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Abstract 

The neural crest gives rise to a number of adrenergic 
derivatives, including sympathetic neurons and adrenal chro- 
maffin cells, which contain catecholamines (CAs) but differ 
in other morphological and functional characteristics. Small 
intensely fluorescent (SIF) cells, which exist primarily as a 
minority cell population in autonomic ganglia, are a third cell 
type in the sympathoadrenal branch of the neural crest line- 
age. In some respects these cells appear intermediate in 
phenotype between sympathetic neurons and adrenal chro- 
maffin cells. We established pure dissociated cell cultures 
of SIF cells from rat superior cervical ganglia (SCG) and used 
these to study the role of environmental factors in SIF cell 
development and the relationship of these cells to the other 
cell types of the sympathoadrenal lineage. 

When cells from neonatal rat SCG were grown for 3 weeks 
in the presence of glucocorticoid and in the absence of nerve 
growth factor (NGF), pure cultures of SIF cells developed. 
The properties of the cells included (i) small cell size and the 
occasional presence of short neurites, (ii) intense CA histo- 
fluorescence and immunoreactivity for CA synthetic en- 
zymes, (iii) synthesis and storage of CA from radioactive 
precursors, and (iv) characteristic ultrastructure. The con- 
centration of the glucocorticoid and the presence or absence 
of non-neuronal cell factors influenced which types of SIF 
cells developed. In micromolar glucocorticoid most of the 
cells resembled adrenal chromaffin or type II SIF cells: they 
displayed immunohistochemically detectable phenylethanol- 
amine-N-methyltransferase (PNMT), synthesized and stored 
epinephrine, and contained large granular vesicles (100 to 
300 nm). When SCG cells were grown in lo-* M hormone, 
many fewer SIF cells developed and a higher percentage of 
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these lacked PNMT immunoreactivity, had neurites, and con- 
tained vesicles of smaller mean diameter (70 to 130 nm), 
similar to those of type I SIF cells in viva. In the presence of 
conditioned medium (medium conditioned by non-neuronal 
cells) as well as glucocotticoid, virtually all of the cells 
morphologically resembled type I SIF cells. In the absence 
of glucocorticoid, no SIF cells were ever observed after 3 
weeks in culture. 

By following the development of CA histofluorescence and 
SIF cell ultrastructure in the cultures over time, we demon- 
strated that SIF cells were not present in large numbers in 
these cultures immediately after plating, but were induced 
from an apparently undifferentiated precursor by the hor- 
monal environment, whereas most of the principal neurons 
died. When corticosteroid was subsequently withdrawn from 
mature SIF cell cultures and replaced by NGF, the SIF cells 
responded with neurite outgrowth and conversion into neu- 
rons. They increased in size, lost their intense cell body CA 
histofluorescence and large granular vesicles, and acquired 
characteristic neuronal ultrastructure including small clear 
vesicles and morphologically specialized synapses. Thus, 
there are cells in the SCG with the potential to become either 
SIF cells or neurons, and NGF and glucocorticoids influence 
this choice. As described in the preceding paper for adrenal 
chromaffin cells in NGF (Doupe, A. J., S. C. Landis, and P. H. 
Patterson (1985) J. Neurosci. 5: 2119-2142), type II SIF cells 
transiently acquired vesicles of SIF type I size during the 
conversion to neurons. Furthermore, when both NGF and 
corticosteroid were added to mature SIF cell cultures, many 
of the cells also assumed an intermediate phenotype resem- 
bling type I SIF cells. 

The studies in this and the preceding paper provide evi- 
dence for a role of environmental factors in neural crest 
differentiation. Similar factors could act during normal devel- 
opment and may explain the characteristic localization and 
heterogeneity of these phenotypes in viva. Moreover, the 
central position of type I SIF cells in the interconversions 
demonstrated in vitro and the morphological similarity of 
these cells to early sympathetic precursors suggest that SIF 
cells may normally be precursors to the entire autonomic 
lineage of the neural crest in vivo. 

Sympathetic principal neurons and adrenal chromaffin cells are 
both neural crest derivatives. They synthesize and store catechol- 

amines (CAs) but differ in a number of morphological and functional 
characteristics (Coupland, 1965a, b; Grille, 1966; Grynszpan-Wino- 
grad, 1975). A variety of evidence suggests that the cellular and 

hormonal environment surrounding these cells during development 
plays an important role in generating the different phenotypes (see 
Doupe et al., 1985). There is a third cell type in the sympathoadrenal 
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branch of the neural crest lineage, which is intermediate in a number 
of respects between the other two cell types. Small intensely flu- 
orescent (SIF) cells, sometimes referred to as extraadrenal chromaf- 
fin cells, resemble adrenal chromaffin cells in that they have small 
(10 to 15 wm) cell bodies (Eranko and Harkonen, 1963, 1965; 
Norberg et al., 1966) packed with large CA storage granules (Grillo, 
1966; Siegnst et al., 1966; Matthews and Raisman, 1969; Williams 
and Palay, 1969). In contrast, some SIF cells have neurites (Owman 
and Sjostrand, 1965; Norberg et al., 1966) and make synapses as 
do sympathetic neurons (Williams, 1967; Siegrist et al., 1968; Yokota, 
1973; Taxi, 1979). SIF cells exrst either as mrnority populations in 
autonomic ganglia, where they are usually clustered around blood 
vessels, or as small clusters of cells (paraganglia) along nerves and 
blood vessels in the abdomen (McDonald and Blewett, 1981). There 
is a small population of SIF-like cells in the adrenal medulla, referred 
to as small granule chromaffin cells (Coupland et al., 1977, 1978). 
The carotid body, which has been shown by quail-chick grafts to be 
derived from rhombencephalic crest (Le Douarin and Teillet, 1974) 
also consists primarily of SIF cells (Kobayashi, 1971). Thus, SIF cells 
are derived from many axial levels of the neural crest and are widely 
distributed throughout the body. 

How IS this cell type generated during embryogenesis? It has 
been observed that there are more SIF cells earlier in development 
than later (Lempinen, 1964). This decrease in SIF cell numbers can 
be influenced by glucocorticoid hormones. Lempinen (1964) showed 
that the postnatal degeneration of certain extra-adrenal chromaffin 
tissues could be prevented with corticosteroid, and Eranko and 
colleagues (Eranko and Eranko, 1972; Eranko et al., 1972a) dem- 
onstrated that the superior cervical ganglia (SCG) of rats treated at 
brrth wrth glucocorticoid subsequently had 10 times as many SIF 
cells as did untreated siblings. The mechanism of the hormone 
effect on the SCG IS unknown: it could be due to prevention of SIF 
cell degeneration, Induction of mitosis, or recruitment of cells from 
another population. 

In contrast, the sympathetic neurons that surround most SIF cells 
in viva depend on nerve growth factor (NGF) for their survival and 
differentiation. The effects of NGF on SIF cells are not known. The 
occasional SIF cells observed in cultures of embryonic chick sym- 
pathetic ganglia appeared to survive in the absence of NGF but 
grew processes more slowly than in the presence of the growth 
factor (Jacobowitz and Greene, 1974). Studies in viva with NGF 
injections also suggested that some carotid body SIF cells might be 
NGF responsive (Aloe and Levi-Montalcinr, 1980). 

