦λ; A(1); …; A(N)⟧ .

Note that ⟦λ; A(1); …; A(N)⟧ is shorthand notation to describe the CP decomposition, where 

λ is a vector of the weights λr and ar
(n) is the rth column of A(n). Fig. 2 conceptually 

illustrates the process of generating phenotypes via a CP decomposition. The details of our 

algorithm to generate concise phenotypes are presented in Section 3.2.

While several other tensor decomposition methods exist (Kolda and Bader provide a survey 

of existing models and example applications in their paper [48]), we focus on the CP 

decomposition for two primary reasons: (i) it is a well-known and commonly applied tensor 

factorization model [55], and (ii) the resulting structure (R rank-one tensors) is well-suited 

for capturing medical concepts in a concise and interpretable manner. The CP decomposition 

has been used to complete missing data in medical questionnaires [56], localize and extract 

artifacts from EEG data to analyze epileptic seizures [57,58], and as an exploratory 

decomposition tool for wavelet-transformed multi-channel EEG data [59].

Nonnegative tensor factorization (NTF) models have been proposed for CP decompositions. 

Analogous to NMF, NTF requires the elements of the factor matrices and the weights to be 

nonnegative. Some examples of NTF models in the medical and bioinformatics domain 

include the extraction of features from EEG data [60,61] and gene-sample-time microarray 
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data [62]. Cichocki et al. provides a broad survey of practical and useful NMF and NTF 

algorithms [42].

The standard CP model is well-suited for continuous data, where the random variation 

follows a Gaussian distribution. However count data, which is nonnegative and discrete, is 

better described using a Poisson distribution [63]. The nonnegative CP alternating Poisson 

regression (CP-APR) model has been developed to fit count data [40]. We provide the CP-

APR optimization problem formulation from [40] for convenience:

min f (𝓜) ≡ ∑
i

m
i

− x
i

log m
i

Kullback‐Leibler(KL)divergence

subject to 𝓜 = ⟦λ; A(1); …; A(N)⟧ ∈ Ω sample space of 𝓜
Ω = Ωλ × Ω1 × ⋯ × ΩN

Ωλ = [0, + ∞ ]R weights are nonnegative

Ωn = {A ∈ [0, 1]
In × R

∣ ‖ar‖1 = 1∀r}
stochastic constraints on columns

,

(2)

where i⃗ represents the tensor element index (i1, i2, …, iN),𝓧 is the observed tensor, and ℳ is 

the CP tensor factorization that approximates 𝓧.

The CP-APR algorithm solves the optimization problem via an alternating minimization 

approach, where each subproblem computes the solution for an individual mode while fixing 

all the other modes. CP-APR specifies the mode-n matricization as 𝓧 as X(n) = B(n)Π(n) 

[40], where

Let: B(n) = A(n)

λΠ(n) = (A(1) ⊙ … ⊙ A(n − 1) ⊙ A(n + 1) ⊙ … ⊙ A(N))⊤ .

B(n) represents the weighed nth mode factor matrix and Π(n) denotes the fixed part.2 The CP-

APR optimization subproblem (repeated from [40]) for the nth factor matrix is:

B(n) = arg min
B ≥ 0

1⊤[BΠ(n) − X(n) ∗ log (BΠ(n))]1 . (3)

In Eq. (3), 1 corresponds to a vector of ones and captures the summation of the tensor 

elements shown in Eq. (2). The details of the subproblem solver and the overall CP-APR 

algorithm can be found in the paper [40].

2The definition of the Khatri-Rao product is provided in the supplemental material.
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NTF generally results in sparse representations. However, additional sparsity may be 

desired, for example, to improve factor interpretability. Various techniques have been used to 

induce sparsity, such as extending an NMF sparseness measure [64], enforcing L1 penalties 

on the factor matrices and/or the core matrix for Tucker models [65–67], or regularizing the 

factors with both ℓ1 and ℓ2 norms [52].

3. Limestone: phenotype tensor factorization

Limestone is a tensor factorization model to achieve high-throughput phenotyping from 

EHR data. Our model extends the CP-APR work to (i) produce concise phenotype 

definitions for better interpretability and (ii) calculate a new patient’s phenotype 

membership given the learned phenotypes. Fig. 3 illustrates the conceptual diagram for the 

Limestone process. This section details the tensor construction from raw EHR data, formally 

defines the candidate phenotypes obtained via tensor factorization, and the process to obtain 

the phenotype membership matrix for new patients.

