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Abstract

Introduction: Conventional video-EEG monitoring (cvEEG) is required to diagnose seizures 

accurately in neonates. This tool is resource-intense and has limited availability in many centers. 

Seizure prediction models could help allocate resources by improving efficiency in which cvEEG 

is used to detect subclinical seizures. The aim of this retrospective study was to create a neonate-

specific seizure prediction model using clinical characteristics and EEG background findings.

Methods: We conducted a 3-year retrospective study of all consecutive neonates who underwent 

cvEEG at a tertiary care pediatric hospital. Variables including age, EEG indication, high risk 

clinical characteristics, and EEG background informed seizure prediction models based on a 

multivariable logistic regression model. A Cox proportional hazard regression model was used to 

construct time to first EEG seizure.

Results: Prediction models with clinical variables or background EEG features alone vs. 

combined clinical and background EEG features were created from 210 neonates who met 

inclusion criteria. The combined clinical and EEG model had a higher area under the curve for 

combined sensitivity and specificity to 83.0% when compared to the clinical model (76.4%) or 

EEG model (66.2%). The same trend of higher sensitivity of the combined model was found for 

time to seizure outcome.

Conclusion: While both clinical and EEG background features were predictive of neonatal 

seizures, the combination improved overall prediction of seizure occurrence and prediction of time 

to first seizure as compared to prediction models based solely on clinical or EEG features alone. 

Correspondence: Janet S. Soul, M.D. Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 
02115. Phone : 617-355-5606. Fax : 617-355-7970. janet.soul@childrens.harvard.edu.
Author contributions
Arnold J. Sansevere participated in drafting and revising the manuscript for content, including medical writing for content, in study 
concept and design, in acquisition, analysis and interpretation of data.
Kush Kapur participated in drafting and revising the manuscript for content, including medical writing for content, in study concept 
and design, in statistical analysis and interpretation of data, generation of figures and tables.
Iván Sánchez Fernández participated revising the manuscript for content, including medical writing for content, in analysis and 
interpretation of data, acquisition of data, and study supervision or coordination.
Tobias Loddenkemper participated revising the manuscript for content, including medical writing for content, in analysis and 
interpretation of data, acquisition of data, and study supervision or coordination.
Jurriaan Peters participated in drafting and revising the manuscript for content, including medical writing for content, in study concept 
and design, in analysis and interpretation of data, and study supervision or coordination.
Janet Soul participated in drafting and revising the manuscript for content, including medical writing for content, in study concept and 
design, in analysis and interpretation of data, and study supervision or coordination.

HHS Public Access
Author manuscript
J Clin Neurophysiol. Author manuscript; available in PMC 2020 May 01.

Published in final edited form as:
J Clin Neurophysiol. 2019 May ; 36(3): 186–194. doi:10.1097/WNP.0000000000000574.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With prospective validation, this model may improve efficiency of patient-oriented EEG 

monitoring.
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Introduction

Continuous video-electroencephalographic monitoring (cvEEG) is critical for accurate 

diagnosis of seizures and encephalopathy in critically ill neonates. It is estimated that 10–

50% of patients undergoing clinically indicated cvEEG in the pediatric ICU have 

electrographic seizures, depending on patient characteristics and inclusion criteria.1–8 Of 

these electrographic seizures, 14–43% qualify as electrographic status epilepticus, and up to 

85% do not have any clinical signs.1,9,10 In neonates, these numbers are even higher, with up 

to 90% presenting as electrographic only seizures (subclinical) or having subtle clinical 

signs.11 Neonatal seizures and status epilepticus are associated with significant neurologic 

disability, post-neonatal epilepsy, and in-hospital mortality, underscoring the importance of 

accurate detection and treatment.10,12–14 Recent studies suggest that high seizure burden in 

neonates is independently associated with increased morbidity and mortality.6,15 Without the 

use of cvEEG, neonatal subclinical seizures and status epilepticus would go undetected, and 

hence untreated.

