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Abstract

We recently pioneered several analyses of small-molecule sensitivity data collected from large-

scale perturbation of hundreds of cancer cell lines with hundreds of small molecules, with cell 

viability measured as a readout of compound sensitivity. We performed these studies using cancer 

cell lines previously annotated with cellular, genomic, and basal gene-expression features. By 

combining small-molecule sensitivity data with these other datasets, we identified new candidate 

biomarkers of sensitivity, gained insights into small-molecule mechanisms of action, and proposed 

candidate hypotheses for cancer dependencies (including candidate combination therapies). 

Nevertheless, given the size of these datasets, we expect that many connections between cellular 

features and small-molecule sensitivity remain under-explored. In this chapter, we provide a step-

by-step account of foundational data-analysis methods underlying our published studies, including 

working MATLAB code applied to our own public datasets. These procedures will allow others to 

repeat analyses of our data with new parameters, in additional contexts, and to adapt our 

procedures to their own datasets.
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1. Introduction

In this chapter, we provide a hands-on MATLAB walk-through of foundational data-analysis 

procedures underlying the results in the Cancer Therapeutics Response Portal (CTRP; 

https://portals.broadinstitute.org/ctrp/), which provides access to data and visualizations 
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stemming from small-molecule sensitivity profiling of cancer cell lines [1–3]. When 

combined with large-scale genomic and transcriptomic characterization of cancer cell lines, 

such as those from the Cancer Cell Line Encyclopedia (CCLE) [4] and the Genomics of 

Drug Sensitivity in Cancer (GDSC) [5–7], small-molecule sensitivity data have been used to 

identify new candidate cancer dependencies [1–3,8–14]. Their availability has also 

stimulated development of foundational analysis methods to find novel cancer dependencies 

in these or similar data, such as those emerging from genetic perturbation experiments in 

cancer cell lines [15–18].

Foundational analysis methods for CTRP include creating cell-line sensitivity profiles [1–3] 

based on area-under-curve (AUC) values computed from concentration-response curves; 

enrichment analysis for cellular (lineage or mutational) features among cell lines sensitive to 

small molecules [1,2]; and cross-correlation analysis of small-molecule sensitivity with 

basal gene-expression patterns [3]. The data underlying CTRP have also been used in the 

development of several additional methods that integrate prior knowledge, harness new 

datasets, or result in more complex models. For example, we developed annotated cluster 

multidimensional enrichment (ACME) analysis [2], a novel method to combine clustering of 

small-molecule sensitivity data with prior knowledge (e.g., about compound targets or 

cellular pathways) to formulate new cancer-dependency hypotheses.

The emergence of these datasets has excited the computational biology community, as there 

is a need for novel method development to mine these data and uncover novel connections. 

Other recent methods that include a component of small-molecule sensitivity analysis 

include DAISY [19], DiSCoVER [20], EDDY [21], OncoGPS [22], and RWEN [23]; 

extensions to The Cancer Proteome Atlas (TCPA) [24,25] and GDSC itself [26]; and a 

number of other related studies [27–32]. This rapid proliferation of tools, methods, and 

comparative analyses has also sparked an important line of critical reflection about the 

reproducibility of findings and their concordance across different data sources with different 

experimental designs [33–36]. These developments evince an appetite in the computational 

biology community to use small-molecule sensitivity profiling data in diverse and creative 

ways.

Accordingly, we present this chapter to carefully describe the foundational analyses of 

CTRP, showcase a MATLAB reference implementation of them, and share tips, caveats, and 

other considerations that we encountered during their development. We cover three 

procedures in detail:

• Procedure 1: preparation of concentration-response areas-under-curve (AUCs) 

as a measure of small-molecule sensitivity [1–3]

• Procedure 2: enrichment analysis of mutation features among cell lines of a 

particular lineage sensitive to individual compounds [1,2]

• Procedure 3: correlation analysis of basal gene-expression levels to compound 

sensitivity across panels of cell lines from a lineage [3]

In each case, the procedure selects at random an appropriate subset of available public data 

and is followed by a basic visualization, interpretable by users without a strong 
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computational background, that illustrates the essential output, including statistical and 

quality-control measures we use to prioritize the most important connections. We focus on 

datasets that best illustrate the core steps in the analysis and that best highlight important tips 

and caveats. Our goal here is to present step-by-step instruction in the core methods, 

including working code, advice, and notes on the process, rather than highlight specific 

findings of potential biological interest. Indeed, our choice of including a random 

component into each analysis subset selection means not only that specific output figures 

will differ from run to run, but also that the code in principle could highlight a previously 

unappreciated biological connection. We strive to present the workflow in a manner that is 

logically modular, so that studies of reproducibility (by removing the random component), 

extensions to larger data subsets (at the cost of run-time), and the addition of other 

perturbations (e.g., new compounds, genetic perturbations) or alternative cellular features 

(e.g., proteomic, metabolomic, or epigenomic features), are straightforward for a user with 

baseline familiarity in MATLAB.