3.1. EHR tensor construction

The first step in Limestone is to construct a count tensor from the raw EHR data. In this 

paper, we focus on diagnoses and medications due to their prominence in existing phenotype 

definitions [29,68]. However, our tensor construction can be generalized to other EHR data. 

We use medication orders from the raw EHR data that details the interaction between 

diagnoses and medications. Each medication order contains the prescribed medication, the 

diagnosis (such as an ICD-9 billing code) associated with the prescription, and the date of 

the prescription.

Each patient is anchored using an index date (e.g. heart failure diagnosis date). The 

observation window is defined as a fixed time window of 2 years prior to the index date, as 

illustrated in Fig. 4. Only data occurring during the observation window is used for the raw 

EHR construction. The tensor is constructed using the count of the co-occurrences between 

medications and diagnoses. For Fig. 4, the patient has the following counts in the 2-year 

observation window encompassing 3 visits:

• 2 counts of loop diuretics to treat coronary atherosclerosis;

• 1 count of cardio-selective beta blockers to treat coronary atherosclerosis;

• 2 counts of sulfonylureas to treat diabetes;

• 1 count of nitrates to treat coronary atherosclerosis; and

• 1 count of ACE inhibitors to treat hypertension.

Note that the medication orders of sulfonylureas to treat diabetes at time t0 and loop 

diuretics to treat congestive heart failure at time t4 are outside the window and omitted from 

the tensor construction.

The result is a third-order tensor with a patient mode, diagnosis mode, and medication mode. 

Each tensor element denotes the number of times medication m is prescribed to treat 
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diagnosis d for patient p. Slicing the tensor along the three different modes yields the 

following views:

1. Patient mode: a matrix of the patient’s diagnoses and associated medication 

treatment.

2. Diagnosis mode: a matrix of the prescribed medications to treat the disease for 

all patients.

3. Medication mode: a matrix of all the patients and the diseases treated with this 

medication.

The count tensor is a more natural representation of the interactions between diagnoses and 

medications as it succinctly captures hierarchical information such as the set of medications 

that are used to treat a disease. In addition, the Limestone implementation only stores the 

non-zero elements of the tensor for efficient memory storage.

3.2. Phenotype definition via tensor factorization

Limestone extends the CP-APR model to derive phenotype candidates without supervision. 

The third-order count tensor is approximated using the CP decomposition ℳ = 

⟦λ;A(1),A(2),A(3)⟧, shown in Fig. 2. The factor matrix for the nth mode, A(n), defines the 

elements from the mode that comprise the candidate phenotypes. Thus the jth candidate 

phenotype is defined using the jth column from the three factor matrices. Note that the 

stochasticity constraint (i.e., the last line in Eq. 2) on the factor matrix yields a conditional 

probability of the element’s membership to the phenotype. Given the jth phenotype, ai j
(k)

represents the probability of seeing the ith element in the kth mode. Thus, the sum of the 

entries for a mode element ( ∑ jai j
(k)) across all the phenotypes may not equal 1. Furthermore, 

λ allows us to automatically rank the candidate phenotypes in order of significance, or the 

candidate phenotype’s ability to capture the tensor data. Fig. 2 illustrates the tensor 

factorization of a patient by diagnosis by medication tensor into R phenotypes.

We provide an illustrative example of a candidate phenotype resulting from Limestone in 

Fig. 5. The percentage of patients with the phenotype is calculated using the percentage of 

non-zero elements in the kth column of the patient factor matrix. The phenotype is defined 

as patients diagnosed with hypertension and taking three medications: (1) beta blockers 

cardio-selective, (2) thiazides and thiazide-like diuretics, and (3) HMG CoA reductase 

inhibitors. Limestone produced a single non-zero element along the diagnosis factor and 

three non-zero components along the medication factor.

Our proposed model incorporates a sparsity constraint to minimize the presence of 

“minuscule and unnecessary” factor components. We extend the original CP-APR model by 

employing a hard-thresholding operator [69] to further reduce the phenotype factors by 

removing small factor components. Thus, Limestone minimizes KL divergence with a hard 

thresholding constraint, replacing Eq. (2) with the following objective:
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min ∑i mi − xi log mi
CP‐APR objective

+ γ∑ j, n, r 𝟙
a jr

(n) > 0

hard‐thresholding operator

, (4)

where a jr
(n) denotes the jth component of the factor vector ar

(n). Individual components a jr
(n)

that are below the threshold 2γ are set to zero. Thus, the candidate phenotypes are concise, 

which should offer better interpretability.