Another striking characteristic of SIF cells IS their heterogeneity 
(see Tax\, 1979, for review). Their CA storage vesicles are of different 
sizes, and this variation forms the basis for one classification system 
of SIF cells in VIVO: type II cells have granular vesicles with an average 
diameter similar to that of adrenal chromaffin granules (150 to 300 
nm), whereas type I SIF cells have smaller vesicles with an average 
diameter (80 to 100 nm) intermediate between that of synaptic 
vesicles (50 nm) and chromaffrn granules (cf. Siegrist et al., 1968; 
Matthews and Raisman, 1969; Taxi, 1979). The distribution of these 
cell types varies according to species and ganglia. Type I cells 
predominate in the rat SCG, for instance, but constitute only 30% 
of SIF cells in celiac-mesenteric ganglia (Lu et al., 1976). In contrast, 
only type II cells were observed in rat pelvic ganglia (Dail et al., 1975) 
and in guinea pig inferior mesenteric ganglia (Elfvin et al., 1975). 
The major CA stored by SIF cells also varies among species and 
among ganglia and even within the same ganglion. For instance, 
the predominant CA stored by the majority of SIF cells in the rat 
SCG is dopamine, although some SCG cells store norepinephrine 
(Bjorklund et al., 1970; Fuxe et al., 1971; Rybarczyck et al., 1976). 
In rat pelvic ganglia, most cells probably synthesize norepinephrine 
(Rybarczyck et al., 1976). In the guinea pig, most SCG SIF cells 
contain the synthetic enzymes for norepinephrine, whereas in the 
inferior mesenteric ganglion some SIF cells store predominantly 
epinephrine (Elfvin et al., 1975). It is not clear how this heterogeneity 
arises. 

Many of the questions about SIF cell development and the 
potential role of environmental factors might be usefully addressed 
in cell culture. In the work described here, pure dissociated SIF cell 
cultures from rat SCG were established and characterized. We then 
used these cultures to study the developmental roles of glucocorti- 
coids, NGF, and conditioned media (CM). The findings in this and 
the preceding paper (Doupe et al., 1985) also shed light on the 
relationship between SIF cells and the other cell types of the 
sympathoadrenal lineage. Preliminary accounts of this work have 
appeared (Doupe and Patterson, 1980; Doupe et al., 1980). 

Materials and Methods 

S/F cell culture. Neonatal (1 to 3-day-old) rats (CD strain, Charles River 
Breeding Laboratories, Wilmington, MA) were killed by a blow to the head, 
and the SCG were removed, placed in L15-Air plating medium (Mains and 
Patterson, 1973), cleaned of surrounding tissue and the collagenous gangli- 
onrc sheath, and mechanically dissociated with forceps. After allowing 
undissociated fragments to settle at room temperature in a conical centrifuge 
tube for 5 mm, the supernatant containing the dissociated cells was set 
aside. The ganglionrc pellet was passed through a 22 gauge needle three 
times to dissociate it further; more plating medium was then added and the 
fragments were allowed to settle for 5 to IO min. The supernatant from thus 
drssocratron was added to the first, and the cells were centrifuged at 800 X 

g for 5 mm. The pellet was resuspended in a small volume of growth medium 
and plated into culture dashes at a density corresponding to approximately 5 
to 6 ganglra/dtsh. When growth in 5 PM dexamethasone (Sigma Chemical 
Co., St. LOUIS, MO), each dish had 200 to 300 cells after 2 to 3 weeks. 

All other methods In this paper are as described in the precedrng paper 
(Doupe et al., 1985). 

Results 

S/F cell cultures. The known effects of glucocorticoids on devel- 
oping SIF cells (Eranko et al., 1972a) and on rat adrenal chromaffin 
cells (see Doupe et al., 1985) suggested that these hormones might 
be useful in attempting to establish dissociated cell cultures of SIF 
cells, Cells mechanically dissociated from the SCG of newborn rats 
were therefore plated into medium containing 5 PM dexamethasone, 
a synthetic glucocorticoid. The medium contained no NGF, and non- 
neuronal cells were eliminated by treatment with antimitotic agents. 
In this situation cultures of small round or polygonal cells developed 
in the virtual absence of neurons and non-neuronal cells. The same 
results were obtained when 5 PM hydrocortisone succinate or cort- 
costerone were substituted for dexamethasone. Without the addition 
of corticosteroid or in the presence of 5 PM progesterone, none of 
these small cells were ever observed at 3 weeks in vitro. The same 
cell suspension plated into NGF-containing medium without gluco- 
corticoid gave rise to pure cultures of sympathetic neurons. 

The small cells in cultures grown for 3 weeks in 5 PM glucocorticoid 
were characterized in a variety of ways. Their appearance in the 
phase microscope was similar to that of adrenal chromaffin cells: 
their cell bodies were small (10 to 20 pm), usually round and phase- 
bright, although occasionally more fusiform and flattened, and con- 
tained a small nucleus and nucleolus (Fig. 1 a). Three to 18% of the 
cells had neurites, which varied in length (Fig. ic). All of the cells 
had intense formaldehyde- or glyoxylic acid-induced CA fluores- 
cence (Fig. 1, b and d). When examined with the electron micro- 
scope, these cells had little rough endoplasmic reticulum but nu- 
merous free polyribosomes and Golgi bodies. Many cells had chro- 
matin condensed along the nuclear envelope. Most strikingly, their 
cell somas and, when present, their neurites, contained numerous 
large CA storage granules, occasionally interspersed with clusters 
of small 50.nm vesicles (Fig. 2, a and b). In cultures grown in the 
presence of 5 /IM dexamethasone, the majority of cells had granular 
vesicles with an average diameter of 137 + 7 nm (SEM), which is 
similar to the diameter of adrenal chromaffin granules of type SIF II 
cells (Table I), Cells with an average vesicte diameter of 99 f  1 nm, 
as in type I SIF cells, were also observed, however (Fig. 2b). 
Sometimes vesicles were clustered at the membrane, at areas 
resembling release sites (Fig. 2~). 
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F/gure 7. SIF cells cultured from newborn rat 
SCG The phase mlcroscoplc appearance and cor- 
responding Intense glyoxylrc acid-induced CA flu- 
orescence of a cluster of SIF cells are shown In a 
and b SIF cells wrth neurltes In the phase micro- 
scope and their corresponding Intense CA fluores- 
cence are Illustrated In c and d. Magnlflcatlon x 
420 

Synthesis and storage of CA were measured by incubating the 
cultures for 48 hr with [‘4C]tyrosine. The labeled products were 
extracted in 0.17 M acetic acid, separated by high pressure liquid 
chromatography and counted. Cultures grown in 5 ELM glucocorticoid 
synthesized and stored 4.9 + 0.9 fmol of CA/cell, an amount similar 
to that stored by cultured adrenal chromaffin cells (Table I; Doupe 
et al., 1985). The products included all three neurotransmitters, 
norepinephrine, epinephrine, and dopamine, and the ratio of epi- 
nephrine to norepinephrine was 3.8 + 0.3. Dopamine represented 
18.8 ?I 1 .l% and norepinephrine represented 16.2 f  0.9% of the 
CA synthesized and stored. lmmunohistochemical studies with anti- 
bodies to the CA-synthetic enzyme allowed analysis of the probable 
transmitter phenotype of individual cells. There were 86.5 + 2.0% 
of the cells containing immunohistochemically detectable phenyleth- 
anolamine N-methyltransferase (PNMT) and 92.9 + 1.5% containing 
dopamine P-hydroxylase (DBH)-immunoreactive material (Table I, 
Fig. 3). The majority of cells therefore appeared to store epinephrine, 
but these results also suggested that there were as many as three 
different cell populations in the cultures; that is, cells storing predom- 
inantly norepinephrine (which displayed DBH but no PNMT immu- 
noreactivity) and cells storing only dopamine (without DBH or PNMT 
immunoreactivity), in addition to the PNMT-immunoreactive cells. 