2. Materials

Conceptually, the analyses presented in the chapter are general enough to be carried out in 

any programming language. In our experience, scientific computing software, such as R (R 

Foundation for Statistical Computing; Vienna, Austria) or MATLAB (MathWorks, Inc.; 

Natick, MA), provides the appropriate balance of flexibility and the provision of built-in 

functions for common data manipulations. Therefore, to minimize environment 

configuration, and focus the discussion on the core principles of the analyses, we have based 

this narrative on a modular MATLAB reference implementation designed to operate on 

publicly available data and metadata files.

2.1 Supplementary ZIP file

The code to accompany this chapter is provided as a supplementary ZIP file (implement.zip) 

containing the main script (master.m) and 3 subservient procedural scripts (code\scr folder), 

plus all custom functions necessary to execute the procedures (code\fun folder and 

subfolders). The ZIP file also contains a pre-configured directory structure, with folders to 

house input data (data folder), input metadata (meta folder), and output tables (out folder). 

The supplementary ZIP file can be downloaded from GitHub (https://github.com/

remontoire-pac/ctrp-reference; see Note 1). The ZIP file should be unpacked using a 

standard utility and placed in the local computing environment in a location that can be 

added to the MATLAB search path (see Note 2).

2.2 MATLAB Environment

The implementation described in this chapter was initially developed on a Dell OptiPlex 

9020 (Intel i7–4790 CPU @ 2×3.60GHz, 32.0 GB RAM) running 64-bit Windows 7 

Enterprise, Service Pack 1, and MATLAB 2014b. Development was completed, and main 

testing performed, on a virtual machine (Intel Xeon CPU E5–2695 v4 @ 2×2.10GHz, 32.0 

GB RAM) running Windows Server 2016 Datacenter and MATLAB 2018a. Development 

was initiated in MATLAB 2014b, and this is the earliest version of MATLAB that can 

execute the complete set of procedures as written, due to the addition of fishertest.m in that 
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release. The procedures require the MATLAB Statistics and Machine Learning Toolbox 

(called the Statistics Toolbox in MATLAB 2014b), along with the author-provided custom 

functions. A successful independent set of tests was completed on a Microsoft Surface Pro 4 

(Intel i7–6650 CPU @ 2×2.20GHz, 16 GB RAM) running 64-bit Windows 10 Pro and 

MATLAB 2017b. In all 3 of these environments, the entire code package runs in 5—10 

minutes and creates 3 figures, with some time variation per instantiation depending on the 

random component of data subset selection for analysis (see Note 3).

2.3 Downloading Public Datasets

All data and metadata required to run the analyses presented in this chapter are available for 

free public download from the National Cancer Institute (NCI) Office of Cancer Genomics 

(OCG) and were originally produced in our laboratories as part of work supported by the 

Cancer Target Discovery and Development (CTD2) Network of research centers (see Note 

4). To complete the download and deployment of the necessary input files for analysis, the 

following steps are sufficient:

1. Navigate a web browser to the OCG FTP server link ftp://caftpd.nci.nih.gov/pub/

OCG-DCC/CTD2/Broad/.

2. Navigate down to the directory CTRPv2.0_2015_ctd2_ExpandedDataset and 

download the ZIP file CTRPv2.0_2015_ctd2_ExpandedDataset.zip.

3. Extract the file v20.data.per_cpd_pre_qc.txt and place it in the local data folder 

(created by unpacking the Supplementary ZIP file implement.zip in the local 

environment; see Section 2.1).

4. Extract the files v20.meta.per_cell_line.txt, v20.meta.per_compound.txt, and 

v20.meta.per_experiment.txt, and place them in the local meta folder.

5. Return to the parent FTP directory, navigate down to the directory 

CTRPv2.2_2015_pub_CancerDisc_5_1210, and download the ZIP file 

CTRPv2.2_2015_pub_CancerDisc_5_1210.zip.

6. Extract the files v22.data.auc_sensitivities.txt, v22.anno.ccl_anno_features.txt, 
and v22.anno.ccl_mut_features.txt, and place them in the local data folder.

7. Extract the file v22.meta.per_compound.txt and place it in the local meta folder.

8. Return to the parent FTP directory, navigate down to the directory 

CTRPv2.1_2016_pub_NatChemBiol_12_109, and download the ZIP file 

CTRPv2.1_2016_pub_NatChemBiol_12_109.zip.

9. Extract the files v21.data.auc_sensitivities.txt and v21.data.gex_avg_log2.txt, 
and place them in the local data folder.