Despite the importance of cvEEG for accurate seizure diagnosis in neonates, the expertise, 

labor and resource-intense nature needed for neonatal cEEG prevents widespread use.16 

Centers with limited resources face challenges in offering continuous EEG monitoring even 

to high risk patients, and may rely on short duration EEG studies to detect electrographic 

seizures. Seizure prediction models may improve allocation of resources, by identifying 

critically ill neonates at highest risk of electrographic seizures, and determine the duration of 

cvEEG monitoring needed to detect seizures. While such models currently exist for older 

children, specific models for neonates are not available.7

The aim of this retrospective study was to create a neonate-specific seizure prediction model 

using clinical and EEG background characteristics. We also aimed to determine the risk of 

seizure at specific times during the entire EEG monitoring period for a particular neonate, 

depending on their clinical and EEG background findings compared with the at-risk 

neonates.

Methods

We conducted a retrospective study of all consecutive critically ill patients <44 weeks’ 

postconceptional age between January 1st 2011 and January 1st 2014, who underwent 

continuous video-EEG (cvEEG) defined as conventional video-EEG monitoring for >3 

hours, in the surgical, cardiac, and neonatal intensive care units at a tertiary care pediatric 

hospital. At our institution cvEEG is requested routinely for neonates undergoing 

hypothermia in addition to suspected subclinical or clinical seizures. Only the first episode 
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of cvEEG monitoring for each neonate was included. This study was approved by the 

Institutional Review Board at Boston Children’s Hospital.

Patient Characteristics

Clinical characteristics, including age, sex, indication for EEG, and etiology of and therapies 

for critical illness, were obtained from the electronic medical record. We defined 

subpopulations of neonates by specific high-risk etiologies and therapies (Table 1).

EEG data

Continuous video-EEG monitoring (cvEEG) was performed using the standard 10–20 EEG 

system of electrode placement, according to the American Clinical Neurophysiology 

Society’s (ACNS) guideline on Continuous EEG Monitoring in Neonates17. Electrographic 

neonatal seizures were defined per ACNS standardized EEG terminology18. Presence of 

continuity and degree of discontinuity (i.e. duration of inter-burst interval), variability, 

reactivity, and synchrony were determined from daily EEG reports. At our institution, 

neonatal EEG reports are created once daily and include presence or absence of sleep wake 

cycling in addition to description of electrographic patterns as they correlate to behavioral 

states. For discontinuous periods, the typical interburst interval duration is described and 

documented. Term newborn studies with prominent interburst intervals greater than 6 

seconds and interburst interval amplitudes < 25 micro volts are considered excessively 

discontinuous. Excessive sharp waves are quantified based on frequency as being excessive 

in periods where the record is continuous.

Prediction Model Datasets

Clinical features used for the seizure prediction models included sex and post-conceptional 

age (i.e., corrected for prematurity), EEG indication, and disorders and therapies associated 

with a high risk for seizures (Table 1). The EEG background used in our model was defined 

as background description from clinical reports from EEG start to the following morning. 

The EEG background was classified as normal, excessively discontinuous, burst 

suppression, depressed/undifferentiated, or electrocerebral silence. This classification varied 

according to expected findings for postconceptional age at the time of cvEEG, i.e. duration 

of interburst interval defined for preterm compared with term neonates, tracé discontinue 

versus tracé alternant to describe quiet sleep patterns. In addition, EEG background was 

assessed for the presence or absence of excessive multifocal sharp wave transients and 

presence or absence of focal attenuation. The time to first electrographic seizure identified 

after onset of cvEEG monitoring was analyzed and incorporated into the model.

Statistical Approach

We summarized the main features with descriptive statistics, and developed prediction 

models using logistic regression for dichotomous outcome of seizure occurrence. 

Additionally, we utilized Cox’s proportional hazard regression for the time to event outcome 

of time to first detected seizure. We evaluated the proportional hazard assumption using 

residual graphs and by testing the significance of interaction terms between each predictor 

and event time. There were no major departures from the proportional hazards assumptions. 
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The model parameters were chosen based on stepwise selection using minimization of the 

Akaike Information Criterion (AIC). The AIC selects models with a good fit, but penalizes 

the number of parameters and therefore, reduces the risk of overfitting. The optimal 

threshold for the final prediction models are based on the maximum of Youden’s Index 

(sensitivity+specificity-1). All the analysis was performed using CRAN R software version 

3.4.3.