Thus, when cells from neonatal rat SCG were grown in dissociated 
cell culture with 5 PM glucocorticoid, pure cultures of cells with the 
characteristic morphology, CA fluorescence, ultrastructure, and bio- 
chemical properties expected of mature type I and type II SIF cells 
were obtained. 

Development of S/F cells in culture. What is the origin of the well 
differentiated SIF cells seen after 3 weeks in vitro? One possrbrlity is 
that these cells are pre-existing, fully differentiated SIF cells which 
were dissociated from the neonatal SCG and survived under these 
culture conditions. Alternatively, the SIF cells might have differen- 
tiated in vitro under the influence of glucocorticoid. To distinguish 
these possibilities, cell cultures were analyzed at various times after 
plating. Most cells did not display the intense fluorescence and 
characteristic ultrastructure of SIF cells at early times in vitro. Instead, 
these properties developed slowly over the first 7 to 10 days In 
culture. The development of CA fluorescence is shown in Figure 4. 
The number of pre-existing, differentiated SIF cells present very early 
after plating was variable, but the total number of fluorescent SIF 
cells always increased 3- to lo-fold in the first week. Most of the 
differentiated principal neurons died in the first 1 to 4 days after 
plating. There were few PNMT-immunoreactive cells in the cultures 
at 24 hr after platrng, although sister cultures had several hundred 
PNMT-staining cells after 3 weeks in vitro. In young cultures exam- 
ined with the electron microscope, the cells lacked the defining 
characteristics of mature SIF cells, did not resemble neurons, and 
appeared immature. Figure 5 shows a representative cell from a 4- 
day-old culture in 5 FM dexamethasone: it has relatrvely lrttle cyto- 
plasm and the cell body lacks CA storage granules. A few cells 
containing scattered chromaffin vesicles of type I size were also 
observed. After 7 to IO days in culture, the cell number was stable, 
more than 95% of the cells displayed intense CA fluorescence, and 
virtually all of the cells examined had characteristic granular vesicles. 



F/gure 2. Ultrastructure of cultured SIF cells a, Cell bodres have very lrttle rough endoplasmrc retrculum, abundant Golgr and free polynbosomes, and 
numerous large catecholamrne storage vesrcles. Magnification X 11,800. SIF cell CA granules are shown at higher magnrfrcatron in b and c. Note that In b 
the cell to the lower left IS a type II cell, wrth granules 150 to 300 nm In drameter, while the cell on the upper r/ght IS a type I cell (vesicles 80 to 150 nm In 
drameter), as IS the cell In c Arrowheads pornt to small vesrcles. Occasronal SIF cells show accumulatrons of small vesicles focused at areas resemblrng 
release sates (c) Magnrfrcatron x 43,700 
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TABLE I 
D/fferent/ated characteristics of SIF cells grown /n various concentrations of glucocorticold hormone In the presence or absence of CM 

Percentage Percentage Glucoconrcord 
PNMT+ DBH+ 

5 PM dexb 86.5 f  2.0 92.9 + 1.5 

(n = 6)” (n = 4) 

1 O-’ M dex 668+39 81.7 k 17 

(n = 5) (n = 2) 

5 PM dex + CM 69.0 rt 6.9 ND 
(n = 4) 

lo-* M dex + CM 20.4 f  5.2 ND 

(n = 5) 

’ E, eprnephnne, NE, noreprnephnne 
b dex, dexamethasone 

’ n. number of cultures tested or cells in whrch vesicles were measured. 
d ND, not determrned 

CA Syntheses 

fmol/cell E/NE” 

4.9 + 0.9 3.8 f  0.3 
(n = 8) (n = 9) 

ND” ND 

ND ND 

ND ND 

Vesrcle 
Drameters 

W-0 

1:137+7 

(n = 6) 
II: 99 + 1 

(n = 3) 
I: 82+7 

(n = 2) 

I. 65 + 2 
(n = 6) 

I: 60+3 
(n = 4) 

Figure 3. CA synthetic enzymes in SIF cells in vitro. Cells display immunoreactivity to DBH (a) and PNMT (b). Arrows point to cells without detectable 
immunoreactivity. c shows a DBH-immunoreactive cell with a neurite. Magnification x 420. 

Therefore, most SIF cells appeared to be differentiating in vitro. It Role of corticosteroid concentration. Most SIF cells in the rat SCG 
was surprising that so few of the pre-existing SIF cells in the ganglion 
were found in these cultures. Many SIF cells were clearly not well 

in vivo are dopaminergic and have type l-sized vesicles (Bjorklund 
et al., 1970; Fuxe et al., 1971; Lever et al., 1976; Rybarczyck et al., 

dissociated from the blood vessels in this mechanical dissociation 1976). In contrast, more than 80% of the SIF cells grown in 5 PM 

procedure, since numerous intensely CA-histofluorescent cells were glucocorticoid were PNMT immunoreactive, and most of the cells 
observed in the remnants which settled out of the cell suspension had large, type II granular vesicles. The cultured cells therefore 
and were not used for plating (Fig. 6). resembled chromaffin cells of the rat adrenal medulla (see Doupe et 
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Figure 4 Development of Intense CA fluorescence in cultures grown with 

5 NM dexamethasone. All of the Intensely fluorescent cells In each of three 
sister cultures were counted In the fluorescence mlcroscope at the lndlcated 
days after plating. Numbers are expressed as mean ? SEM. In the experiment 
shown, SIF cells were on a collagen substrate and the Falck-Hillarp reactlon 
was used to detect CA. Slmllar results were seen with the giyoxylic acid 
reaction. When cells were plated on a more adhesive substrate (such as 
bovine cornea1 ECM). the initial number of fluorescent cells detected at days 
1 and 2 was always higher but nonetheless increased 3- to IO-fold during 
the first week In culture. 

al., 1985) more than they did the majority of SCG SIF cells in viva. 
In the normal environment of medullary chromaffin cells, glucocort- 
coid levels are in the micromolar range, which is several orders of 
magnitude higher than in the general circulation. Moreover, gluco- 
corticold IS known to induce PNMT and epinephrine synthesis in 
developing SIF cells of the SCG (Ciaranello et al., 1973; Bohn et al., 
1982). These observations raised the possibility that the level of 
glucocorticoid hormone might play a role in determining the trans- 
mitter of the cultured SIF cells and the proportion of type I and type 
II cells in the cultures. To test this, cells dissociated from newborn 
SCG were grown in the presence of 1 O-@ M dexamethasone instead 
Of5X10-6M. 

