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Chediak-Higashi syndrome is a genetic disorder caused by mutations in a gene encoding a protein
named LYST in humans (“lysosomal trafficking regulator”) or Beige in mice. A prominent feature
of this disease is the accumulation of enlarged lysosome-related granules in a variety of cells. The
genome of Dictyostelium discoideum contains six genes encoding proteins that are related to
LYST/Beige in amino acid sequence, and disruption of one of these genes, [vsA (large volume
sphere), results in profound defects in cytokinesis. To better understand the function of this family
of proteins in membrane trafficking, we have analyzed mutants disrupted in [vsA, lvsB, lvsC, lvsD,
IvsE, and lvsF. Of all these, only IvsA and lvsB mutants displayed interesting phenotypes in our
assays. lvsA-null cells exhibited defects in phagocytosis and contained abnormal looking contrac-
tile vacuole membranes. Loss of LvsB, the Dictyostelium protein most similar to LYST/Beige,
resulted in the formation of enlarged vesicles that by multiple criteria appeared to be acidic
lysosomes. The rates of endocytosis, phagocytosis, and fluid phase exocytosis were normal in
IvsB-null cells. Also, the rates of processing and the efficiency of targeting of lysosomal a-man-
nosidase were normal, although [vsB mutants inefficiently retained a-mannosidase, as well as two
other lysosomal cysteine proteinases. Finally, results of pulse-chase experiments indicated that an
increase in fusion rates accounted for the enlarged lysosomes in lvsB-null cells, suggesting that
LvsB acts as a negative regulator of fusion. Our results support the notion that LvsB/LYST/Beige
function in a similar manner to regulate lysosome biogenesis.

INTRODUCTION

Chediak-Higashi syndrome (CHS) is a rare autosomal reces-
sive genetic disorder of humans that also occurs in other
mammals, including cattle (Padgett, 1967), mice (Lutzner et
al., 1967), rats (Nishimura et al., 1989), minks (Padgett, 1967),
and killer whales (Ridgway, 1979). Patients with this disor-
der suffer from partial albinism, excessive bleeding, and
recurrent bacterial infections.

The defining clinical manifestation of CHS is the pres-
ence in a wide variety of cell types of enlarged lysosomes
or granules that form as the result of a mutation in the
LYST gene in humans (chromosome 1) or the beige gene in
the murine model (chromosome 13; Dufourcq-Lagelouse
et al., 1999; Introne et al., 1999). A few models have been
proposed to explain the role of LYST in the formation of
enlarged lysosomes. The first model, based primarily on
electron microscope studies, hypothesizes that LYST nor-
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mally acts as a negative regulator of homotypic and het-
erotypic lysosome fusion, thus accounting for the increase
in size of lysosomes in cells lacking LYST (Oliver and
Essner, 1975). In addition, other studies have demon-
strated that secretory lysosomes fuse to form giant lyso-
somes in maturing CHS cytotoxic T lymphocytes (Stinch-
combe et al., 2000). The second model proposes that LYST
is a positive regulator of fission, and in the absence of
LYST, the balance is tilted in favor of fusion, and large
lysosomes accumulate (Burkhardt et al., 1993; Perou et al.,
1997). In support of this model, it was observed that
overexpression of LYST induced a more peripheral redis-
tribution of smaller lysosomes. Finally, a third model
suggests that LYST may regulate protein transport to late
endosomes; thus, trafficking defects could account for the
morphological changes observed in lysosomes and lyso-
some-related organelles (Faigle ef al., 1998).

Although the CHS gene family is conserved in a wide
variety of species, the amino acid sequence of the encoded
gene products predicts little regarding the role of LYST/
Beige in lysosome biogenesis or membrane trafficking.
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LYST/Beige comprises three distinct domains. The ami-
no-terminal 80% of the protein has limited homology to
other proteins in the database. This portion of the protein
is followed by the BEACH (Beige and Chediak-Higashi)
domain, the defining consensus sequence for CHS-related
proteins, and several WD-40 repeats, which are thought to
be important in protein-protein interaction. Several other
mammalian gene products contain the BEACH and
WD-40 domains, including FAN (factor associated with
sphingomyelinase activation; Adam-Klages et al., 1996),
neurobeachin (Wang et al., 2000), and CDC4L (Feuchter et
al., 1992).