Results

Demographics and Clinical Features

Of the 210 neonates included in our analysis, 95 neonates were female, 158 were term-born 

and 52 were preterm, with a median gestational age was 39 weeks (IQR 38.4–40.2) for term 

and 35 weeks (IQR 29–36) for preterm neonates. The distribution of high risk etiologies and 

therapies among subjects is shown in Table 1, with overlap among these etiologies and 

therapies shown in Supplementary Table 1. The median age at cvEEG initiation was 3.95 

days (IQR 0.95–13.5).

Electrographic seizures (ES) were detected in 73 neonates (35%); 12 (12/73, 16%) were 

preterm while 49 (48/73, 66%) were term. Twenty-eight neonates (38%) had only 

subclinical seizures, 8 (11%) had only electro-clinical seizures, while the remainder had a 

mix of both types. The rate of electrographic seizures by high risk group and EEG indication 

are shown in Table 1.

Univariate Predictors of Seizure Occurrence (Table 2)

Male neonates had a higher risk of seizure (Odds Ratio, OR = 2.01, 95% Confidence 

Interval (CI) 1.12–3.64, p=0.021) compared with females, while preterm neonates had a 

lower risk (OR = 0.48, 95% CI 0.22–0.96, p=0.044) compared to term neonates. Neonates 

monitored for suspected clinical seizure were at higher risk of having seizure detected on 

EEG, compared with neonates monitored for only encephalopathy (OR = 2.73, 95% CI 

1.28–6.36, p= 0.012). Other risk factors, such as HIE, CHD or ECMO, did not show a 

statistically increased risk of seizure occurrence by univariate analysis.

EEG background features were evaluated with regard to probability of electrographic seizure 

occurrence. The background was normal in 84 of 210 (40%), excessively discontinuous in 

100(48%), burst suppression in 10 (5%), attenuated and featureless in 13(6%), and met 

criteria for electrocerebral inactivity in 3 (1%). Excess multifocal sharp waves were seen in 

119 (57%), and patients had focal attenuation in 23 (11%). An excessively discontinuous 

(OR 7.10, 95% CI 3.34–16.62, p<0.001), burst suppression background (OR 19.45, 95% CI 

4.58–103.85, p<0.001) or depressed/undifferentiated (OR 27.78, 95% CI 7.09–142.84, 

p<0.001), in comparison to the normal EEG background, were all significant risk factors for 

seizure. The presence of sleep wake cycling (OR 0.29, 95% CI 0.16–0.53, p<0.001) and a 

normal EEG background was strongly associated with a low likelihood of developing ES 

(OR 0.12, 95% CI 0.05–0.25, p<0.0001); only two term neonates with a normal EEG 

background had seizures (2.4%). Both neonates presented with focal clonic (electroclinical) 

seizures within the first hour of EEG recording; one had HSV encephalitis with evidence of 
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multifocal areas of restricted diffusion and the other had a left MCA stroke. The presence of 

excessive multifocal sharp wave transients (OR 1.78, 95% CI 0.99– 3.25, p=0.05) was a 

marginally significant predictor of seizure occurrence, while the presence of focal 

attenuation (OR 1.24, 95% CI 0.49–2.97, p=0.6) was not a significant predictor of seizures. 

Four neonates with excessive multifocal sharp wave transients and otherwise normal 

background developed seizures (5%), as did one neonate with only focal attenuation (1%).

Univariate Predictors of Time to First Detected Seizure (Table 2)

The median duration of cvEEG monitoring was 33.4 hours (IQR 17.8–57.3 hours). Of the 73 

patients with ES, the median time to first seizure from the start of cvEEG monitoring was 

1.6 hours (IQR 40 minutes - 3.75 hours). In order to capture 99% of seizures in our 

population, neonates would need to be monitored for 25 hours.

The time to seizure risk was higher in neonates with indications of suspected clinical seizure 

with/without encephalopathy (Hazard Ratio, HR = 2.46, 95% CI 1.22–4.95, p=0.01) when 

compared to patients with encephalopathy alone. Neonates with EEG indication of 

encephalopathy (HR = 0.72, 95% CI 0.43–1.19, p=0.197) did not have a significant 

association with time to seizure when compared to neonates with a suspected clinical seizure 

with/without encephalopathy. With regard to EEG background, neonates with excessively 

discontinuous EEG had higher risk compared to neonates with normal EEG (HR 5.17, 95% 

CI 2.54–10.57, p<0.001). Neonates with burst suppression and with depressed and 

undifferentiated EEG were at higher risk with HR 10.26, 95% CI 3.81–27.68, p<0.001 and 

HR 11.42, 95% CI 4.63–28.14, p<0.001, respectively.