All the cells present in the cultures after three weeks growth in 
lo-’ M steroid were differentiated SIF cells, displaying intense CA 
fluorescence and characteristic SIF cell ultrastructure (Fig. 7, a and 
c). The most striking effect of the lower hormone concentration was 
on SIF cell number. The relationship of SIF cell number to hormone 
concentration is shown in Figure 8. Essentially no SIF cells were 
observed until hormone concentrations were greater than lo-’ M, 
and the number of cells at lo-@ M was routinely 3 to IO times lower 
than at saturating concentrations (IO+ M). In many experiments 
there was a decrease in SIF cell number at low4 M dexamethasone 
or above. As was true for adrenal chromaffin cells (Doupe et al., 
1985), even differentiated SIF cells depended on glucocorticoid for 
continued survival and maintenance of differentiation in culture. 
When corticosteroid was withdrawn from SIF cell cultures that had 
grown for 2 weeks in 5 FM dexamethasone, only 55.1 f  0.4% (n = 
2) of the original number of SIF cells were alive after a further 2 
weeks, compared to 85.6 * 5.2% (n = 2) of SIF cells maintained in 
high glucocorticoid. 

A second effect of growth in lower hormone concentration was 
that a higher percentage of cells had neurites. In general, the 
proportion of cells bearing neurites was influenced by the culture 
substrate: cells grown on collagen had fewer neurites than cells 
grown on a more adhesive substrate, collagen coated with bovine 
cornea1 endothelial cell extracellular matrix (ECM) (Fujii et al., 1982; 
Doupe et al., 1985). Nonetheless, the difference between the two 
hormone concentrations in the percentage of neurite-bearing cells 
was seen on all culture substrates. On bovine ECM, 10.6 + 0.4% 

(n = 4) of the cells in 5 PM dexamethasone had long (>5 cell body 
diameters) neurites, compared to 24.8 f  1.6% (n = 4) of cells in 
lOpa M hormone. Cells with neurites were frequently observed to be 
associated with the occasional fibroblast-like cells remaining in the 
cultures. These non-neuronal cells may represent a source of NGF- 
like activity and promote neurite outgrowth, but they were present 
in similar amounts in the two hormone concentrations and thus did 
not explain the observed hormone-dependent difference in neurite 
outgrowth. 

A third effect of low hormone concentration was on the relative 
numbers of SIF cell types. The proportion of cells with type I SIF cell 
morphology was higher in lo-* M corticosteroid than in 5 PM, 

although some type II cells were clearly present. Typical type I and 
II SIF cells grown in lo-’ M dexamethasone are shown in Figure 7, 
a and c. Biochemical analysis of the transmitter synthesized by SIF 
cells grown in lo-@ M hormone was more difficult because of the 
low cell number. It was clear, however, that some epinephrine was 
still synthesized and stored In these cultures (data not shown), 
although the epinephrine/norepinephrine ratio was lower than in cells 
grown in 5 PM dexamethasone (ranging from 0.2 to 2.4 in lo-@ M 

dexamethasone). SIF cells in IO-’ M glucocorticoid also had PNMT 
and DBH immunoreactivity. The percentage of PNMT-immunoreac- 
tive cells was 66.8 + 3.9%, compared to greater than 80% for cells 
in 5 /IM hormone (Table I). The percentage of DBH-immunoreactive 
cells was 81.7 + 1.7 (Table I), also lower than in micromolar 
glucocorticoid. Thus, cultures grown at lower hormone concentra- 
tions contained more cells with type I ultrastructure and more cells 
without PNMT or DBH immunoreactivity, although there were also 
type II and PNMT-immunoreactive SIF cells present. 

Effects of conditioned medium. Growth in IO-* M hormone did 
not yield a population composed exclusively of dopaminergic, type 
I SIF cells such as those which normally predominate in the adult rat 
SCG. Other potential environmental factors Include the non-neuronal 
cells in the ganglion, such as satellite cells, fibroblasts, or cells of 
the blood vessels around which SIF cells are usually clustered. To 
assess the role of non-neuronal cell factors, serum-free CM was 
added to the hormone-containing medium. To block the small 
amount of NGF-like activity that is known to be produced by these 
non-neuronal cells in culture (Chun and Patterson, 1977), an antise- 
rum to NGF was included with the CM. Essentially all of the cells 
observed after 3 weeks of culture in this medium were small and 
showed intense CA fluorescence (data not shown). Cell sumival was 
not different in the presence of CM + steroid compared to steroid 
alone, and no SIF cells were observed in cultures grown with CM 
but in the absence of glucocorticoid. The presence of CM in the 
hormone-containing medium resulted in a much higher percentage 
of cells with long neurites. A total of 68.8 + 0.5% (n = 2) of the 
cells grown in the equivalent of 100% CM and 5 PM glucocorticoid 
had processes, whereas 93.4 + 3.2% (n = 4) of cells grown in lOma 
M glucocorticoid and CM had neutites. Ultrastructural studies of 
these cells revealed that virtually all of the cells had type I morphol- 
ogy, that is, granular vesicles of intermediate diameter (70 to 120 
nm) and occasional clusters of 50.nm vesicles (Table I, Fig. 7, b and 
d). This result was observed both in 5 FM and IO-’ M glucocorticoid. 
Representative distributions of vesicle diameters (measured in the 
cell bodies) are shown in Figure 9. The mean diameter of granules 
in 5 PM glucocorticoid plus CM was 65.1 + 2.4 nm and in 10m8 M 
dexamethasone plus CM it was 59.8 f  2.7 nm (Table I). This mean 
is smaller than granules in type I SIF cells in glucocorticoid alone. In 
some cases the smaller mean diameter reflected a large population 
of 50.nm vesicles in addition to type I SIF vesicles (Figs. 7d and 9c). 
In other cases there appeared to be one population of vesicles with 
a smaller mean granule diameter than in type I SIF cells in hormone 
alone (Figs, 8b and 9c). This diameter is similar to that observed by 
some authors for rat carotid body SIF cells (Hellstrom, 1975). 

Cells grown in hormone and CM were also analyzed for the 
presence of DBH and PNMT immunoreactivity (Table I). In contrast 
to cultures grown in 5 PM hormone alone, only 69.0 + 6.9% of cells 
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Frgure 5 Development of SIF cells In culture Representative cells from an SIF cell culture 3 5 days after platrng. Note that both cell bodres 
free of CA granules The large electron-dense organelles are lysosomes Magnrfrcatron x 11.800. 

are virtually 

Figure 6 Glyoxylrc acid-induced CA fluorescent cells are apparent In the 
ganglronrc pellet not used for platrng These SIF cells retarn Intense CA 
fluorescence during drssocratron Magnrfrcatron x 350 

in 5 PM glucocorticoid plus CM were immunoreactive for PNMT. 
PNMT immunoreactivity was variable in cultures grown in lo-’ M 

dexamethasone plus CM, but the percentage of positive cells was 
very low, ranging from 0 to 27.3% (mean 20.4 rt 5.2%). In preliminary 
experiments, DBH immunoreactivity was only slightly reduced in 
cultures grown in 5 PM hormone plus CM (87% versus 93% in 5 PM 

hormone alone). SIF cells developing in the presence of non-neuronal 
cell CM as well as glucocorticoid were more likely to have neurites 
and displayed a lower percentage of PNMT immunoreactivity; vir- 
tually all contained granular vesicles of small or intermediate diame- 
ters and, thus, were more like type I SIF cells in viva. 