10. Extract the files v21.meta.gex_features.txt and v21.meta.per_compound.txt, and 

place them in the local meta folder.
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3. Methods

Each of the following procedures features a specific analysis that assumes the user has 

downloaded and unpacked the author-provided files (see Section 2.1), configured an 

appropriate MATLAB environment (see Section 2.2), and downloaded the relevant public 

datasets (see Section 2.3).

3.1 Sensitivity Calculation from Small-Molecule Concentration-Response Data

1. Read input data and experiment metadata as DataFrames to prepare for curve-

fitting analysis (master.m, lines 21–23; see Note 5).

2. Walk-through (Step 3) or run (skip to Step 21) the first subsidiary script 

(procedure1CurveFit.m) to perform curve-fit analysis (master.m, line 25; see 
Note 6).

3. Index input DataFrame with unique combinations of compound and experiment 

identifiers (procedure1CurveFit.m, lines 1—2; see Note 7).

4. Reconcile relationships between experiment identifiers and cell lines 

(procedure1CurveFit.m, lines 4—6; see Note 8).

5. Define a set of curves to be fit (procedure1CurveFit.m, lines 8–10; see Note 9).

6. Create an empty MATLAB structure to hold the curve-fitting results 

(procedure1CurveFit.m, lines 12—13).

7. Define concentration limits for area-under-curve (AUC) numeric integration 

(procedure1CurveFit.m, lines 15—17; see Note 10).

8. Initialize curve-fit parameters and options for non-linear fits 

(procedure1CurveFit.m, lines 19—22; see Note 11).

9. Get data points for an individual curve fit and AUC integration 

(procedure1CurveFit.m, lines 28—34; see Note 12).

10. Seed curve-fit parameters by guessing log2(EC50) from the data 

(procedure1CurveFit.m, lines 36—42; see Note 13).

11. Handle data censoring depending on the value of a pre-computed quality-control 

type (procedure1CurveFit.m, lines 44—72; see Note 14).

12. Decide whether enough data points remain to perform a curve fit 

(procedure1CurveFit.m, lines 75—97; see Note 15).

13. Provisionally fit a 3-parameter sigmoid curve to data points 

(procedure1CurveFit.m, lines 99—103).

14. Conditionally fit a 2-parameter sigmoid curve depending on apparent log2(EC50) 

of the provisional 3-parameter fit (procedure1CurveFit.m, lines 105–112; see 
Note 16).

15. Append the current curve-fit results to the growing MATLAB structure 

(procedure1CurveFit.m, lines 116–134; see Note 17).
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16. Create output DataFrames for fitted-curve per-point and per-curve data for all fit 

curves (procedure1CurveFit.m, lines 138—141).

17. Iterate over curve-fit results structure to build DataFrames for quality control and 

output (procedure1CurveFit.m, lines 143—218; see Note 18).

18. Define post curve-fit quality-control filters and apply to DataFrames 

(procedure1CurveFit.m, lines 220—241; see Note 19).

19. Resolve experiment identifiers to cell-line identifiers (procedure1CurveFit.m, 

lines 243—245; see Note 20).

20. Write output files for downstream analysis and interpretation 

(procedure1CurveFit.m, lines 247—249).

21. Read additional metadata containing compound and cell-line information for 

interpretation and for figure labels (master.m, lines 27—29; see Note 21).

22. Select suitable curves to illustrate concentration-response curve fit and extract 

data (master.m, lines 31—43; see Note 22).

23. Plot both original data and predicted curves with error bars to produce a variant 

of Figure 1 (master.m, lines 45—62; see Note 23).

3.2 Mutation Enrichment among Small-Molecule Sensitive Cell Lines

1. Read input data and metadata as DataFrames to prepare for enrichment analysis 

(master.m, lines 66—69; see Note 24).

2. Walk-through (Step 3) or run (skip to Step 16) the second subsidiary script 

(procedure2Enrichment.m) to perform enrichment analysis (master.m, line 71; 

see Note 25).

3. Index input DataFrame with unique combinations of compound and experiment 

identifiers (procedure2Enrichment.m, lines 1—2; see Note 26).

4. Verify that indices for rows and columns match compounds and cell lines, 

respectively (procedure2Enrichment.m, lines 4—6).

5. Create a matrix of sensitivity values for compounds by cell lines 

(procedure2Enrichment.m, lines 8—12; see Note 27).

6. Create an indicator (i.e., binary) matrix of cell lineage and histology features by 

cell lines (procedure2Enrichment.m, lines 15—18; see Note 28).

7. Define a subset of cell lines to be tested and restrict compound data to this subset 

(procedure2Enrichment.m, lines 20—25; see Note 29).

8. Create an indicator (i.e., binary) matrix of cellular mutation features by cell lines 

and restrict this matrix to the same cell-line subset (procedure2Enrichment.m, 

lines 27—34; see Note 30).