Seizure Prediction Models

Three seizure prediction models were created: 1A-clinical variables alone, 1B- EEG features 

alone, 1C- clinical and EEG combined, with details of each model shown in Table 3. The 

performance of the seizure prediction models in terms of AUC for the ROC is 66.2% with 

95%, CI of 58.8%−73.6% with clinical variables only, and 76.4% (95% CI 70.2–82.7%) 

with EEG variables alone. The combination of clinical variables with EEG features yielded 

better prediction with an AUC of 83.0% (95% CI 77.6–88.4%). The ROCs of seizure 

prediction Models 1A-C are shown in Figure 1.

The threshold −0.67 was selected as the coordinates of the ROC curve based on the 

Youden’s Index, which provides a sensitivity of 58.9 and specificity of 66.4 for clinical 

variables alone, a sensitivity of 86.3 and specificity of 56.2 with EEG features alone, and a 

sensitivity of 83.6 and specificity of 68.6 for the combined model. The negative and positive 

predictive values were 75.2 (NPV) & 48.3(PPV) for the clinical model (Model 1A), 

88.5(NPV) & 51.2(PPV) for the EEG model (Model 1B), and 88.7(NPV) & 58.7(PPV) for 

the combined model (Model 1C) (see Table 3).

A prediction model for time to seizure was built using Cox’s proportional hazard regression 

models. Similar to seizure risk, this was incorporated into a clinical-only model (2A), EEG-

only model (2B), and a combined clinical and EEG model (2C). These models determined 

the relative risk of an individual having a seizure at set time-points from the start of cvEEG 

monitoring. The time dependent ROC curves for Models 2A-C are presented in Figure 2 for 
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specified time-points 19. The optimal threshold criterion (maximum sum of sensitivity and 

specificity), can be readily applied to ROCs at each time point to determine the thresholds 

and the corresponding sensitivity and specificity of prediction at each defined time-point. 

Model 2B with only EEG features outperforms Model 2A with clinical variables only in 

terms of sensitivity (average sensitivity of 85.9 for 2B vs. 52.3 for 2A). Model 2C (clinical 

and EEG combined) showed higher specificity compared to both models (Model 2C average 

specificity 70.32 vs. 55.2 for Model 2A or 54.4 for Model 2B) but had lower sensitivity 

compared to Model 2B (Average sensitivity 69.6 for Model 2C vs. 85.9 for Model 2B) 

(Figure 2). This trend is also seen at the specific chosen time points used in the models 

shown in Table 4.

Discussion

There are three key findings from this single center, retrospective study of prediction of 

neonatal seizures using clinical and/or EEG variables. First, our data support the ACNS 

guideline recommending use of prolonged cvEEG in at risk neonates for at least 24 hours, 

because of the high incidence of seizures. Second, EEG background features are an 

important tool for prediction of electrographic seizures, since background features 

significantly improve prediction compared with models that use only clinical characteristics 

of the neonates. Third, seizure prediction models that take into account clinical and EEG 

features can be used in different ways to optimize efficiency regarding the duration of 

cvEEG monitoring necessary to detect seizures.

A high incidence of seizures in critically ill neonates, particularly electrographic-only 

(subclinical) seizures, has been reported previously,15,20,21 and our data add to this growing 

body of literature that supports the ACNS guideline recommending prolonged cvEEG in 

high risk neonates.17 Our data showed a particularly high risk of seizures among neonates 

with HIE, cardiac arrest, congenital heart disease and those treated with ECMO (28–38% 

with seizures). The majority of our patients had at least some subclinical seizures (some had 

only subclinical seizures), which may occur because of electroclinical dissociation 

(“uncoupling”),22 frequent use of sedative and paralytic medications in critically ill neonates 

masking outward clinical signs of seizures, and the often brief duration and subtle 

manifestations of neonatal seizures. In addition, our data supported the ACNS guideline’s 

recommendation for a minimum duration of 24 hours of cvEEG, since almost all neonates in 

our study developed seizures within 24 hours of cvEEG start.