Effects of NGF. Adrenal chromaffin cells are NGF-responsive 
(Olson, 1970; Unsicker et al., 1978; Aloe and Levi-Montalcini, 1979; 
Tischler et al., 1980) and can become indistinguishable from sym- 
pathetic neurons with long-term culture in NGF (see Doupe et al., 
1985). To examine the NGF response of SIF cells, cells from the 
newborn rat SCG were grown in 5 I.LM dexamethasone for 10 to 12 
days, by which time all of the cells in the culture were differentiated 
SIF cells. When the glucocorticoid was withdrawn and NGF added, 
75 to 85% of the cells responded with process outgrowth. The 
majority of these cells proceeded to lose their intense CA fluores- 
cence (see Fig. 11) and to assume a neuronal morphology (Figs, IO 
and 11; Fig. 10 shows the conversion of identified SIF cells into 
neurons, followed over 2 weeks in culture). 

SIF cell-derived neurons also displayed neuronal ultrastructure: 
their cell bodies were enlarged and contained abundant rough 
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Figure 7. Cultured SIF cells in low (lOma M) hormone concentration or in the presence of CM as well as hormone. The ultrastructure of a type II cell in an 
SIF ceil culture with lo-’ M dexamethasone is shown in a and that of a type I SIF cell in the same culture is shown in c. Magnification x 43,700. b and d 
show granular vesicles from two different cells in 5 pM hormone plus CM. Magnification X 43,700. 

endoplasmrc retrculum and Golgr apparatus, and were no longer 
frlled with CA granular vesicles. Their long axons had vancosities 
containrng small synaptic vesicles, as well as occasional larger, 
neuronal dense-cored vesicles. These neurons formed morphologi- 
cally specialrzed synapses with each other within 2 weeks of NGF 
addrtron (see Fig. 13). The ultrastructure of the Identified SIF cell- 
derived neurons tn Figure 10 IS shown in Ftgures 12 and 13. 

As IS true of adrenal chromaffin cells (Lietzke and Unsrcker, 1983; 
Doupe et al., 1985) SIF cells acqutred a number of neuronal markers 
in response to NGF. At days 10 to 12 in vitro, only 25.5 f  9.6% (n 
= 5) of SIF cells grown in 5 x lO-‘j M steroid showed labeling with 
tetanus toxin and anti-tetanus toxord. In dexamethasone-containing 
cultures, this percentage increased over the next 3 weeks tn culture 
to 56.4% + 4.5% (Table II); the tetanus toxin-labeled population 
included all of the SIF cells with short processes and 30.8% (n = 3) 
of SIF cells without processes. After 3 weeks with NGF, however, 
89.6 + 5.2% of the cells in the cultures bound tetanus toxin on their 

cell bodies and their processes (Fig. 11 c, Table II): this percentage 
included all of the cells with processes and a small number of SIF 
cells without processes. 

The percentage of SIF cells that grew processes in response to 
NGF alone was 82.4 + 5.1 (Table II). This neurite outgrowth response 
is therefore much more vigorous than that of cultured adrenal 
chromaffin cells. Only IO to 40% of medullary chromaffin cells 
responded to NGF alone with neuronal conversion, whereas most 
other chromaffin ceils died (Doupe et al., 1985). Inclusion of heart 
cell CM plus NGF increased the percentage of SIF cells which 
responded with process outgrowth to 96.9 + 0.8%. 

As with adrenal chromaffin cells, individual SIF cells varied in the 
amount of neuronal differentiation they had undergone in response 
to NGF. Similarly, increasing the length of time in culture with NGF 
increased the number of neurons present. After 2 weeks with NGF 
alone, 30 to 50% of the cells in the cultures still had intense CA 
fluorescence although more than 80% of the cells had neurites (see 
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A 

Mean diameter a= 144-r 32 nm C_S.O.) 
E:;l;ated true mean diameter D = 168) 

Wexl, M 
Ffgure 8. Effect of corticosteroid concentration on SIF cell number. Equal 

numbers of SCG cells were plated Into different hormone concentrations, 
and after 3 weeks all of the cells with bright CA histofluorescence In each of 
three sister cultures were counted In the fluorescence microscope. Numbers 
are expressed as the mean -e SEM. 

Fig. 1 la and b, Table II). After a longer time in NGF, the percentage 
of intensely fluorescent cells was much decreased. In the presence 
of CM the percentage of fluorescent cells decreased more rapidly 
(to approximately 10% of the total after 2 weeks in NGF). Many of 
the fluorescent cells in the NGF-containing cultures were SIF cells 
which had not responded to NGF, but one-third to one-half of the 
intensely fluorescent cells appeared to be SIF cells in the process 
of becoming neurons (Fig. 11 a). At the ultrastructural level cells were 
observed that had numerous granular vesicles of the type I size in 
their cell bodies. It is likely that these corresponded to the transitional 
cells seen with CA histofluorescence. 

SIF cells were intermediate between neurons and chromaffin cells 
in their response to the presence of NGF plus cotiicosteroid. Cort- 
costerold greatly decreases the NGF-induced outgrowth of chro- 
maffin cells and has no effect on neurite outgrowth of sympathetic 
neurons (see Unsicker et al., 1978; Doupe et al., 1985). In SIF cell 
cultures grown for 10 to 12 days in 5 PM corticosteroid, and then 
switched to medium containing NGF as well as glucocorticoid, 53.5 
+ 3.8% of the cells still grew processes (Table II). Similarly, 64.5 + 
6.6% of the cells bound tetanus toxin when switched to medium 
containing both NGF and glucocorticoid. These cultures also con- 
tained a higher percentage of cells (69.1 f  9.1%) with intense CA 
fluorescence (Table II). When the cultures were examined with the 
electron mlcroscope, some cells appeared neuronal, but there were 
also SIF cells and neurite-bearing cells with type I CA vesicles similar 
to the incompletely transformed cells described above (Fig. 14a). 
The type I vesicles in these cells were frequently interspersed with 
small clusters of synaptic vesicles (Fig. 14b). 

In this study conditions were established for growing dissociated 
SIF cell cultures from the newborn rat SCG, and the dependence of 
these cells on glucocorticoid for survival and differentiatjon was 
demonstrated. The types of SIF cells that develop can be influenced 
by both the corticosteroid concentration and non-neuronal CM. The 
cultures can be Induced to contain mostly epinephrine-storing, type 
II SIF cells, or primarily type I SIF cells with a phenotype intermediate 
between that of chromaffin cells and neurons, or a mixture of both. 
Finally, differentiated SIF cells can respond to withdrawal of cortico- 
steroid and administration of NGF by converting into cells indistin- 
guishable from mature sympathetic neurons. 