3.3. Projection on candidate phenotypes

Limestone also computes a new patient’s phenotype membership vector by projecting their 

observed features onto the space of existing candidate phenotypes. The phenotype 

membership vector (â)1 is defined as the convex combination of the candidate phenotypes, 

where the rth element of the vector, ar
1, is the probability the patient belongs to rth 

phenotype. For example, a new patient’s vector may indicate probabilities of 0.6, 0.3, and 

0.1 for the phenotypes of diabetes type 2, severe hypertension, and asthma, respectively. 

Note that the phenotype membership vector is not equivalent to the patient factor matrix, as 

the rth column of the patient factor matrix A(1) represents a probabilistic interpretation over 

the entire patient population for a single phenotype.

Our method uses the diagnosis factor matrix A(2) and the medication factor matrix A(3) from 

the existing candidate phenotypes to calculate the phenotype membership vector. Thus, 

given a new patient’s data, 𝓧̂, we wish to find λ̂ and â(1) that best approximates the new 

patient’s tensor:

𝓧 ≈ ∑
r

λrar
(1)

membership
∘ ar

(2) ∘ ar
(3)

phenotype definition

s.t∑
r

ar
(1) = 1.

The projection onto the candidate phenotypes is illustrated in Fig. 6. Therefore, the 

optimization for calculating the phenotype membership vector is

b(1) = arg min
b ≥ 0

1⊤[bΠ(1) − X(1) ∗ log (bΠ(1))]1

s.t . ∑
r

ar
(1) = 1,

where b̂(1) = (â)1Λ̂. The objective function of this problem is equivalent to the optimization 

subproblem for mode 1. Therefore, we can utilize the same iterative MM approach to solve 

for the optimal b̂(1). The new patient’s phenotype membership vector â(1) is the entries of 

b̂(1) normalized by the weights λ̂.
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Software implementation

We developed a Python package based on the Matlab Tensor Toolbox3 and Pytensor,4 a 

partial Python implementation of the Matlab Tensor Toolbox. Our software package 

implements the CP-APR algorithm described in [40] and provides the functions to post-

process the tensor decomposition to obtain concise phenotypes and project new patients onto 

learned phenotypes.

4. Heart failure case study

Our case study focuses on heart failure (HF), a leading cause of healthcare use with a 

projected medical cost in 2015 of $32.5 billion [70]. Heart failure (HF) affects roughly 5.7 

million people in the US and is mentioned as the contributing cause for 1 out of every 9 

deaths [71]. Nearly a quarter of the patients hospitalized with heart failure are readmitted 

within 30 days [72]. Thus far, heart failure research has focused on epidemiology results, 

lifetime risk assessments from the Framingham study [73,74], predictions of hospital 

readmissions [75] or survival [76], and data-driven feature selection to complement known 

risk factors [77]. We demonstrate Limestone on a dataset primarily used for heart failure 

onset prediction studies and illustrate the potential of tensor factorization to derive candidate 

phenotypes without the supervision of domain experts. For this section, we will refer to 

candidate phenotypes (discovered clusters) as phenotypes for simplicity.

Evaluation Metric Details

Our case study focuses on algorithmic evaluation and qualitative analysis of Limestone-

derived phenotypes. We will evaluate the results in terms of similarity, conciseness, 

predictive power, and clinically meaningfulness. The metrics we will use are the following:

1.
Similarity(ar, br) =

ar
⊤br

‖ar‖‖br‖ .

2. Conciseness = number of non-zero elements per mode.

3. Predictive power = area under receiver operator characteristic curve (AUC) on a 

classification task.

4. Clinical meaningfulness = domain expert’s opinion of whether or not a 

Limestone-derived phenotype mapped to a medical concept.

The similarity calculation is the cosine similarity between two vectors, a component of the 

factor match score (FMS). FMS is [40,78,79] commonly used to compare two tensor 

factorization results, quantifying the closeness via a single number between [0, 1]. However, 

FMS is an aggregate measure and can mask the mode-specific similarity results. Therefore, 

we compare the cosine along each mode, where the ideal value with two equivalent vectors 

is 1. Phenotypes from the two tensor factorization results are paired using an existing greedy 

FMS algorithm [40].

3http://www.sandia.gov/tgkolda/TensorToolbox/index-2.5.html.
4https://code.google.com/p/pytensor/.
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4.1. Data description

The data for this study is based on real EHR data from the Geisinger Health system, which 

contains over 7 years of longitudinal patient records. The dataset has a diverse set of clinical 

information that includes diagnoses comprised of ICD-9 billing codes and medication 

records with generic drug names, pharmacy class and subclass information. For this study, 

we analyze the following sets of patients:

1. 4626 case patients, where each patient has at least 2 outpatient HF diagnoses or 1 

outpatient HF diagnoses with 2 or more HF medications.