9. Restrict analysis to mutation features with an appropriate number of examples 

(procedure2Enrichment.m, lines 36—39; see Note 31).
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10. Define a set of compounds to be tested (procedure2Enrichment.m, lines 41—43; 

see Note 32).

11. Create an empty DataFrame to hold enrichment results 

(procedure2Enrichment.m, lines 45—48; see Note 33).

12. For a given compound to be tested, verify that enough cell lines were examined, 

and compute raw enrichment output using Fisher’s exact tests 

(procedure2Enrichment.m, lines 52—58; see Note 34).

13. For the current compound, record cell lineage, compound, and mutation feature 

labels, and append labeled results to the growing result DataFrame 

(procedure2Enrichment.m, lines 60—66; see Note 35).

14. When all compounds are tested (by iterating over Steps 12—13), define 

statistical and quality-control filters for all enrichment results 

(procedure2Enrichment.m, lines 70—77; see Note 36).

15. Apply filters to raw enrichment results and write output files for downstream 

analysis and interpretation (procedure2Enrichment.m, lines 79—83; see Note 

37).

16. Read additional metadata containing compound information for interpretation 

and for figure labels (master.m, lines 73—74; see Note 38).

17. Select suitable results to illustrate enrichment analysis and extract data 

(master.m, lines 76—90; see Note 39).

18. Perform one-sided T-test as an additional statistical annotation for boxplots 

(master.m, lines 92—93).

19. Create labels for visualizations using appropriate metadata (master.m, lines 95—

98; see Note 40).

20. Plot enrichment results as both heatmap and boxplot representations to produce a 

variant of Figure 2 (master.m, lines 100—122; see Note 41).

3.3. Correlation of Small-Molecule Sensitivity with Basal Gene-Expression

1. Read input data as DataFrames to prepare for correlation analysis (master.m, 

lines 126—128; see Note 42).

2. Walk-through (Step 3) or run (skip to Step 17) the third subsidiary script 

(procedure3Correlation.m) to perform correlation analysis (master.m, line 130; 

see Note 43).

3. Index input DataFrame with unique combinations of compound and cell-line 

identifiers (procedure3Correlation.m, lines 1—2; see Note 44).

4. Create a matrix of sensitivity values for compounds by cell lines 

(procedure3Correlation.m, lines 4—8; see Note 45).

5. Index gene-expression DataFrame with unique combinations of gene and cell-

line identifiers (procedure3Correlation.m, lines 10—11; see Note 46).
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6. Create a matrix of gene-expression features by cell lines 

(procedure3Correlation.m, lines 13—17; see Note 47).

7. Define a subset of cell lines to be tested (procedure3Correlation.m, lines 19—22; 

see Note 48).

8. Restrict cell lines considered to those with both sensitivity and expression data 

(procedure3Correlation.m, lines 24—27; see Note 49).

9. Restrict genes considered to those with adequate dynamic range 

(procedure3Correlation.m, lines 29—33; see Note 50).

10. Restrict compounds considered to those with differentially sensitive cell lines 

(procedure3Correlation.m, lines 35—37; see Note 51).

11. Define a set of compounds to be tested (procedure3Correlation.m, lines 39—40; 

see Note 52).

12. Compute raw correlation output using normalized Pearson correlation 

coefficients (procedure3Correlation.m, lines 42—43; see Note 53).

13. Compute p-values and index to statistically filter the output correlations 

(procedure3Correlation.m, lines 45—48; see Note 54).

14. Create a results DataFrame and append cell lineage labels, plus compound and 

gene identifiers (procedure3Correlation.m, lines 50—57; see Note 55).

15. Append p-values, correlation z-scores, correlation coefficients, and the numbers 

of participating cell lines to results DataFrame (procedure3Correlation.m, lines 

59—63; see Note 56).

16. Define and apply correlation quality-control filters, then write output DataFrame 

(procedure3Correlation.m, lines 65—86; see Note 57).

17. Read additional metadata containing gene information for interpretation and for 

figure labels (master.m, lines 132–133).

18. Select suitable correlation results to illustrate correlation analysis and extract 

data (master.m, lines 135—142; see Note 58).

19. Create labels for visualizations using appropriate metadata (master.m, lines 144

—147; see Note 59).

20. Plot correlation results as a scatterplot to produce a variant of Figure 3 

(master.m, lines 149—161; see Note 60).

4. Notes

1. We anticipate that the GitHub repository may grow over time, possibly including 

code updates, additional procedures, and other information. However, we will 

keep the original version corresponding exactly to this chapter available 

indefinitely.
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2. To keep the distribution file size small, we include the complete directory 

structure, but do not redistribute the source data and metadata. Rather, we 

include instructions for downloading the data and metadata from the National 

Cancer Institute (see also Section 2.3).