Dictyostelium discoideum will be a useful system to study
the function of BEACH/WD-40 domain-containing pro-
teins related to LYST/Beige. First, a wide range of genetic
and biochemical tools are available to explore the function
of this haploid organism (reviewed in a special issue of
Biochimica et Biophysica Acta (2001, Vol 1525). Second, the
Dictyostelium genome contains six genes, termed [vs (large
volume sphere) A through F, that encode proteins con-
taining the BEACH and WD-40 domains that are related
to the LYST/Beige family of proteins (Wang, N., Wu, W.,
and DeLozanne, A., unpublished data ). LvsA is the first
member of this family to be characterized and has been
found to play an important role in cytokinesis and osmo-
regulation (Kwak et al., 1999; Gerald et al., 2001). Third,
the endolysosomal/phagosomal pathways in Dictyoste-
lium are relatively well characterized and comparable to
related pathways in mammalian cells (reviewed by
Cardelli, 2001). Fluid phase enters the endosomal path-
way primarily through macropinocytosis, although clath-
rin-mediated micropinocytic internalization also occurs.
Endosomes derived from the fission of macropinosomes,
fuse to form acidic lysosomes that, in turn, fuse to form
nonacidic secretory vesicles, termed postlysosomes (re-
viewed by Maniak, 2001). A number of proteins have been
identified that regulate fusion of lysosomes with each
other and with newly formed phagosomes (reviewed in
Rupper and Cardelli, 2001). In addition, it has been pro-
posed that vesicles, containing membrane and soluble
luminal proteins, form by fission and recycle from late
endosomal to earlier endocytic compartments or the
plasma membrane. Proteins that regulate this process in-
clude DdRab7, which may recycle membrane components
from postlysosomes back to early endosomes and lyso-
somes (Buczynski et al., 1997), and myosin I, which recy-
cles membrane from early endosomes back to plasma
membrane (Neuhaus and Soldati, 2000).

Of the six known [vs genes in Dictyostelium, the lvsB gene
encodes a protein most closely related in amino acid se-
quence to the LYST/Beige protein. To determine whether
LvsB functions like LYST/Beige proteins, we biochemically
and microscopically analyzed [vsA-null through lvsF-null
mutants. This report demonstrates that of the six proteins
only LvsB appears to function like the LYST/Beige protein.
Notably, lvsB-null mutants contain enlarged acidic lyso-
somes that retain most, but not all, of the proteins found in
normal lysosomes. Furthermore, these enlarged lysosomes
appear to form as a result of an increase in the rate of vesicle
fusion.
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MATERIALS AND METHODS
Cell Lines

Dictyostelium strain NC4A2 was used as the control parental strain
(kind gift of David Knecht). lvsA-null cell strain AD-63 (alias VIG9)
was described previously (Kwak ef al., 1999). All other Lvs-related
knockout strains were made in NC4A2 as described by Wang, N.,
Wu, W. and DeLozanne, A. (unpublished data). Briefly, knockout
constructs were made using a blasticidin-resistance cassette
bounded by two segments of each gene. Each construct was intro-
duced into NC4A2 cells by electroporation, and clonal transfor-
mants were selected in 96-well dishes. Individual clones were
screened for double-crossover insertion of the knockout construct
by PCR, and the appropriate insertion was confirmed by Southern
blot analysis.

Microscopy

To visualize the entire endocytic pathway by fluorescence micros-
copy, cells grown in T-25 tissue culture flasks were allowed to settle
on 22- X 22-mm coverslips (Fisherbrand, Fisher Scientific, Hamp-
ton, NH) in a six-well dish and were incubated for 2 h in HL-5
growth medium (10.0 g proteose peptone [Oxide LTD., Basingstoke,
Hampshire, United Kingdom], 10.0 g of glucose, 5.0 g yeast extract,
0.19 g Na,HPO,, 0.35 g KH,PO,) containing 1.0 mg/ml fluorescein
isothiocyanate (FITC)-conjugated dextran (FD-70S, Sigma, St. Louis,
MO). To view a subset of vesicles in the endocytic pathway, cells
were pulsed with FITC-dextran for 5 min, washed, and chased for 0
min (to visualize macropinosomes), 20 min (lysosomes), or 60 min
(postlysosomes). After the chase periods, cells were washed with
fresh HL-5, fixed in 1% formaldehyde in HL-5 for 3 min, and viewed
using a fluorescence microscope (Olympus, Tokyo, Japan).