2. 27,189 group-matched control patients, where each case is matched with 10 

controls with the same gender, age, and clinic information of the case patients.5 

The control patients did not meet the HF diagnosis criteria described above.

In the study, the heart failure index date for control patients is the date of the matched case 

patient (e.g. if the case patient was diagnosed on January 4, 2014, then the matched control 

patient would use January 4, 2014 as the index date). Further details of the cohort 

construction can be found in [23].

The Geisinger dataset recorded the interaction between diagnoses and medications in the 

medication orders table. Each medication order contains the prescribed medication, the 

diagnosis (ICD-9 billing code) associated with the prescription, and the date of the 

prescription. Any medication that was used to treat several diagnoses has multiple entries 

corresponding to each diagnosis code. The raw diagnosis code and medication captures 

information at a fairly fine-grained level, which is not ideal for analysis because similar 

diagnoses and medications are considered independently. To avoid this problem, we 

consolidated the individual diagnosis codes and medications to higher level concepts using 

existing medical hierarchies. Specifically, diagnosis codes are aggregated using the Centers 

for Medicare and Medicaid (CMS) Hierarchical Condition Categories (HCC) and 

medications defined as pharmacy subclass (e.g. ACE inhibitors, calcium channel blockers, 

etc.).6 This resulted in 169 distinct HCC categories and 471 pharmacy subclasses. Therefore, 

the constructed tensor size for the control patients population is 27, 189 patients by 169 

diseases by 471 medications, where <1% of the tensor are non-zero.

4.2. Algorithmic evaluation

The first series of experiments focuses on evaluating the convergence, stability, computation 

time, and sparsity of Limestone. The following questions will be answered:

1. How many alternating minimization iterations are necessary to converge to a 

stable solution?

2. Are the generated phenotypes stable towards perturbation and different 

initializations?

3. How concise are the generated phenotypes?

5Note that the same control patient may be matched by multiple cases. Thus, we post-process the controls to make sure each control 
patient is only matched with one case. The 19,071 duplicate controls are removed from the dataset.
6Note that other hierarchies, such as the PheWAS code groups [80] could have been employed.
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4.2.1. Convergence—Given a fixed number of phenotypes (R), we examine the KL 

divergence (or the objective function values) as a function of the number of alternating 

minimization iterations across 10 randomly initialized factorizations of the case patients’ 

tensor. The KL divergence is defined as Σi⃗mi⃗− xi⃗ log mi⃗. Fig. 7a shows the mean and 

confidence interval of the objective function values as the number of iterations are increased. 

The first 30 iterations result in a significant decrease in the negative log-likelihood. Above 

80 iterations, there are only slight changes in the objective function values with the values 

flattening around 120 iterations. The results suggest that less than 80 iterations are needed 

for convergence in this dataset.

4.2.2. Stability—Our algorithm uses random matrices for the initial factor matrices A(n) 

which can have an impact on the solution of the tensor factorization. Thus, we study the 

effect of 10 random initializations of Limestone, factorizing the case patients tensor with a 

fixed number of phenotypes and varying number of maximum iterations. Fig. 7b illustrates 

the similarity score for each mode. The results show that the similarity scores are high across 

all three modes beyond 70 iterations. In particular, the diagnosis and medication modes have 

scores above 0.70. Note that the score of two random factors will tend towards 0. As such, in 

this case study, we can conclude that phenotype definitions are generally similar regardless 

of the initial factor matrices.

We also study the effect of noise, or perturbation, on the tensor factorization results. Two 

experiments were performed:

1. Additive noise: Poisson noise (ε ~ Poisson(2)) is added to randomly selected 

non-zero elements of original tensor, increasing the overall mean of the tensor.

2. Additive and subtractive noise: Random addition or subtraction of Poisson noise 

(ε ~ Poisson(2)) to randomly selected non-zero elements of the original tensor. If 

subtraction results in a negative value, the value is set to zero and a random zero 

element of the original tensor is selected for added noise to maintain the overall 

mean and sparsity pattern of the original tensor.

The resulting “noised” tensor is then factorized and compared to the original factorization 

using the similarity score.