3. The demonstration code uses judiciously-sized subsets of compounds for each 

procedure to keep total run-time down while still providing a complete analysis. 

Our recent production dataset [2,3] includes 481 small molecules, and we 

imagine the provided code could be easily modified to perform a global analysis 

of the complete dataset.

4. The National Cancer Institute (NCI) has supported multiple Cancer Target 

Discovery and Development (CTD2) Centers nationwide in the United States 

through several rounds of funding with an evolving mission directed at 

improving cancer patient outcomes with basic research activities. The Cancer 

Therapeutics Response Portal (CTRP) is one flagship project resulting from the 

Broad Institute’s Chemical Biology and Therapeutics Science program 

participating in the NCI-funded CTD2 effort.

5. Throughout these procedures, we use a special type of MATLAB structure called 

a DataFrame, which was developed by Hyman Carrel in one of our laboratories 

(PAC) over a decade ago, inspired by data frames in R. DataFrames are 

MATLAB structures with one or more fields, constrained to each contain column 

vectors of equal length, but which collectively may mix numeric and text data 

types. In more modern releases of MATLAB, the utility of DataFrames has been 

essentially supplanted by the new MATLAB table variable type.

6. On first use, we recommend simply running the subsidiary script from within 

master.m, and skipping to Step 21. Doing so will ensure the user can get to 

Figure 1 more quickly and validate that procedure1CurveFit.m runs to 

completion in their environment. Detailed exploration of the inner workings of 

procedure1CurveFit.m (Steps 3—20) can be saved for later exploration.

7. In several steps, we make use of a special indexing function for DataFrames 

(DFindex.m) that allows for rapid conversion of tabular data to matrices and 

without requiring complete data or that tabular data be pre-sorted. We 

recommend studying the documentation within DFindex.m (and other 

DataFrame functions) to learn how it operates in detail.

8. During our cell-sensitivity profiling studies, we envisioned profiling data 

acquisition as a matrix of tests representing compounds by cell lines. As 

described in the relevant publications [2,3], however, the reality was less tidy. 

Checking the identity of cell lines by single-nucleotide-polymorphism (SNP) 

fingerprinting [16] revealed that sample-handling issues had resulted in a small 

fraction of intended cell lines being omitted, while others were inadvertently 

tested twice (or three times in one case). An important consequence of these 

practical considerations for data analysis is that the relationship of an experiment 

(a specific cell-line sample exposed to a compound collection) to a cell line (an 
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abstract entity annotated with prior information about lineage, mutation, or basal 

gene expression) is not one-to-one. The public metadata reflects these details, 

and the exhibition code accounts for them.

9. In the demonstration, we select a single compound at random and fit all curves 

available for that compound. The code could easily be modified to select a 

specific compound of the user’s choice, and we recommend such a modification 

as a first step in customizing the analysis. More aggressive modifications might 

include studying multiple compounds, a single cell line across all compounds, or 

all possible curves in the dataset. However, such modifications will also require 

modification of the visualization code for Figure 1, since the current 

visualization code for curve-fitting expects a single compound.

10. In our earlier studies [1–3], we set limits of integration for area-under-curve 

(AUC) that were based on the concentrations tested for each compound 

individually, making the comparison of AUC values across compounds 

potentially problematic. In this chapter, consistent with our current best practices, 

we define a single set of integration limits across all compounds in the dataset, 

normalized from 0 (complete killing) to 1 (equivalent to untreated controls).

11. We seed 3 of the 4 possible sigmoid curve parameters here; the concentration 

parameter, log2(EC50), is seeded later, using the response data to improve the 

initial guess.

12. Within the for loop, data for each curve are collected and processed in a set of 

temporary variables that are reset with each loop iteration. Data kept for output 

are stored in a growing MATLAB structure before the loop ends.

13. We seed the concentration parameter, log2(EC50), at this stage, using the 

response data to improve the initial guess by choosing either the lowest 

concentration at which 50% cell killing is achieved, or the median percent killing 

if 50% cell killing is not achieved at any concentration.

14. In practice, we observed a number of different issues with data quality in our 

experiments, and therefore defined in data pre-processing [2] some quality-

control measures (“QC-types”). Most curves either stayed flat (no compound 

effect) or relatively smoothly descended from no cell killing at low concentration 

to maximal cell killing at high concentration (QC-type 0). We observed cases 

where the top one (QC-type 1) or top two (QC-type 2) concentrations returned to 

the “no effect” baseline after observing concentration-dependent cell killing at 

lower concentrations. These aberrant data points are likely due to compound 

precipitation in the assay plate and were therefore omitted. We also observed 

cases where fluctuations in the data were more complex, presumably due to 

liquid-handling and other plate-reader artifacts (QC-type 3). In these cases, we 

used standard methods to censor individual data points (see the author-included 

function cooksdist.m for details).
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15. In practice, we only fit curves with at least five data points passing pre-fit quality 

control. We regard this as a permissive choice, particularly for 16-point 

concentration-response experiments.