In the presence of glucocorticoid and the absence of NGF, a pure 
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Figure 9. Distribution of vesicle diameters of SIF cells. A shows the vesicle 
diameters of a typlcal type II SIF cell in a culture with 5 pM dexamethasone. 
In B are depicted the vesicle diameters from a type I (0) and a type II (0) 
cell from a culture grown with lo-* M glucocorticoid. The vestcle diameters 
from two type I cells from a culture grown in 5 PM dexamethasone plus CM 
are shown in C. The inset in each panel shows the mean profile diameter d, 
the estimated true mean diameter D, calculated as described under “Materials 
and Methods,” and the number of vesicles measured per cell. 

population of SIF cells could be grown from the neonatal rat SCG. 
The properties of the cultured SIF cells included (i) small cell body 
size and occasional presence of short neurites, (ii) intense CA 
fluorescence, (iii) synthesis and storage of CA, and (iv) characteristic 
ultrastructure as described for SIF cells in viva (Siegrist et al., 1968; 
Matthews and Raisman, 1969; Williams and Palay, 1969; Taxi, 1979). 
SIF cells with the morphological appearance of type I and type II 
cells were both seen in the cultures in 5 PM dexamethasone, although 
type II cells predominated. 

Most SIF cells in the adult rat SCG store dopamine and have type 
I granular vesicles (Williams and Palay, 1969; Lu et al., 1976). 
However, the cultures grown in 5 pM glucocotiicoid, synthesized 
large amounts of epinephrine and most of the SIF cells contained 
PNMT immunoreactivity and type II granules. Dexamethasone (5 FM) 
is similar to the concentration of glucocorticoid in the adrenal medulla 
in viva, which receives the corticosteroid-rich venous outflow of the 
surrounding adrenal cortex (Jones et al., 1977). In that environment, 
the majority of chromaffin cells synthesize epinephrine and norepi- 
nephrine, and store the amines in large type II granules (Coupland, 
1965a, b; Elfvin, 1967). hlost of the SIF cells which developed in 5 
FM hormone therefore resembled adrenal chromaffin cells. In SCG 
cultures grown in lower (1 Om8 M) hormone concentrations, the type I 
phenotype was more prominent, with a greater proportion of neurite- 
bearing cells, a smaller percentage of PNMT immunoreactivity, and 
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Figure IO. Conversion of identified SIF cells into neurons. a, Three SIF cells after 12 days in 5 PM dexamethasone, at which point the corticosteroid was 
withdrawn and NGF was added. b, One day later; c, after 2 days; d, 3 days; e, 5 days; f, 6 days; g, 9 days; and h, 13 days, Magnification x 210. The 
ultrastructure of these cells after 2 weeks in NGF is shown in Figures 12 and 13. 

more ceils wrth Intermediate-srzed granules. Because the cell number 
was always much lower in cultures grown In IO-’ M hormone than 
In 5 FM steroid, the absolute number of cells wtthout PNMT rmmu- 
noreactivity was similar in both conditions, but in lo-* M glucocortl- 
cord the absolute number of PNMT-rmmunoreactrve cells was much 
decreased. These effects of micromolar glucocortrcord on SIF cell 
morphology and transmitter chemistry are consistent with a number 
of experiments /n VIVO. Admrnrstration of glucocorticords to newborn 
rats induces the appearance of PNMT and epinephrine in para-aortrc 
bodies and in the SCG (Coupland and MacDougall, 1966; Eranko 
et al., 1966; Bohn et al., 1982) Dexamethasone treatment of preg- 
nant rats can elicit PNMT-rmmunoreactive cells in the SCG as early 

as embryonic day 18.5 (Bohn et al., 1982). Administration of corti- 
costeroid also prevents the normal postnatal degeneration of extra- 
adrenal chromaffin tissue in the rat and induces the appearance of 
numerous chromaffin cells in ganglia where normally only occasional 
chromaffin cells are seen (Lempinen, 1964). Similarly, Eranko and 
Eranko (1972) observed that the numbers of SIF cells in rat SCG 
are increased 1 O-fold in glucocorticoid hormone-treated rats. In organ 
culture, hydrocortisone also slightly increased the number and size 
of the granular vesicles (Eranko et al., 1972a, b). In all of these 
cases and in the dissociated cell cultures described here, high levels 
of glucocorticoid appear to shift the SIF cells toward a more type II 
or adrenal chromaffin phenotype. 
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Figure 10 

The addrtron of CM as well as 10m8 M glucocorticord to cultures 
from newborn rat SCG markedly potentrated the differentration of 
type I SIF cells, that IS, cells wtth granules of type I size, wrth short 
processes, and without PNMT rmmunoreactivity. Cortrcosterord was 
still required, however; no SIF cells were observed In the presence 
of CM alone, and CM did not greatly alter cell survival in the presence 
of glucocortrcoid. Even In a high concentration of hormone (5 @M) 

as well as CM, most of the SIF cells also had type l-sized granules. 
Based on studies in vivo, it has been suggested that the predominant 
CA stored by cells with type I granules IS dopamlne, whereas cells 
wrth type II granules store noreprnephnne or eprnephrine (Lever et 
al., 1976; Taxi, 1979). The results with SIF cells grown with CM plus 
5 PM hormone show that this correlation does not always hold, since 

the majority of cells in these cultures had small type I granular 
vesicles but more than 60% of the cells were DBH and PNMT 
immunoreactive. 

The factor in CM responsible for enhancing the development of 
type I SIF cells is unknown. An antiserum to NGF was always 
included in the medium to prevent survival of principal neurons, but 
a small amount of NGF activity might have persisted. CMs such as 
these are known to contain factors which enhance NGF responsive- 
ness (see Doupe et al., 1985). Therefore, very low levels of NGF 
might still have had effects on the developing SIF cells. The fact that 
most of the cells in hormone plus CM had neurites may suggest an 
NGF-like activity. Alternatively, a different non-neuronal cell factor in 
the crude CM might act on SIF cell differentiation. This heart cell CM 
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Figure 11 SIF cell-derived neurons a, Two weeks after NGF addltlon, many cells no longer have Intense CA fluorescence In their cell bodies (arrowheads), 
although they exhlblt numerous fluorescent vancoslties along their processes Some brightly fluoresecent cells with neuntes are also present In the cultures. 
b, The indirect lmmunofluorescence of tetanus toxin binding to SIF cell-derived neuronal cell bodies. Magnlflcatlon X 420. 

is already known to contain both a cholinergic inducing activity 
(Patterson and Chun, 1977; Patterson, 1978) and a neurite-promot- 
ing factor(s) (see Doupe et al., 1985) and numerous other factors 
are undoubtedly present. Although the identity of the factor(s) is not 
clear, a combination of environmental factors including corticosteroid 
appears to promote the differentiation of the intermediate phenotype, 
the type I SIF cell. The location of many SIF cells in vivo around 
fenestrated blood vessels (Matthews and Raisman, 1969; McDonald 
and Blewett, 1981) may reflect their survival and differentiation in an 
environment where glucocorticoid acts in combination with other 
extracellular factors. 