Our study demonstrates in particular the importance of using initial EEG background 

features for seizure prediction, as our data showed that these features significantly improved 

seizure prediction over clinical variables alone. The use of EEG background as a tool for 

seizure prediction has also been assessed in previous work. Laroia et al. (1998) showed that 

a normal or mildly immature background predicted the absence of seizures in the following 

18–24 hours with a sensitivity of 96% and specificity of 81%.23 Our data were similar to 

prior studies reporting a low seizure risk with a normal background pattern, as only 2 of our 

patients with a normal EEG background developed seizures. Glass et al. (2014) showed that 

a moderate or severely abnormal background was statistically superior for seizure prediction 

in term neonates with hypoxic-ischemic encephalopathy treated with hypothermia than 
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clinical features alone.24 Our data expanded these findings, specifically excessively 

discontinuous, attenuated/featureless, and burst suppression background patterns were all 

associated with a risk of electrographic seizures, with the highest risk in neonates with 

attenuated featureless background (OR 28, p<0.001). Further, our results add to the existing 

literature as EEG background classification can be used for both, term and preterm neonates, 

and for a broad range of acute disorders to improve seizure prediction. Finally, a recent 

publication has shown good inter-rater agreement (K=0.7), p< 0.001) when using a similar 

five category EEG background classification (normal, excessively discontinuous, burst 

suppression, status epilepticus, or electro-cerebral inactivity) for term neonates with HIE,25 

supporting the use of such an EEG classification scheme as a reliable means to improve 

seizure prediction.

Although EEG background classification improved seizure prediction, specific clinical 

variables added higher sensitivity and specificity for seizure prediction, and specific 

variables included gestational age and sex. There was a higher risk of seizures in term 

compared with preterm neonates. This supports a recent study by Lloyd et al. (2017) that 

showed that just 5% of consecutive preterm neonates had electrographic seizures, when 

monitored as soon as possible after birth for up to 72 hours with cvEEG.26 A higher 

probability for seizures was found in male neonates, which could potentially be related to a 

longer period of a depolarizing GABAergic response in males, demonstrated in rodent 

studies.27 Further, suspected seizure as indication for cvEEG was associated with a 

significantly higher risk of seizure than encephalopathy alone, which may have implications 

for choosing a prediction model that further refines the risk of seizure.

The unique value of our approach is that the seizure prediction models we created can 

improve efficiency of cvEEG monitoring strategies in the NICU. These models take a novel 

approach to assessment of seizure risk related to specific neonatal risk factors. While Model 

1 can aide in the initial decision to start and / or continue cEEG, Model 2 allows for 

reassessment of the need for continued cEEG at shorter time intervals throughout the 

monitoring session. Estimates of seizure thresholds at time points of 1 hour, 3 hours, 6 

hours, 12 hours and 24 hours have been calculated, to allow for reevaluation of clinical and 

EEG features to determine if the patient’s total score is moving away from or toward the 

threshold at these time points (see Table 4). This takes into consideration the possibility that 

the EEG background can change with time and uses this information to improve efficiency 

by either discontinuing cvEEG if the EEG is improving, or continuing if the background 

worsens. Various clinical scenarios may predispose to using a model (Model 2B) that is 

more sensitive and less specific at each time point (i.e. neonates with HIE at high risk of 

seizure) while other scenarios might be better suited to a model with more balanced 

sensitivity and specificity (e.g., full term neonate with a suspected seizure and a normal 

background after 6 hours of cvEEG). While our data support the ACNS guideline that 

neonates should be monitored for a minimum of 24 hours, we recognize that in certain 

clinical scenarios (e.g., where the EEG background is normal or mildly abnormal), our 

results show that cvEEG may be discontinued sooner because of low predicted risk of 

seizure occurrence. Studies in older pediatric ICU patients suggest that the decision to 

discontinue monitoring prior to 24 hours of cvEEG is reasonable when the EEG background 

is normal.28 In contrast, studies of neonatal hypoxic-ischemic encephalopathy have shown 
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that some neonates have their first seizure after 24 hours of age or start of cvEEG.12 