Figs. 8a and b illustrates the average similarity scores for 10 random noisy tensors as a 

function of the percentage of noised elements. The results show a decay in the similarity 

score as the percentage of perturbed elements increases, where the effect is more prominent 

in the additive and subtract noise results. However, even when half of the non-zero elements 

are perturbed for both experiments, the diagnosis and medication mode similarities remain 

above 0.75, an impressive number given the high dimensionality of our dataset. This 

observation suggests that phenotype definitions are stable with regards to perturbation.

4.3. Sparsity

Limestone uses a hard thresholding operator which enables a tunable parameter to adjust the 

sparsity of the phenotypes. Fig. 9 shows a graph of the individual mode component values 

for the diagnosis and medication modes for a case patients tensor factorization. A majority 
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of the nonzero elements in the diagnosis and medication factor matrices are below 0.05 (the 

two points furthest left in the plot). However, a reasonable number of the components along 

the diagnosis factor have values above 0.75, while the medication factors tend to have 

several medications (centered closer to 0.20). Thus, individual components less than a 

threshold of 0.05 contribute minimally to the phenotype definition in comparison with the 

other non-zero elements and can be triaged to produce concise phenotypes.

Fig. 10 shows the number of non-zero entries for the diagnosis and medication factors using 

the suggested threshold from above. Twelve of the phenotype were defined using a single 

diagnosis. A majority of the phenotype definitions contained less than five medications. 

Thus, in this case study, Limestone produces concise phenotypes at the threshold of 0.05, 

where all phenotypes contain less than eight non-zero elements per factor.

4.4. Performance evaluation

The next series of experiments evaluate the Limestone-derived phenotypes compared against 

the traditional dimensionality reduction approaches. In particular, we focus on the following 

two questions:

1. How do the Limestone-derived phenotypes compare to the phenotypes generated 

using nonnegative matrix factorization?

2. Do the phenotypes contain as much predictive power as traditional 

dimensionality reduction approaches?

4.4.1. NMF comparison—First, we compare the Limestone-derived phenotypes against 

the traditional NMF approach.7 NMF is performed on the mode-1 matricization of the case 

patients tensor (X(1)), a diagnosis-medication source interaction matrix.

Fig. 11 shows an example of the highest weighted (largest λ) Limestone-derived phenotype 

and the most similar NMF-derived phenotype according to the cosine similarity score. For 

interpretability purposes, only the non-zero diagnosis-medication combinations with the 

largest weights are presented for the NMF-derived phenotype. The phenotype definition is 

comprised of 1,549 diagnosis-medication combinations. The Limestone-derived phenotype 

is concise and easier to interpret thanks to the structure of the definition. The NMF-derived 

phenotype also illustrates the benefit of tensor factorization, in that as several medications 

are shared across various diseases (e.g. sympathomimetics prescribed to treat hypertension 

and vascular disease).

4.4.2. Predictive power—Limestone-derived phenotypes are evaluated on a classification 

task of predicting heart failure patients and compared against three other feature sets. We use 

10 random splits of the data, where each split divides the patient population evenly (50% 

train – 50% test) and maintains the same disease prevalence (otherwise known as stratified 

sampling). The feature sets are then generated for each split of the dataset:

7PCA-derived phenotypes are not considered because negative elements lack a clear clinical interpretation.
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1. Baseline: matrix with 640 columns (features), where 169 correspond to the 

different diagnoses and the remainder represent medications. This feature set 

ignores any potential interaction between diagnoses and medications.

2. PCA membership matrix: PCA is performed on the mode-1 matricization of the 

observed tensor (the source interaction matrix 169 × 471 columns representing 

each diagnosis medication combination) with only the training population to 

obtain the phenotype definitions, or H in Eq. (1). The PCA membership matrix 

(W) is then computed for the entire population using the phenotype definitions 

from the training population.

3. NMF membership matrix: Similar to the calculation for the PCA membership 

matrix, with the exception that H and W are nonnegative.

4. Limestone membership matrix: Limestone generates phenotypes from the 

observed tensor (only patients in the training set) and then projects all the 

patients onto the learned phenotypes.

Note that for PCA, NMF, and Limestone, only the patient phenotype matrix (R columns) is 

used as the features to the predictive model while the baseline uses all 640 columns. A ℓ1 

regularized (Lasso) logistic regression predictive model is trained separately on each of the 

four feature sets and the model’s predictive performance is evaluated on the test set.8

Fig. 12 displays a plot of the area under the receiver operating characteristic curve (AUC) 

while varying the number of phenotypes in the data. All three methods have a significant 

improvement over the baseline. Moreover, the phenotyping methods provide 20X feature 

reduction by only using 30 phenotyping features to outperform the baseline using 640 

features. Limestone and NMF-derived phenotypes consistently achieve the highest 

predictive performance compared to PCA, especially above 30 phenotypes. The results show 

that using only 40 phenotypes, we achieve an AUC of 0.720 with a 95% confidence interval 

of (0.715, 0.725).