To assess acidification of vesicles, cells were allowed to settle on
coverslips in HL-5 and incubated with a 1:100 dilution of DND-189
Lysosensor (Molecular Probes, Eugene, OR) in HL-5 for 2-3 min.
Lysosensor fluoresces only in acidic compartments (5.2 pKa), and
live cells were visualized in the fluorescein channel.

For immunofluorescence microscopy, cells grown in T-25 flasks in
log phase were allowed to settle on 22- X 22-mm coverslips in
six-well plates for 20 min, fixed, and permeabilized as described by
Bush et al. (1994). Cells were incubated with the primary (B832,
anti-100-kDa pump) and secondary antibodies (Texas Red goat
anti-mouse; Jackson Laboratories, Bar Harbor, ME), each for 1 h at
4°C. Coverslips were washed and mounted on slides and visualized
using an Olympus BX-50 fluorescence microscope.

Endocytosis, Phagocytosis, and Exocytosis Assays

Fluid phase endocytosis and exocytosis rates were measured using
FITC-dextran, as described by Temesvari et al. (1996a). Phagocytosis
rates were measured using fluorescent latex beads as described by
Temesvari ef al. (2000).

Purification of Lysosomes

Lysosomes were purified as described before with some modifica-
tions (Temesvari ef al., 1994). Cells were pulsed for 15 min with an
equal volume of HL-5 media containing 2.0 mg/ml iron dextran,
washed twice in cold HL-5, and chased in fresh media for 15 min.
Harvested cells were resuspended to 2.0 X 10® cells/ml in sucrose
buffer (5.0 mM glycine, 100 mM sucrose, pH 8.5) with a protease
inhibitor cocktail (10 wg/ml leupeptin, 20 pg/ml chymostatin, 20
png/ml pepstatin, 5 mg/ml aprotinin, 100 mM Na-p-tosyl-L-lysine
chloromethyl ketone) and were broken by passage through two
5-um pore polycarbonate filters (Poretics, Livermore, CA). Post-
nuclear supernatants were pumped through the column of fine
mesh wire (25 um diameter; Goodfellow, Malvern, PA) at 70 ml/h.
After washing, lysosomes were recovered from the wire mesh using
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a 5-ml pipette and centrifuged in 35-ml Oakridge tubes at 39,000 X
g at 4°C for 30 min. The sucrose buffer was aspirated and the
lysosomes were resuspended in Laemmli buffer (Laemmli, 1970),
heated to 65°C for 5 min, and subjected to SDS-PAGE or stored at
—80°C.

Western Blot Analysis

SDS-PAGE and Western blot analysis were done as described by
Buczynski et al. (1997). The membranes were blocked overnight in
TBSTG (10 mM Tris base, 150 mM NaCl, 0.1% gelatin (Knox), 0.1%
Tween-20, pH 7.5) and exposed to the following antibodies that
were diluted in TBSTG: mouse anti-100-kDa subunit of the vacuolar
H*-ATPase (B832, 1:200; Fok et al., 1993); rabbit anti-41-kDa subunit
of the vacuolar H"-ATPase (LSU 18-2, 1:2000; Temesvari et al.,
1996b); rabbit anti-a-mannosidase (LSU 27-2, 1:5000; J. Cardelli,
unpublished results); rabbit anti-D. discoideum Rab7 (LSU 7-2-4,
1:200; Buczynski et al., 1997); affinity pure rabbit anti-RabB (LSU11
25-1-2, 1:200; J. Cardelli, unpublished results,); rabbit anti-RabD
(Rab14 homolog, LSU 4-7-2, 1:200; Bush et al., 1994); anti-cathepsin
D (1:500; Journet et al., 1999); anti-CPp36, which recognizes cysteine
proteinase p36, (1:1000; a kind gift from J. Garin); anti-LmpA, which
recognizes D. discoideum LmpA, (1:1000; Karakesisoglou et al., 1999);
AD?7.5, which recognizes N-acetylglucose 1-phosphate-modified
cysteine proteinases (1:1000; kind gift of Hudson Freeze); anti-acid
phosphatase (5E1, 1:250); anti—B-glucosidase (APS8, 1:250). All blots
were exposed to the same mixture of alkaline phosphatase-conju-
gated secondary antibodies diluted in TBSTG (both goat anti-
mouse, 1:3000; catalog no. 170-6520, Bio-Rad, Hercules, CA; and
goat anti-rabbit, 1:30,000; catalog no. A-3687, Sigma). The blots were
developed in NBT buffer (100 mM Tris base, 100 mM NaCl, 5 mM
MgCl,) containing 0.6 mM nitroblue tetrazolium (Sigma) and 1.2
mM  5-bromo-4-choro-3-indolyl phosphate (ICN Biomedicals,
Cleveland, OH). Densitometry was calculated using a Bio-Rad im-
ager with Quantity One Quantitation software, version 4.1.0 (Bio-
Rad Laboratories, Hercules, CA).