Similarly, some reports of high risk groups such as children with cardiac arrest treated with 

hypothermia show that seizures may occur late during late stages of hypothermia treatment 

and especially during rewarming.29,30 Data from all these studies should be taken into 

consideration when determining duration of cvEEG for specific patient populations. This 

model has promise as a useful clinical tool, however, prospective validation is necessary 

prior to clinical application. While the negative predictive value is high ranging from 75–89, 

the positive predictive value is low, with a range of 48–59. This suggests that our model 

identifies many patients who won’t develop seizures. While the overall sensitivity and 

negative predictive values are high in the EEG (Model 1B) and combined model (Model 

1C), it should be noted that there is variability in the sensitivity and specificity at different 

time points in the prediction models that incorporate time. This suggests that some patients 

at continued risk of seizure may be missed by early discontinuation of cvEEG, depending on 

which model is chosen. As an example, when comparing Model 2B to Model 2C at 3 hours, 

the sensitivity is 85 and 64 respectively, showing the importance of choosing the model that 

best fits the patient’s characteristics and cvEEG monitoring goals.

Results need to be interpreted in the setting of data acquisition. First, the EEG background 

data were collected from EEG reports, so were not read by a single neurophysiologist, 

although high inter-rater agreement on background classification mitigates this limitation. 

Second, our study included neonates from a single pediatric tertiary care center who may 

have a higher risk of seizures than other neonatal populations. This is a limitation in terms of 

generalizability to other centers, although these seizure prediction models can be tailored to 

a given hospital’s population that takes into account characteristics of their population. Also, 

we included only neonates with a clinically indicated EEG, i.e. a population already at risk 

for seizures, so our results do not apply to all neonates in NICUs. In addition, our center 

uses a full 10–20 EEG montage, so centers using a reduced neonatal montage or aEEG may 

have a lower rate of seizure detection, altering the characteristics of the prediction models. 

Since our center does follow the ACNS guideline, our prediction models do apply to at risk 

neonates defined by that guideline. Finally, sedative and narcotic medications were not 

analyzed in these models, but could have affected both EEG background and seizure 

occurrence.

Conclusion

The decision to monitor critically ill neonates and the duration of monitoring is often 

dependent on individual practice and available resources,16 instead of being guided by 

evidence-based data. Data from our study support the use of readily available clinical 

features and initial background EEG features to identify neonates at high risk of seizures and 

the duration of cvEEG needed to detect seizures. Our findings support the ACNS clinical 

guideline for prolonged (24 hours) cvEEG in neonates at risk of seizures.17 After 

prospective validation, this model may be used to identify patients at higher or lower risk for 

seizure in whom the duration of monitoring may be modified accordingly.
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Figure 1: AUC curves for seizure prediction
(A) Sensitivity and specificity of Model 1A-C

Figure 1 displays the area under the curve for each seizure prediction model with respective 

confidence intervals. The dot/dash line represents Model 1A (the clinical model alone), the 

dash lines represent Model 1B (EEG model alone) while the black line represents the Model 

1C (combined EEG and clinical model). The x axis represents the specificity of each model. 

The y axis represents the sensitivity of each model.
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Figure 2: AUC curves for time to seizure models
(A) Model 2A

(B) Model 2B

(C) Model 2C

This figure represents the area under curve and sensitivity and specificity at different clinical 

time points for Model 2A (A) (clinical model alone), Model 2B (B) (EEG model alone) and 

Model 2C (C) clinical and EEG model combined. Time points are depicted by the different 

line types as described in the figure. The dash line represents the AUC at 30 minutes, dot 

line is the AUC at 60 minutes, dot/dash is the AUC at 3 hours, thick dash line is the AUC at 

6 hours, dot/dash is the AUC at 12 hours, and the black line represents the AUC at 24 hours. 
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The x axis represents the specificity and the y axis represents the sensitivity of each model at 

individual time points.
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Table 1:

Clinical characteristics of subjects and incidence of seizures

Clinical characteristics Number (% total)
(n=210)

Number (%) with seizures

Male

Term (>37 weeks’ gestation) 115 (55%) 48/115 (42%)

Preterm (<37 weeks’ gestation) 158 (75%)
52 (25%)

61/158 (39%)
12/52 (23%)

Etiologies and therapies *

Hypoxic ischemic encephalopathy(HIE) 48 (23%) 17/48 (35%)

Therapeutic hypothermia (TH) 33 (16%) 11/33 (33%)