Table 2a shows the mean and median number of non-zero elements per phenotype for PCA, 

NMF, and Limestone. For comparison purposes, Limestone phenotypes have been converted 

to the diagnosis-medication representation (A(2) ⊙ A(3)). Thus, the results for Limestone is 

equivalent to the number of non-zero diagnoses elements multiplied by the number of non-

zero medication components. Limestone yields concise phenotypes compared to the other 

two methods and provides a 94.7% reduction on the number of non-zero elements in 

comparison to NMF.

Table 2b summarizes the average computation time (for the 10 random samples) for the 

three methods. PCA has the smallest computation time because it has a closed form solution, 

while our algorithm takes the longest. Thus, these results suggest that Limestone can 

produce concise phenotypes while maintaining similar computational complexity to NMF.

8The ℓ1 regularization term performs phenotype selection.
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4.5. Domain expert evaluation

We now evaluate the clinical quality of the phenotypes. Our experiment is meant to be a 

pilot study (a proof of concept) rather than a formal survey designed to detect significance. 

An experienced cardiologist was provided with 50 candidate phenotypes derived from the 

control patients and 50 candidate phenotypes derived from the case patients. The phenotypes 

were ordered by decreasing phenotype importance (λ) and the diagnosis and medication 

factors were thresholded at 0.01.9 In addition, we presented the expert with the percentage 

of patients that belonged to this phenotype. The percentage value was calculated by counting 

the number of patients in the patient factor that had a value greater than 1−10 and dividing by 

the total number of control patients. The medical expert answered the following questions 

with a yes, no, or possible for each phenotype: “Are the combinations of diagnosis and 

medications clinically meaningful?” We also asked the expert to annotate each individual 

diagnosis and medication regarding its meaningfulness to the phenotype and assign a short 

label for the meaningful phenotypes.

Although the medical expert provided an overall analysis of each phenotype, in several cases 

the response was different compared to the individual annotations. Thus, the individual 

medication and diagnosis annotations were combined to produce an overall score for the 

phenotype. We used a “lowest common denominator” approach, such that if any element 

was tagged with a “no” the phenotype would have an overall score of No. Generally, if a 

phenotype contained a mixture of “possible” and “yes” annotations, the phenotype was 

deemed possibly meaningful. The exception occurs when a single medication from the list is 

marked as possibly meaningful while the remaining diagnoses and medications are marked 

as yes, the phenotype was tagged as a yes. Table 3 summarizes the aggregated answers for 

Limestone-derived phenotypes from both the control patients’ tensor and the case patients’ 

tensor. A high percentage of the control phenotypes, 41 of the 50 (82%), were deemed 

clinically meaningful. Furthermore, only 3 of the phenotypes were not clinically meaningful. 

The clinical meaningfulness of the case patients derived phenotypes was not as high as the 

control set, however only 14 of the 50 case phenotypes (28%) were not clinically 

meaningful.

We first focus on the phenotypes derived from the control patient tensor. The five most 

significant (largest λ) control phenotypes are shown in Fig. 13. All but the second phenotype 

were annotated as clinically meaningful (second was annotated as possibly meaningful) and 

the expert-assigned short label is displayed in the figure. From the figure, four of the first 

five Limestone-derived phenotypes consist of a single diagnosis and a handful of 

medications.

The experimental results also suggest the potential ability to capture disease subtypes. Fig. 

14 shows the meaningful phenotypes relating to hypertension derived from the control 

patients tensor. All three of the phenotypes share the same disease, but have different 

combinations of medications which may indicate disease severity. The domain expert 

assigned the following labels for the three candidates: the fourth phenotype corresponds to 

9Extra elements were included to present more information to the medical expert at the cost of less concise phenotype definitions.
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patients with mild hypertension; the second phenotype is moderate hypertension; and the 

sixth phenotype is the most severe of the phenotypes.

For the six phenotypes labeled as possibly meaningful, four of them contained the HCC 

category “major symptoms and abnormalities.” The ambiguous diagnosis made it difficult 

for the medical expert to determine the exact medical concept. An example of the comment 

for these four phenotypes is “Yes, but with a diagnosis of major symptoms, abnormality, it 

can mean anything.” The broader class of control patients may have resulted in ambiguous 

diagnoses for several of the phenotypes.