a-Mannosidase Processing

Radiolabeling of cells, immunoprecipitation of «-mannosidase,
SDS-PAGE, and fluorography were done as described by Buczynski
et al. (1997).

Endosome/Phagosome Fusion Assay

Two methods were used to determine the fusion of either endo-
somes or phagosomes. To determine the rate of fusion of endo-
somes, cells were allowed to settle on coverslips placed in six-well
plates and incubated for 5 min with 1.5 mg/ml rhodamine isothio-

658

cyanate (RITC)-conjugated dextran (catalog no. R-9379, Sigma) in
HL-5. Cells were washed twice with fresh HL-5 and incubated with
1.5 mg/ml FITC-dextran for 5 min. Coverslips were washed once
with fresh HL-5 and chased for 10 min in HL-5, and cells were fixed
with 1% formaldehyde in HL-5 for 3 min. Coverslips were mounted
on slides and visualized using both the fluorescein and rhodamine
channels. Images of 50-100 cells were electronically captured using
an Olympus upright fluorescence microscope equipped with a dig-
ital camera (Sensy, Brussels, Belgium). Images were analyzed using
MetaView software (Universal Imaging, Dowingtown, PA).

For phagosome fusion, we used FITC-labeled bacteria (fl-bacteria)
to visualize individual phagosomes. Cells were placed in shaking
suspension and allowed to phagocytose fl-bacteria for 10 min and
then washed three times with fresh HL-5. Cells were allowed to
settle on coverslips in HL-5 to initiate the 30-min chase period.
Coverslips were gently immersed in fresh HL-5 to wash the remain-
ing fl-bacteria off, and then the cells were fixed in 1% formaldehyde
in HL-5. Coverslips were immersed again in HL-5 to wash off the
remaining fl-bacteria and mounted on coverslips to be examined
with the fluorescent microscope. Cells (50-100) with ~10 fl-bacteria
per cell were examined using a 100X oil objective, and the number
of fl-bacteria in each phagosome was assessed using both phase-
contrast and fluorescent filters. Fusion events are typically easy to
observe because the phagosome contains some soluble fluorescent
FITC that clearly marks the inner edge of the vacuole and demon-
strates that a single compartment contains multiple bacteria.

RESULTS

Dictyostelium Has Six Proteins Related to the
Mammalian LYST/Beige Proteins

A search of the nearly complete Dictyostelium genome data-
base identified six genes encoding BEACH domain-contain-
ing proteins (Wang, N., Wu, W. and DeLozanne, A., unpub-
lished data). Of these, [vsA was already characterized for its
essential role in cytokinesis and contractile vacuole (CV)
function (Kwak et al., 1999; Gerald et al., 2001). Thus, the
family of Dictyostelium genes was named [vsA through lvsF.
All of the proteins encoded by these six genes share a high
degree of similarity to each other but only in the BEACH
and WD domain regions (Wang, N., Wu, W. and DeLoz-
anne, A., unpublished data).