Congenital heart disease (CHD) 31 (15%) 9/31 (28%)

Extracorporeal membrane oxygenation (ECMO) 24 (11%) 9/24 (38%)

Cardiac arrest (CA) 19 (9%) 7/19 (37%)

Stroke 41 (19.5%) 22/41 (54%)

Genetic 20 (10%) 3/20 (15%)

Metabolic 10 (5%) 4/10 (40%)

Infectious 6 (1%) 3/6 (50%)

EEG indication*

Suspected clinical seizure 163 (78%) 64/163 (39%)

Encephalopathy 70 (33%) 21/70 (30%)
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Table 2:

Individual predictors of seizure occurrence and time to seizure

Presence of Seizure Time to First Seizure

Proportions
(N = 210)

OR 95%
(LCL, UCL)

p-value HR 95%
(LCL, UCL)

p-value

Clinical Features

Male vs. Female 0.42/0.26 2.01 (1.12, 3.64) 0.021 1.78 (1.10, 2.90) 0.018

Preterm vs. Term 0.23/0.39 0.48 (0.22, 0.96) 0.044 0.58 (0.31, 1.07) 0.082

EEG Indication

Suspected seizure or both indications vs. 
Encephalopathy

0.39/0.19 2.73 (1.28, 6.36) 0.012 2.46 (1.22, 4.95) 0.011

Encephalopathy or both indications vs. Suspected 
seizure alone

0.30/0.37 0.73 (0.38, 1.33) 0.301 0.72 (0.43, 1.19) 0.197

High Risk Characteristics

Hypoxic ischemic encephalopathy (HIE) vs. No HIE 0.35/0.34 1.04 (0.52, 2.02) 0.913 0.97 (0.57, 1.68) 0.934

Therapeutic Hypothermia (TH) vs. No TH 0.33/0.35 0.93 (0.41, 2.01) 0.851 0.86 (0.45, 1.64) 0.650

ECMO vs. Patients not on ECMO 0.37/0.34 1.14 (0.46, 2.72) 0.765 1.03 (0.51, 2.07) 0.926

Cardiac Arrest (CA) vs. No CA 0.39/0.35 1.10 (0.39, 2.88) 0.842 0.97 (0.44, 2.12) 0.940

CHD vs. No CHD 0.29/0.36 0.74 (0.31, 1.65) 0.470 0.74 (0.37, 1.48) 0.389

EEG Background Features

Excessive discontinuity vs. Normal 0.46/0.11 7.10 (3.34, 16.62) <0.001 5.17 (2.53, 10.57) <0.001

Depressed and undifferentiated vs. Normal 0.77/0.11 27.78 (7.09, 142.84) <0.001 11.42 (4.63, 28.14) <0.001

Burst suppression vs. Normal 0.70/0.11 19.45 (4.58, 103.85) <0.001 10.26 (3.81, 27.68) <0.001

Extremely low voltage/isoelectric vs. Normal 0.33/0.11 4.17 (0.18, 47.98) 0.263 4.99 (0.63, 39.55) 0.127

MFS vs. Absence of MFS 0.40/0.27 1.78 (0.99, 3.25) 0.054 1.58 (0.98, 2.57) 0.062

Focal vs. Absence of focal findings 0.39/0.34 1.24 (0.49, 2.97) 0.642 1.19 (0.59, 2.38) 0.632

Sleep wake cycling 0.25/0.54 0.29 (0.16, 0.53) <0.001 0.39 (0.25, 0.63) <0.001
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Table 3:

Seizure prediction models

Model 1A Model 1B Model 1C

Estimate Std Err OR p-value Estimate Std Err OR p-value Estimate Std Err OR p-value

Intercept −1.708 (0.437) 0.181 <0.001 −2.474 (0.417) 0.084 <0.001 −3.392 (0.763) 0.018 <0.001