Only three of the control phenotypes were labeled as not clinically meaningful. The 

predominant reason was the lack of a cohesive diagnosis factor. One phenotype contained 

the single diagnosis of “major symptoms and abnormalities”, while the other two had over 

ten unrelated diagnoses.

We next focus on the medical expert’s annotations of the phenotypes derived from the case 

patients tensor. Generally, the phenotypes labeled as clinically meaningful share the same 

medical concepts as those in the clinically meaningful control patients derived phenotypes. 

The differences in the tensor factorization results occur for the phenotypes marked as 

possibly meaningful or not clinically meaningful. For the fourteen phenotypes annotated as 

possibly meaningful, the expert’s comment was “Looks good except <insert a diagnosis> is 

meaningless.” Thus, 36 of the 50 case phenotypes, or 72% of the phenotypes, generally 

maps to a clinical concept.

The remaining 14 case phenotypes were labeled as not clinically meaningful. The medical 

expert’s comments for these phenotypes were similar to the control phenotypes that lacked 

clinical meaning. Phenotypes either had too many unrelated diagnoses or uninformative 

diagnoses elements such as “history of disease”, “minor symptoms, signs, findings”, and 

“major symptoms and abnormalities.”

5. Discussion

Our proposed method can identify multiple candidate phenotypes concurrently from EHR 

data without any user supervision. However, there remain several challenges towards its 

application in a high-throughput setting. First, one of the most challenging and unanswered 

tensor factorization questions relate to the choice of rank (the number of phenotype 

candidates) [40]. A small number of phenotypes may result in broad phenotype definitions 

while a large number of phenotypes may result in “over-specificity” in the phenotype 

definitions. Our heart failure case study used 50 as the number of phenotypes to minimize 

the burden of the annotation process while also illustrating the potential to achieve high-

throughput phenotyping. One possible option is to select the number of phenotypes based on 

the performance of the candidate phenotypes when used for subsequent predictive modeling 

tasks, but discovering the best strategy will require further investigation.

The second challenge is that our clinical evaluation of Limestone relied on a single medical 

expert to answer a question regarding the clinical meaningfulness of the phenotypes. The 

clinical evaluation was designed to be a proof of concept with the knowledge that a potential 
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bias can influence our results. To demonstrate statistical significance, it will be necessary to 

design a more extensive study that involves a panel of experts and asks various questions 

relating to the tensor derived phenotypes.

A third limitation of Limestone is that not all of the candidate phenotypes were clinically 

meaningful. One potential explanation is that the phenotypes labeled as possibly meaningful 

allude to the potential of our method for knowledge discovery, generating novel phenotypes 

that are currently unknown medical concepts. Moreover, the higher number of clinically 

meaningful phenotypes from the control population suggests that 50 phenotypes may not be 

present in the case population. Further exploration of the results in conjunction with a panel 

of experts are necessary to better understand the differences between the case and control 

populations.

Even though the candidate phenotypes generally mapped to a medical concept, the medical 

expert’s annotations suggest the need for incorporating user feedback to refine phenotypes. 

Future work can improve the Limestone process by using tensor factorization to generate 

multiple candidate phenotypes from the observed data and then present the phenotypes to 

domain experts. The medical experts can then approve, reject, or alter the phenotypes such 

that all phenotypes are clinically meaningful. Although the phenotype generation process 

requires some human intervention, the goal would then be to minimize the interaction time 

necessary to produce meaningful phenotypes. Furthermore, existing phenotypes can be 

utilized to avoid repeated derivation of the same definitions.

Fourth, the clinical evaluation results suggest the potential ability to generate phenotypes 

that capture disease subtypes under an unsupervised setting. For instance, the three candidate 

phenotypes shown in Fig. 14 captured differing disease severities in the control population. 

Nonetheless, further analysis is necessary to determine whether the candidate phenotypes 

reflect the true patient status. Moreover, future work should analyze the efficiency of 

Limestone to capture disease subtypes both in this dataset and other EHR datasets.

Fifth, although our paper only focused on the tensor constructed with diagnoses and 

medications, the EHR tensor can be constructed using various other structured data sources. 

Preliminary experiments using several other data sources (though outside the scope of this 

specific study) such as laboratory tests, imaging results, and patient symptoms yielded 

similar results in terms of conciseness and predictive power. For unstructured sources, such 

as clinical notes, Limestone will require an additional preprocessing step (e.g. text mining or 

natural language processing). However, our current methodology only supports a single 

tensor. EHR data is comprised of multiple sources which may not naturally fit into a single 

tensor representation. Therefore, Limestone will need to be extended to factorize multiple 

tensors to fully utilize all EHR data.