The BEACH and WD domains from the Dictyostelium
LvsA-F proteins were compared with those from related
proteins from many other species. Blast scores and sequence
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Figure 2. The enlarged vesicles in the
lvsB-null mutant are endocytic. NC4A2
control (A and B), lvsA-null (C and D),
and [vsB-null (E and F) cells were incu-
bated in HL-5 medium containing FITC-
dextran for 1 h to illuminate the endocytic
vesicles. Cells were visualized using a flu-
orescence microscope. The arrows point
to enlarged endocytic vesicles in [vsB-null
cells, and the arrowheads point to vesicles
the approximate size of normal lyso-
somes. Bar, 1 um.

comparison by the Clustal method consistently indicated the
sequence similarities illustrated in Figure 1. LvsB is the
Dictyostelium protein most closely related to the mammalian
LYST/Beige proteins. LvsF is related to the mammalian
protein FAN and the other Lvs proteins are related to pre-
dicted proteins of unknown function in other species.

To understand the function of this family of proteins, we
disrupted each of the Dictyostelium lvsB-F genes by homol-
ogous recombination. Initial analysis of the phenotype of
each mutant indicated that, other than lvsA-null mutants,
none of them are essential for cytokinesis, cell growth, os-
moregulation, or development (Wang, N., Wu, W. and De-
Lozanne, A., unpublished data). Interestingly, the /vsB mu-
tants displayed morphological differences that stimulated
further study.

1vsB-Null Cells Accumulate Enlarged Endosomal
Vesicles

Wild-type cells, and [vsA through [vsF-null mutants were
examined using an inverted microscope equipped with
phase-contrast optics. The most striking difference in mor-
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phology observed was an increase in the number of enlarged
vacuolar structures observed in IvsB-null cells (Figure 2,
compare E with A and C). These vacuoles were observed in
the [vsB-null mutants at all growth densities in axenic media
and over a culturing period of several months. The majority
of the enlarged vacuoles in [vsB-null cells were typically >2
um in size; vacuoles of this size were seldom seen in control
and lvsA-null cells. The doubling times for all three strains in
tissue culture flasks were comparable, indicating that the
enlarged vacuoles did not influence division rate of cells.
The enlarged vacuoles could be derived from the endoso-
mal pathway or from the CV system of membranes. To
distinguish between these two possibilities, we incubated
cells in growth medium with the fluid phase marker FITC-
dextran for 1 h to label the entire endosomal pathway,
including macropinosomes, endosomes, lysosomes, and
postlysosomes; internalized FITC-dextran is not trafficked
into the CV compartments (Gabriel et al., 1999). Fluorescence
microscopy indicated that all of the enlarged vacuoles in the
IvsB-null mutant contained FITC-dextran, confirming that
these vacuoles were part of the endosomal pathway (Figure
2F). Control (Figure 2B) and IvsA-null cells (Figure 2D) con-
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tained the predicted normal range in size of fluorescent
endosomal vesicles (0.2-1.0 wm).

The Eunlarged Vacuoles in the 1lvsB-Null Mutants Are
Lysosomes

To determine whether the enlarged vacuoles in the vsB-null
cells were morphologically modified lysosomes, we performed
a pulse-chase experiment using the fluid phase marker, FITC-
dextran. Cells in growth medium were pulsed with FITC-
dextran for 10 min followed by a 15-min chase in fresh me-
dium, a time frame previously demonstrated to be sufficient to
transport fluid to lysosomes (Temesvari ef al., 1996a). As dem-
onstrated in Figure 3, most of the enlarged vacuoles in lvsB-null
cells (G) contained fluorescent fluid (H), whereas control cells
(A and B) and lvsA-null cells (D and E) contained fluorescent
vesicles the size of normal lysosomes (0.5 um). Consistent with
these large vacuoles being lysosomes, shorter pulses with
FITC-dextran (to label macropinosomes) and longer chases (to
label postlysosomes) inefficiently labeled the large vacuoles
(Harris, Wang, Wu, Weatherford, De Lozanne, and Cardelli,
unpublished results).