The results obtained here on the development of dissociated SIF 
cell cultures shed light on the question of how glucocorticoid in- 
creases SIF cell number in viva. Lempinen (1964) hypothesized that 
the normal degeneration of extra-adrenal chromaffin tissue was 
caused by the fall in circulating corticosteroids seen shortly after 
birth, and was prevented by the administration of hydrocortisone. 
However, the appearance of new chromaffin cells and the hyperpla- 
sia of the para-aortic extra-adrenal chromaffin tissue are more difficult 
to explain by the prevention of degeneration alone. Similar questions 
can be asked about the glucocorticoid effect on PNMT induction in 
vivo (Bohn et al., 1982): is the glucocorticoid inducing PNMT in 
existing SIF cells, or is it allowing the survival of PNMT-containing 
SIF cells which would not normally survive the neonatal period? Our 
developmental time course experiments show that, although a small 
number of pre-existing SIF cells were present immediately after 
plating, the majority of SIF cells were differentiating in vitro. Moreover, 
the number of SIF cells generated was greater at higher glucocorti- 
coid concentrations. This provides evidence that glucocorticoid can 

act to induce the formation of new SIF cells from precursors. Large 
granular vesicles and PNMT immunoreactivity were also not present 
at early times and thus were induced in vitro as well. In our 
dissocrated cell cultures, the possibility of mitosis was excluded, 
srnce the culture conditions elrminated rapidly dividing cells, The 
precise nature of the SIF cell precursor in these cultures IS unknown. 
It could be (i) a neuroblast the fate of which is changed by the 
hormonal environment, (ii) a committed SIF cell precursor which is 
completing differentiation, or (iii) an uncommitted sympathoadrenal 
precursor (perhaps a neural crest cell) which is instructed to become 
an SIF cell. In addition to inducing SIF cells, glucocorticoids also 
influenced survival: withdrawal of glucocorticoid from mature SIF cell 
cultures resulted in cell loss, as described for adrenal chromaffin 
cells. 

In these experiments it is clear that most of the differentiated 
sympathetic principal neurons in the newborn SCG did not undergo 
conversion to SIF cells but died in the absence of NGF. The strict 
dependence of sympathetic neurons on NGF for survival compli- 
cates the question of whether the neuronal phenotype is a terminally 
differentiated state. In the preceding paper (Doupe et al., 1985) 
adrenal chromaffin cells were found to become dependent on NGF 
soon after responding to it, even at early times during the conversion 
to the neuronal phenotype. It would be very useful to develop 
conditions under which neurons could survive without including NGF 
with its instructrve actions on the neuronal phenotype. 

Differentiated SIF cells rn culture responded to the withdrawal of 
cortrcosterord and the admrnistratron of NGF by converting into 
neurons. One advantage of these pure dissociated cell cultures is 
that we could follow the transformation of individual identified SIF 
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ffgure 12 Ultrastructure 01 IdentItled cells. The two cells which were grouped together in Figure 10 are seen here to have characteristic 
ultrastructure. Magnification x 11,800. 

neul 

cells in the phase microscope for several weeks, and then examine 
them ultrastructurally (Figs. IO, 12, and 13). In addition to losing SIF 
cell properties such as intense cell soma CA fluorescence and large 
granular vesicles, the cells acquired long processes, characteristic 
neuronal ultrastructure and cell surface molecules, and formed 
morphologically specialized synapses. Thus, there are cells in new- 
born rat SCG with the potential to become either SIF cells or neurons, 
and glucocorticoids and NGF influence this choice. As described 
for adrenal chromaffin cells in NGF (Doupe et al., 1985) type II SIF 
cells transiently acquired vesicles of type I size during the conversion 
to neurons. Moreover, some of the cells which did not completely 
assume a neuronal phenotype in the presence of NGF also had 
both neurites and intermediate-sized granular vesicles, as did many 
of the cells in mature SIF cell cultures switched to medium containing 
both NGF and dexamethasone. This suggests that other sources of 
the type I SIF cell phenotype are SIF cells in transition to neurons as 
well as cells exposed to conflicting signals such as NGF and 
glucocorticoid in combination. The interaction of glucocorticoids, 
NGF, and the factor(s) in CM thus allowed a variety of SIF cell types 
to be grown from the same population of precursors. Similar inter- 
actions in vivo, as well as the changing serum levels of glucocort- 
coids during early development (e.g., Allen and Kendall, 1967; Martin 
et al., 1977) could account for the diversity of SIF cells in number 
and type. 

A number of our results are consistent with the idea (originially 

derived from morphological studies) that SIF cells are intermediate 
In phenotype between neurons and chromaffin cells. Compared to 
adrenal chromaffin cells, a higher percentage of SIF cells responded 
to NGF with neuronal conversion, and this conversion was also more 
rapid: morphologically specialized synapses were formed in SIF cell 
cultures after 2 weeks with NGF but do not appear in adrenal 
chromaffin cell cultures until NGF has been present for 4 to 6 weeks. 
Furthermore, the inclusion of glucocorticord as well as NGF in mature 
SIF cell cultures did not inhibit the NGF-induced neurite outgrowth 
and neuronal conversion as much as it does for chromaffin cells, 
Thus SIF cells are more readily pushed toward a neuronal phenotype 
than are chromaffin cells. The fact that a higher percentage of SIF 
cells bound detectable amounts of tetanus toxin in the absence of 
NGF than do chromaffin cells might also be viewed as an interme- 
diate characteristic (Doupe et al., 1985). 

The results presented in this and the preceding paper (Doupe et 
al., 1985) further amplify the role of environmental factors In the 
development of neural crest derivatives. lndrvidual cells can be 
converted from one phenotype into another, even after they have 
embarked on a particular pathway of differentiatron. The interrela- 
tionships of these phenotypes are summarized in the lineage dia- 
gram shown in Figure 15: in the presence of glucocorticoid, an 
apprently undifferentiated precursor cell can become an SIF cell. 
The gluococorticoid hormone concentration and a non-neuronal cell 
factor influence the types of SIF cell formed, with high hormone 
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figure 73. Ultrastructure of identrfied SIF cells. The solitary cell in Figure 10 has neuronal ultrastructure, as shown in a (magnification x 11,800), and in 
other sections is observed to received synapses, shown in b and c (magnification X 43,700). Note that the cell also has a small cluster of granules in the 
cell body, as occasionally observed in sympathetic principal neurons. 
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F/gure 74. Ultrastructure of SIF cells switched to medium contalnlng dexamethasone as well as NGF. a, Cells have neuntes and Increased amounts of 
rough endoplasmlc reticulum but also contarn numerous small granular vesicles of type I size, and clusters of small synaptic-sized vesicles (arrowheads). 
Magnification x 11,800 b, The clusters of intermediate-sized and small synaptic vesicles at higher magnification. Magnification x 43,700. 
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TABLE II 
influence of glucocorkoid, CM, and NGf on S/F cell popefiles 

SIF cell cultures were grown for 3% weeks In 5 GM dexamethasone (Irne 

l), or switched out of sterord at day 12 and grown In NGF alone (line 2), In 
CM plus NGF (Irne 3), or in NGF plus 5 ELM dexamethasone (line 4). Column 
2 represents the percentage of the population with long neurites, column 3 

gives the percentage that displayed tetanus toxrn binding, and column 4 
grves the percentage of cells with intense catecholamrne fluorescence. 