16. While curve-fits whose right asymptote is between 1 (no killing) and 0 (complete 

killing) are relatively common and may reflect a biological distinction between 

cytostatic effects of a compound and true cell killing, we noted a curve-fit failure 

mode where the predicted lower asymptote was strongly negative, which is not 

meaningful. This situation occurs when the predicted log2(EC50) is higher than 

the highest concentration tested. In such cases, we re-fit the curve with the lower 

asymptote constrained to zero.

17. To accommodate the fact that we eventually want two outputs, one with per-

curve information and one with per-point information, we use an intermediate 

MATLAB structure to accumulate curve-fitting results and prepare the two 

desired outputs in a separate step.

18. We create two output DataFrames simultaneously. The first is for per-curve data, 

which is created directly by looping over the intermediate MATLAB structure, 

and accounts both for missing curves and whether a 3-parameter or 2-parameter 

curve is reported. The second is for per-point data and is created by appending to 

a growing DataFrame with each turn of the loop since the number of points to be 

included at each turn is not known in advance.

19. During our studies [2,3], we scanned thousands of concentration-response curves 

and identified multiple modes of failure. While these problematic curves 

represented a relatively small fraction, they fell into categories that we were able 

to trap computationally and exclude. Both the in-code documentation and our 

prior reports [2] detail the specific failure modes. These steps also illustrate the 

use of DFkeeprow.m, which applies the typical MATLAB logical or linear 

indexing to DataFrames.

20. To allow connection to cell-line metadata (e.g., the cell-line name), we reconcile 

the experiment number with the cell-line identifier at this stage (see also Note 8).

21. Each of our prior studies [1–3] uses a different subset of cell lines from the 

Cancer Cell Line Encyclopedia [4], and they also consider overlapping but not 

identical sets of compounds. To aid in reconciliation between datasets, we use 

global identifiers master_cpd_id (for compounds) and master_ccl_id (for cell 

lines) that have a shared meaning across all CTRP datasets.

22. To illustrate differential sensitivity, we choose a cell line among the top 5% of 

responders (sensitive) and a cell line near the median responder. These choices 

could easily be modified to display, for example, the most and least responsive 

cell lines.

23. The figure code is deliberately included in the calling script master.m for 

transparency and to allow facile modification by users without disrupting the 
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scripts that do the calculations. Users are encouraged to further customize the 

appearance of figures according to their preferences.

24. In this procedure, two types of categorical variable are introduced, one 

describing the provenance of cancer cell lines as context to understand their 

sensitivity (primary site or lineage, histology terms, and other demographic 

information), and the other describing their mutational status.

25. On first use, we recommend simply running the subsidiary script from within 

master.m, and skipping to Step 16. Doing so will ensure the user can get to 

Figure 2 more quickly and validate that procedure2Enrichment.m runs to 

completion in their environment. Detailed exploration of the inner workings of 

procedure2Enrichment.m (Steps 3—15) can be saved for later exploration.

26. The original study [2] uses consecutive internal indices for compounds and cell 

lines in addition to the master identifiers (see also Note 21).

27. We anticipate missing data in the matrix of sensitivity scores by first seeding an 

appropriately-sized matrix with NaN (not a number) values, then filling in known 

values in a for loop over the indexed DataFrame.

28. In the present procedure, we use lineage and histology information about cell 

lines as a context feature to pick a subset of cell lines to study. We note that one 

could as easily check for enrichment of a single cell lineage versus all other 

lineages by treating lineage as a feature analogous to the way mutations are 

treated in the reference code.

29. We select a lineage, histology, or demographic term with at least 16 

representative cell lines, but fewer than 25% of all cell lines, for illustration 

purposes. The user can modify these choices to expand the set of terms available 

or modify the code to specify a lineage of interest.

30. In the present procedure, we use mutation feature information as the primary 

type of feature for enrichment analysis, but we note that one could as easily use 

mutations for context (as we do here with lineage and histology information) to 

derive new and potentially interesting groups of cell lines, e.g., for enrichment or 

correlation analyses.

31. We choose among mutation features with at least 3 representative cell lines, but 

fewer than 50% of all cell lines, for illustration purposes. The user can modify 

these choices to expand the set of features available or modify the code to specify 

a mutation of interest.

32. We choose 12 random compounds, strictly to keep demonstration run-times low. 

Increasing the number of compounds, including choosing specific subsets of a 

user’s interest, is an obvious and recommended starting point for user 

customization.

33. The DataFrame to hold enrichment results will be grown by appending new rows 

because the number of rows to be appended will not, in general, be known in 
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advance. Therefore, each field in the DataFrame is defined in advance and 

populated with an empty array.