Finally, our proposed method does not address portability across institutions. Candidate 

phenotypes generated at one site may be somewhat different from candidate phenotypes 

generated at another site. Thus, Limestone-derived phenotypes may not be readily 

transportable and executed at various other institutions. Future work should focus on the 
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portability of Limestone-derived phenotypes while allowing variations in the phenotype 

definition.

6. Conclusion

This paper introduced Limestone, a nonnegative tensor factorization method to generate 

phenotypes without supervision. Limestone can generate numerous phenotypes 

simultaneously from data with minimal human intervention. The resulting tensor factors 

serve as phenotype candidates that automatically reveal patient clusters on specific 

diagnoses and medications. Moreover, our method can derive concise phenotype definitions, 

potentially capture disease subtypes that may not otherwise be easily defined, and produce 

consistent phenotype definitions for multiple factorizations of the same data.

Our results on 31,815 patient records from Geisinger Health System demonstrate the 

stability, conciseness, predictive power, and clinical meaningfulness of Limestone-derived 

phenotypes. They underscore the promise of Limestone for high-throughput phenotyping 

that generally results in meaningful phenotypes. Future work will focus on incorporating 

domain expertise in the phenotype generation process and extending the methodology to 

factorize multiple tensors simultaneously.
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Fig. 1. 
EHR matrix representations and matrix factorization.
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Fig. 2. 
Generating candidate phenotypes using CP tensor factorization.
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Fig. 3. 
A high-level depiction of the Limestone process by which candidate phenotypes are 

generated and patients are projected onto the candidates.
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Fig. 4. 
The observation window is defined as a fixed time window prior to the index date (e.g. 

diagnosis date) and is used to determine the data used for tensor construction. The 

medication orders in gray are excluded during feature construction because they are outside 

the observation window.
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Fig. 5. 
An example of the kth candidate phenotype produced from the tensor factorization, and the 

interpretation of the tensor factorization result. The green text, blue, and red text correspond 

to non-zero elements in the patient, diagnosis, and medication factors, respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 6. 
A new patient’s phenotype membership vector is computed by projecting the new patient’s 

data onto the R candidate phenotypes in the purple dashed line. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 7. 
Objective function and similarity scores as a function of the number of total iterations for the 

case patients tensor. The error bars indicate the 95% confidence interval.
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Fig. 8. 
Similarity scores to the original tensor factorization results for perturbed versions of the case 

patient tensor.
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Fig. 9. 
The distribution of non-zero element values for 50 Limestone-derived phenotypes.
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Fig. 10. 
The number of non-zero entries per factor using a threshold of 0.05.
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Fig. 11. 
The most significant Limestone-derived phenotype and a “similar” NMF-derived phenotype 

with several matching diagnosis and medications. The Limestone features are listed in 

descending order of the probabilistic values. The similar NMF features are listed first, before 

listing the features in descending order based on element value. The NMF threshold was 

adjusted to 0.001 to maintain similarities with the Limestone-derived phenotype.
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Fig. 12. 
Area under the receiver operating characteristic curve for the four feature sets while varying 

the number of phenotypes. The error bars denote the 95% confidence interval and the dashed 

lines illustrated the confidence interval using the baseline feature set.
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Fig. 13. 
The top five Limestone-derived phenotypes using the control patients’ tensor.
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Fig. 14. 
Limestone-derived phenotypes from the control patients’ tensor relating to hypertension.
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Table 1

List of notations used in this paper.

Symbol Definition

A, B, Λ, Π Matrix

ar The rth column in matrix A

𝓧, ℳ Tensor

i⃗ Tensor element index (i1, i2, …, iN)

xi⃗ Tensor element at index i⃗

X(n) Mode-n matricization of tensor 𝓧

* Element-wise multiplication

∘ Outer product

⊙ Khatri-Rao product

A⊤ Transpose of A
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Table 2

Average statistics from the 10 random splits using 50 phenotypes.

Type Mean Median

(a) Non-zero elements per phenotype

PCA 10917.50 10921.50

NMF 1533.62 1504.50

Limestone 34.79 32.00

Method Time (h)

(b) Computation time

PCA 0.001

NMF 1.648

Limestone 2.366
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Table 3

Expert annotation of 50 Limestone-derived phenotypes from the case and control tensors.

Tensor No Possible Yes

Case 14 14 22

Control 3 6 41
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