To demonstrate that these large vesicles were acidic, consis-
tent with their being lysosomes, cells were incubated with
Lysosensor DND-189 (Molecular Probes), a probe that fluo-
resces only under acidic conditions. Figure 3 indicates that only
IvsB-null cells (I) contained enlarged acidic compartments,
whereas the wild-type cells (C) and the lvsA-null mutant (F)
contained acidic vesicles the size of normal lysosomes.
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Figure 3. The enlarged vesicles in the
lvsB-null cells are acidic lysosomes. To vi-
sualize lysosomes, NC4A2 control (A and
B), lvsA-null (D and E), and lvsB-null (G
and H) cells were subjected to a 15-min
pulse with FITC-dextran, washed, and
chased for 15 min in fresh growth me-
dium. Cells were examined with phase-
contrast optics (A, D, and G) or by fluo-
rescence microscopy (B, E, and H). The
control (B) and [vsA-null (E) cells con-
tained lysosomes of normal size, whereas
the lvsB-null cells (H) contained enlarged
lysosomes. Control (C), lvsA-null (F), and
lvsB-null (I) cells were incubated with the
acidophilic dye LysoSensor DND-189
(Molecular Probes) in HL-5 growth me-
dium and visualized using a fluorescence
microscope. The arrows point to enlarged
acidic lysosomes, and the arrowheads
point to normal size lysosomes. Bar, 2 um.

To determine whether enlarged acidic lysosomes formed
only in [vsB-null mutants, we pulsed wild-type cells and lvsA-,
[vsB-, lvsC-, lvsD-, lvsE-, and lvsF-null mutants with FITC-dex-
tran for 1 h to label the endosomal compartments. Fluorescence
microscopy indicated that enlarged FITC-dextran—positive ves-
icles did not form in any mutant other than the lvsB-null strain
(Figure 4; Harris, Wang, Wu, Weatherford, De Lozanne, and
Cardelli, unpublished results for lvsF-null cells). Together with
the results presented above, these data indicate that only the
disruption of a gene encoding the protein closest in homology
to LYST/Beige resulted in the accumulation of large acidic
lysosomes, the phenotype associated with fibroblasts and other
cells from patients with CHS.

Lysosomes from 1vsB-Null Cells Contain Most but
Not All of the Proteins Found Enriched in Normal
Lysosomes

To determine whether the presence of enlarged lysosomes in
lvsB-null cells disrupted trafficking or retention of lysosomal
proteins, we used a previously described magnetic fraction-
ation procedure (Temesvari et al., 1994) to purify lysosomes
from control cells and lvsB-null cells. Proteins in cell lysates and
lysosomes, prepared from the parental and lvsB-null cells, were
separated by SDS-PAGE and silver stained or blotted to nitro-
cellulose. Blots were incubated with antibodies that have all
been previously determined to recognize luminal or mem-
brane proteins enriched in lysosomes (see MATERIALS AND
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Figure 4. Only the [vsB-null cells exhibit the CHS cellular morphol-
ogy. To examine the size of the endocytic vesicles, control (A), lvsA-null
(B), lvsB-null (C), lvsC-null (D), lvsD-null (E), and lvsE-null (F) cells
were pulsed in HL-5 medium with FITC-dextran for 2 h, washed, and
fixed (lvsF-null not shown). Vesicle morphology was examined with a
fluorescent microscope at 400X magnification. Bar, 2 um.

METHODS and the references therein). The qualitative pattern
of proteins detected by silver stain was comparable between
the various fractions prepared from lvsB-null and control cells
with a few exceptions. Lysosomes from the control cells con-
tained higher levels of a 40- and 42-kDa protein as compared
with lysosomes from [vsB-null cells (Figure 5, top, marked with
an arrow). The relative enriched levels of the 100-kDa vacuolar
H*-ATPase subunit (100 kDa su), the 41-kDa vacuolar H"-
ATPase subunit (41 kDa su), RabB, RabD, Rab7, cathepsin D
(Cath. D), the 36-kDa cysteine proteinase (CP36), eight different
cysteine proteinases (GlcNac 1-P containing), B-glucosidase
(B-glu), acid phosphatase (Acid Phos.), and LmpA were similar
in lysosomes prepared from control and [vsB-null cells (Figure
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Figure 5. Lysosomes from the [vsB-null mutant reduced levels of
a-mannosidase and several cysteine proteinases. NC4A2 control and lusB-
null cells were fed iron-dextran for 15 min and then were chased for 15
min in fresh medium to load up lysosomes. Iron-dextran—filled vesicles
(lysosomes) were collected on a magnetic column, concentrated, and sub-
jected to SDS-PAGE (see MATERIALS AND METHODS). Control cell
lysates (lane 1), control lysosomes (lane 2), and lvsB-null lysosomes (lane 3)
were subjected to SDS-PAGE and silver stained (top) or incubated with a
host of antibodies against lysosomal proteins. The antibodies reacted with
the 100-kDa subunit of the vacuolar H"-ATPase (100 kDa su), the 41-kDa
subunit of the vacuolar H*-ATPase (41 kDa su), RabB (human Rab21
homolog), RabD (human Rab14 homolog), Rab7, cathepsin D (Cath. D),
cysteine proteinase 36 (CP36), GlcNac 1-P-sulfate (lysosomal cysteine pro-
teinases), a-mannosidase (a-mann), B-glucosidase (8-glu), acid phospha-
tase (Acid Phos.), and lysosomal membrane protein A (LmpA).