34. The primary enrichment analysis at this stage is to perform many Fisher’s exact 

tests both to detect the optimal AUC cutoff for each compound and to iterate 

over candidate mutation features. We implement this feature using the custom 

function sensenfex.m. Importantly, this function avoids redundant calculations by 

first building an array of unique 2×2 contingency tables and tracking their 

relationship to metadata indices. We recommend studying the documentation 

within sensenfex.m to learn how it operates in detail.

35. The first output variable from sensenfex.m allows direct appending of mutational 

feature labels to the growing DataFrame along with the compound and lineage 

under consideration.

36. Experience has shown that statistical significance of an enrichment result is 

necessary but not sufficient to warrant continued biological interest. Accordingly, 

we filter on several other parameters, such as the minimum AUC (the compound 

must reliably kill at least one cell line), the enrichment confidence (fraction of 

mutant cell lines killed by the compound), the enrichment purity (fraction of 

sensitive cell lines harboring the mutation), and the enrichment overlap (at least 

two mutant cell lines must be sensitive). To ensure that the code produces at least 

one output for visualization, the enrichment with the best p-value is retained, 

even if it fails all the other criteria.

37. This step illustrates a relatively simple use of DFkeeprow.m to apply an 

accumulated set of filters (see also Note 19). To see output corresponding to 

those results passing each filter, a user could call DFkeeprow.m using each of the 

separate components (procedure2Enrichment.m, lines 71—76) in turn.

38. To use the consecutive compound index applied to the data from the original 

study [2], this procedure leverages the metadata file specific to that study (see 
also Note 26).

39. With the extensive pre-filtering of enrichment results based on confidence, 

purity, and overlap, the selection of data for visualization simply takes the most 

statistically significant result remaining after applying the filters. However, 

multiple parameters besides the p-value are retrieved from the results record for 

use in the visualization.

40. We note that human-readable context names and cell-line features are procured 

for use in the visualization directly from the result table, while compound names 

are procured from the master metadata. In general, we prefer a discipline where 

each human-readable string is stored exactly once, and database-like identifiers 

are used to represent data as far into a procedure as possible (e.g., until needed 

for visualization). We deliberately employed a mixed strategy here for 

illustration purposes.
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41. The figure code is deliberately included in the calling script master.m (see also 
Note 23).

42. In this procedure, new numeric data are imported for AUCs, as well as for basal 

gene-expression values corresponding to our prior study of their cross-

correlations [3]. However, we re-use the compound metadata from Procedure 1 
and the cellular provenance information (lineage, histology, demographic) data 

from Procedure 2. Thus, if Procedure 3 is run in isolation, users should still 

load all data and metadata files specified in master.m.

43. On first use, we recommend simply running the subsidiary script from within 

master.m, and skipping to Step 17. Doing so will ensure the user can get to 

Figure 3 more quickly and validate that procedure3Correlation.m runs to 

completion in their environment. Detailed exploration of the inner workings of 

procedure3Correlation.m (Steps 3—16) can be saved for later exploration.

44. Unlike Procedure 2, here we use the master identifiers for compounds and cell 

lines (see also Note 21 and Note 26).

45. Again, we seed an appropriately-sized matrix with NaN (not a number) values to 

anticipate missing data (see also Note 27).

46. Indexing a DataFrame of gene-expression scores by cell lines works just as it 

does for AUCs by cell lines, but instead using a unique numeric identifier for 

gene names (see also Note 7).

47. As complete coverage of all cell lines with gene-expression data is not 

guaranteed, we start by seeding an appropriately-sized matrix with NaN (not a 

number) values (see also Note 27 and Note 45).

48. We select a lineage (primary site) with at least 16 representative cell lines for 

illustration purposes. The user can modify this choice to expand the set of terms 

available or modify the code to specify a lineage of interest.

49. Though our correlation procedure can handle missing values, we save some 

computation time by eliminating in advance those cell lines that have either no 

expression data or no sensitivity data. This step has the added benefit, as 

implemented, of aligning our sensitivity and gene-expression matrices so their 

columns correspond to the same cell-line identities as each other, in the same 

order.

50. An important idea in correlation analysis is that a gene whose expression 

correlates with small-molecule sensitivity has sufficient dynamic range to qualify 

as a potentially useful biomarker. Strong correlations with low effect sizes are 

less interesting. In practice, we save computation time by ruling out genes with 

low dynamic ranges in advance of computing correlations, but after the set of cell 

lines under consideration is known.

51. An important idea in correlation analysis is that compounds under consideration 

evince differential sensitivity across a set of cell lines, related to the idea of the 

“therapeutic window” between efficacy and toxicity. In practice, we save 
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computation time by ruling out compounds with low dynamic ranges (or with 

little killing at all) in advance of computing correlations, but after the set of cell 

lines under consideration is known.