Male vs. Female 0.687 (0.308) 1.988 0.026 0.771 (0.363) 2.140 0.034

Preterm vs. Term −0.679 (0.377) 0.507 0.072 −0.916 (0.466) 0.480 0.050

Suspected seizure or both 
indications vs. 
Encephalopathy

1.034 (0.412) 2.812 0.012 1.443 (0.478) 4.171 0.003

Excessive discontinuity 
vs. Normal

1.843 (0.411) 6.317 <0.001 1.719 (0.447) 6.971 <0.001

Depressed and 
undifferentiated vs. 
Normal

3.501 (0.764) 33.159 <0.001 3.581 (0.900) 57.432 <0.001

Burst suppression vs. 
Normal

3.081 (0.788) 21.774 <0.001 2.878 (0.886) 29.140 <0.001

Extremely low voltage/
isoelectric vs. Normal

1.781 (1.294) 5.936 0.169 1.382 (1.455) 7.562 0.339

MFS vs. No 0.655 (0.364) 1.925 0.072 0.699 (0.393) 1.991 0.075

Sleep wake cycling −0.682 (0.415) 0.415 0.100

AUC 66.2% (58.8-73.6%) 76.4% (70.2-82.7%) 83.0% (77.6-88.4%)

Optimal ES threshold* −0.670 −0.670 −1.123

Sensitivity 58.90 86.30 83.56

Specificity 66.42 56.20 68.61

Positive predictive values 48.31 51.22 58.65

Negative predictive values 75.21 88.51 88.68

MFS-multifocal sharp transients
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Table 4:

Prediction model of time to 1st seizure

Model 2A Model 2B Model 2C

Estimate Std Err HR p-value Estimate Std Err HR p-value Estimate Std Err HR p-value

Male vs. Female 0.556 (0.248) 1.743 0.025 0.424 (0.255) 1.528 0.096

Preterm vs. Term −0.483 (0.317) 0.617 0.128 −0.572 (0.342) 0.565 0.095

Suspected seizure or 
both indications vs. 
Encephalopathy

0.917 (0.357) 2.503 0.010 1.039 (0.371) 2.828 0.005

Hypothermia vs. No 
hypothermia

−0.756 (0.370) 0.469 0.041

CHD vs. No CHD −0.635 (0.379) 0.530 0.093

Excessive 
discontinuity vs. 
Normal

1.523 (0.369) 4.588 <0.001 1.539 (0.393) 4.659 <0.001

Depressed and 
undifferentiated vs. 
Normal

2.633 (0.474) 13.912 <0.001 2.761 (0.501) 15.813 <0.001

Burst suppression vs. 
Normal

2.370 (0.507) 10.694 <0.001 2.296 (0.576) 9.938 <0.001

Extremely low 
voltage/ isoelectric vs. 
Normal

1.899 (1.068) 6.681 0.076 2.041 (1.147) 7.699 0.075

MFS vs. No 0.546 (0.279) 1.726 0.050 0.470 (0.275) 1.600 0.087

Sleep wake cycling −0.461 (0.279) 0.631 0.098

AUC at 30 Minutes 53.2% 73.5% 71.6%

Optimal ES threshold* −0.341 0.186 0.755

Sensitivity 74.72 82.59 69.63

Specificity 32.71 58.28 65.85

AUC at 60 Minutes 59.4% 71.9% 72.8%

Optimal ES threshold* 0.020 0.186 0.755

Sensitivity 57.14 79.89 69.04

Specificity 60.05 59.39 67.40

AUC at 3 hours 67.4% 71.5% 74.8%

Optimal ES threshold* −0.341 −0.792 0.755

Sensitivity 88.67 84.77 64.25

Specificity 38.46 48.26 70.63

AUC at 6 hours 69.5% 74.5% 79.1%

Optimal ES threshold* 0.021 −0.792 0.719

Sensitivity 57.99 87.33 69.41

Specificity 66.53 51.74 73.22

AUC at 12 hours 68.7% 75.1% 80.4%

Optimal ES threshold* 0.021 −0.792 0.504
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Model 2A Model 2B Model 2C

Estimate Std Err HR p-value Estimate Std Err HR p-value Estimate Std Err HR p-value

Sensitivity 64.20 86.72 70.79

Specificity 66.49 52.79 74.88

AUC at 24 hours 66.7% 76.6% 81.1%

Optimal ES threshold* 0.021 −0.792 0.232

Sensitivity 59.38 88.06 74.87

Specificity 66.97 55.81 69.94

*
Threshold based on maximum of Youden’s Index (sum of sensitivity + specificity −1), Model 2A incorporates only clinical variables, Model 2B 

incorporates only EEG variable and Model 2C includes both clinical and EEG variables.
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