Percentage 
with 

Processes 

Percentage 
Tetanus 
Toxin+ 

Percentage 
CA Fluorescent 

+dex” 

-dex - CM + NGF 

-dex + CM + NGF 

+dex - CM + NGF 

15 0 + 4.8 56.4 + 4.5 93.4 z!I 1.4 
(n = 5)b (n = 3) (n = 5) 

82.4 k 5.9 89.6 + 5.2 53.5 rf- 13.9 
(n = 5) (n = 5) (n = 5) 

96.9 + 0.8 ND ND 
(n = 5) 

53.8 -c 3.8 64.5 + 6.6 69.1 + 9.1 

(n = 5) (n = 5) (n = 5) 

a dex, dexamethasone. 

b n. number of cultures tested 

Sympathoadrenal - SIFZ Adrenal Chromaffin 
Precursor 

I 
NE -Ach Neuron 

Neuron 
hgure 75. Phenotyprc interconversions of adrenergrc neural crest deriva- 

tives In vtro and hypothetical lineage diagram for the autonomic nervous 
system in VIVO. NE, noreprnephnne; Ach, acetylcholrne. 

levels inducing an adrenal chromaffin cell (or type II SIF cell) phe- 
notype, presumably just as the conicosteroid-rich environment of 
the adrenal medulla does in viva. In the presence of NGF, SIF cells 
and adrenal chromaffin cells can become neurons, and this process 
is greatly enhanced by a neurite-promoting factor produced by non- 
neuronal cells. During the conversion, adrenal chromaffin cells tem- 
porarily acquire some SIF cell characteristics, notably intermediate- 
sized CA granules, suggesting that an SIF cell is the intermediate 
form in this transition. Other transitional cells have Type I granules 
as well, Including SIF cells switched to medium containing both 
glucocorticoid and NGF, and chromaffin cells from adult rats which 
are only partially converted to neurons. Adrenal chromaffin cells can 
further progress to a cholinergic neuronaj phenotype, apparently 
passing through an adrenergic neuronal stage before becoming 
cholinergrc. 

The central posrtion of SIF cells In these phenotypic interconver- 
sions in vitro suggests that they may be the developmental precursor 
for all of the derivatives of the sympathoadrenal lineage (Landis and 
Patterson, 1981). Thus, the interconversions seen in vitro could 
represent more than just the developmental potentiality that these 
cells possess. As In the case of the adrenergic to cholinergic 
conversion of neurons initially demonstrated in culture and then 
found to occur during the normal development of some sympathetic 
neurons in viva (Landis and Keefe, 1983) perhaps the SIF cell 
conversions also represent stages of normal development in this 
lineage. Several in viva observations are consistent with the possi- 
bility that SIF cells are the precursors of both sympathetic neurons 
and chromaffin cells. The cells that initially populate sympathetic 
ganglia and invade the adrenal cortex have intense CA fluorescence 
(Enemar et al., 1965; de Champlain et al., 1970; Owman et al., 1971; 
Kirby and Gilmore, 1976). In embryonic rat adrenal medullae (Diner, 
1965; Elfvin, 1967; Millar and Unsicker, 1981) and in sympathetic 
ganglia, at least in chicks (Wechsler and Schmekel, 1967; Luckenbill- 
Edds and Van Horn, 1980), these cells contain dense-cored granular 

vesicles of the type I SIF cell size. Neural crest cells that develop 
CA synthesis in culture also have granular vesicles similar to those 
of SIF cells (Sieber-Blum et al., 1981) which increase in size with 
exposure to glucocorticoid (Smith and Fauquet, 1984). With further 
development in viva, the granules of embryonic adrenal medullary 
cells increase in size to the diameter of mature chromaffin granules 
(Diner, 1965; Elfvin, 1967; Millar and Unsicker, 1981). In contrast, 
the number of cells with intensive fluorescence and large granular 
vesicles is reduced during further development of autonomic ganglia 
(Owman et al., 1971; Kirby et al., 1980). The brightly fluorescent 
cells in ganglia could be dying but might also be undergoing a 
conversion to neurons. In both chicks (Kirby et al., 1980) and rats 
(Owman et al., 1971) many of these cells are sprouting fluorescent 
processes at the time when the number of fluorescent cell bodies 
begins to decrease. On this hypothesis, developing cells that ended 
up near fenestrated blood vessels, where corticosteroid levels could 
compete with local NGF, would be stabilized in the intermediate or 
precursor phenotype, the SIF cell. It would be of interest to determine 
whether SIF cells from adult SCG could respond to the same range 
of factors as cells from neonates, or have become committed to the 
intermediate phenotype. The apparently undifferentiated precursor 
cells observed in the newly plated cultures described here could 
represent a few persistent neural crest cells. These precursors are 
certainly few in number, as plating approximately lo5 cells from the 
SCG gives rise to only several hundred SIF cells. It is intriguing that 
the idea of SIF cells as neuronal precursors has been raised in the 
context of phylogenetic development as well. The hearts of simple 
vertebrates such as the cyclostomes contain large amounts of CA 
as do the hearts of reptiles, birds, and mammals, but in contrast to 
other vertebrates, there are no neurons or neuronal terminals in the 
heart (Lignon and Le Douarin, 1978). Instead, all of the aminergic 
cells are SIF cells, many with processes, containing large granular 
vesicles like those of mammalian SIF cells (Bloom et al., 1961; 
Lignon and Le Douarin, 1978). This suggests that these cells may 
be phylogenetic precursors of the neurons of the sympathetic 
system (Taxi et al., 1983). 

There is a subset of sympathetic neurons, the so-called “short” 
adrenergic neurons of the urogenital tract (Owman et al., 1974) 
which, although they morphologically resemble neurons, share cer- 
tain unusual properties with SIF and adrenal chromaffin cells: they 
are more resistant to reserpine, 6-hydroxydopamine (Baumgarten et 
al., 1975) and immunosympathectomy with antiserum to NGF 
(Zaimis et al., 1965) than are ordinary “long” adrenergic neurons. 
Furthermore, they show a remarkable sensitivity to sex steroids 
(Sjostrand and Swedin, 1976; Owman and Sjoberg, 1977; Partanen 
and Hervonen, 1979). It remains to be seen whether short adrenergic 
neurons are in some way developmentally closer to SIF and adrenal 
chromaffin cells than to other sympathetic neurons. 

SIF cells are also found in parasympathetic ganglia (Jacobowitz, 
1967; Ehinger and Falck, 1970; Jacobowitz et al., 1973); thus, the 
postulated role of the SIF cell as precursor could be extended to the 
development of cholinergic parasympathetic neurons. Consistent 
with this idea is the conversion of chromaffin cells in vitro into a 
cholinergic neuronal phenotype (Ogawa et al., 1984; Doupe et al., 
1985). The transient presence of catecholaminergic cells in early gut 
(Cochard et al., 1978, 1979; Jonakait et al., 1979; Teitelman et al., 
1978, 1979; Cochard, 1984) and the response of these cells to 
corticosteroid (Jonakait et al., 1980) are consistent with a role of 
SIF-like cells as precursors in enteric ganglia as well. Finally, this way 
of looking at SIF cells in the adult, as the vestige of an earlier 
developmental stage responsive to the environment, may explain 
why the numbers and types of SIF cells are so variable from species 
to species (Coupland, 1965b; Taxi, 1979) from ganglion to ganglion 
(Lever et al., 1976; Lu et al., 1976) and even from animal to animal 
(Tomasulo et al., 1982). 
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