52. We choose 12 random compounds, strictly to keep demonstration run-times low 

(see also Note 32).

53. The primary correlation analysis at this stage is to perform many pairwise 

correlations between compound sensitivities and gene-expression levels. While 

we do take advantage of MATLAB’s powerful built-in pairwise similarity 

infrastructure, we note that accounting for missing values requires that we 

normalize correlation coefficients using Fisher’s z-transformation [37] to account 

for different numbers of cell lines participating in different comparisons. We 

implement these steps using the custom function nanpw2fishz.m and custom 

distance measure nanpwcor.m. We recommend studying the documentation 

within these two functions to learn how they operate in detail.

54. Since the output of nanpw2fishz.m is still a (potentially large) matrix of 

sensitivity-expression cross-correlations, we perform initial basic statistical 

filtering here, separately from quality-control filtering conducted downstream (in 

contrast to Procedure 2, where we performed both together).

55. We deliberately refrain from resolving compound and gene identifiers to human-

readable names at this stage (see also Note 40).

56. For use in later visualizations, we record several (non-independent) expressions 

of the correlation, including the number of cell lines involved, the raw correlation 

coefficient, the correlation z-score from Fisher’s z-transformation [37], and a p-

value derived from the Fisher’s z-transformation.

57. Experience has shown that statistical significance of a correlation result is 

necessary but not sufficient to warrant continued biological interest. Accordingly, 

we apply several additional filters on results to be output, including a minimum 

of 8 involved cell lines in the reference code (a relatively arbitrary value that is 

easy to modify). Most importantly, we have previously noticed many cases 

where a single cell line is responsible for the dynamic range of either sensitivity 

or gene-expression levels, and we are wary of investing much energy on such 

results even if their nominal p-values appear satisfactory. For nominally 

significant results, therefore, we censor the most extreme-valued cell line at each 

end of both the sensitivity and gene-expression distributions, then re-check 

whether the dynamic range of each vector satisfies our original criteria (see also 
Note 50 and Note 51). To ensure that the code produces at least one output for 

visualization, the correlation with the best p-value is retained, even if it fails 

these additional criteria.

58. With the extensive pre-filtering of correlation results based on dynamic-range 

considerations, the selection of data for visualization simply takes the largest raw 

(absolute) correlation coefficient result remaining after applying the filters (see 
also Note 39).
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59. We note that human-readable context names are procured for use in the 

visualization directly from the result table in this case, while compound and gene 

names are procured from the master metadata (see also Note 40 and Note 55).

60. The figure code is deliberately included in the calling script master.m (see also 
Note 23).
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Figure 1: 
Representative curve-fit visualization showing the differential sensitivity of two cell lines. 

Two plots are presented for each of two cell lines, one more sensitive (red) and one less 

sensitive (blue), to navitoclax, a compound annotated in the Cancer Therapeutics Response 

Portal (CTRP; http://portals.broadinstitute.org/ctrp) as an inhibitor of BCL2, BCL-xL, and 

BCL-W. Unconnected crosses represent the original data and are labeled in the MATLAB 

figure legend with the cell-line name. Line plots with error bars represent the corresponding 

fit curves and are labeled in the MATLAB figure legend with the computed area-under-curve 

(AUC).
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Figure 2: 
Representative visualization of enrichment analysis for a single compound tested in multiple 

cell lines of the same type. In this case, 25 breast-derived cancer lines were tested with 

RAF265 (annotated in CTRP as an inhibitor of VEGFR2 and BRAF), and then sorted by 

area-under concentration-response curve (AUC) in the top left panel (increasing red color 

represents lower AUCs below the mean and therefore more sensitivity). Enrichment analysis 

resulted in an optimal cutoff of AUC < 12.2 which corresponds to 8 total cell lines in the 

bottom left panel, of which 6 carry a coding mutation in TNRC6B (red = has mutation; pink 

= lacks mutation). These were the only 6 TNRC6B mutants in this subset of 25 breast 

cancer-derived cell lines. The right panel depicts an alternative representation (box-whisker 

plot) and statistical analysis (t-test) of the same information, showing the relative 

distribution of AUC values for cell lines with or without coding mutations in TNRC6B.
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Figure 3: 
Representative visualization of correlation analysis for a single compound tested in multiple 

cell lines of the same type. In this case, 15 bone-derived cancer lines were tested with 

gemcitabine (annotated in CTRP as an inhibitor of CMPK1, RRM1, TYMS). Sensitivity to 

gemcitabine (low AUC) is correlated with low expression of SERPINE1 in these cell lines, 

and each of the AUC and gene-expression distributions exhibit good dynamic ranges as 

described in the text (see also Note 57).
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