5). In contrast, the relative amount of mature a-mannosidase
(a-mann) in the lysosomes from lvsB-null cells was reduced by
50% as compared with control lysosomes (Figure 5). In addi-
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tion, two proteins detectable in control lysosomes by an anti-
body (anti-GlcNac 1-P) that recognizes N-acetylglucosamine
1-phosphate (Souza et al., 1997) were not detected in blots of the
lysosomes from lvsB-null cells (Figure 5).

To determine whether the reduction in the levels of a-man-
nosidase in lysosomes from lvsB-null cells was the result of
defects in processing or sorting of this enzyme, we performed
a radiolabel pulse-chase experiment. Control, lvsA-null, and
IvsB-null cells were pulsed with [**S]methionine for 20 min and
chased in fresh HL-5 medium for 15, 60, 120, and 240 min. For
each time point, a-mannosidase was immunoprecipitated from
the medium (to detect secreted enzyme) and from cell lysates
(to detect synthesis and processing rate of the enzyme). Lyso-
somal a-mannosidase is synthesized as a 140 kDa precursor
that is, first, proteolytically cleaved to an immature form of 80
kDa, followed by further processing to the mature subunits of
58 and 60 kDa that are secreted slowly over time into the
medium (Mierendorf et al., 1985). As indicated in the fluoro-
graphs shown in Figure 6, the rate of processing of the precur-
sor form of a-mannosidase was similar for all strains exam-
ined. All of the precursor polypeptide was proteolytically
processed in all strains 60 min into the chase with a half-time of
processing of 1015 min, and very little of the precursor was
missorted and secreted from cells. In contrast, secreted radio-
labeled mature forms of a-mannosidase were first detected at
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HL-5. At each time point during the chase pe-
riod, a-mannosidase was immunoprecipitated
from both the medium, to detect secreted a-man-
nosidase, and cell lysates, to detect intracellular
a-mannosidase. Immunoprecipitates were sub-
jected to SDS-PAGE, followed by fluorography.

120 min in the medium from [vsB-null cells, and by 240 min of
chase, >50% of the mature enzyme had been secreted. In
contrast, <25% of the mature forms had been released from
control cells and [vsA-null cells at this chase time point. These
results suggest that the processing and targeting of a-manno-
sidase were normal in the three strains examined but that
IvsB-null cells may be defective in the retention of the mature
form of this enzyme. This result was confirmed by demonstrat-
ing that the rate of secretion of the mature enzyme was twice as
fast from IvsB-null cells as compared with control cells (Harris,
Wang, Wu, Weatherford, De Lozanne, and Cardelli, unpub-
lished results).

1vsB-Null Cells Are Not Defective in Endocytosis,
Phagocytosis, or Endosomal Efflux

Because LvsB appears to play a role in the regulation of
fusion and/or fission of lysosomes in the endocytic path-
way, we wanted to determine whether this protein also
regulated other pathways relevant to the biogenesis and/or
function of lysosomes, such as endocytosis, phagocytosis,
and endosomal efflux. Therefore, the rates of endocytosis
and release of fluid (using FITC-dextran as a fluid phase
marker) and phagocytosis (using latex beads as a marker)
were measured in control, [vsA-null, and lvsB-null cell lines.

Molecular Biology of the Cell
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Figure 7. The rates of endocytosis, phagocytosis, and fluid exocy-
tosis are comparable between /vsB-null and control cells; lvsA-null
cells are defective in phagocytosis. Endocytosis rates (A), exocytosis
rates (B), and phagocytosis rates (C) were measured for control cells
and the lvsA-null and [vsB-null mutants as described in MATERI-
ALS AND METHODS. lvsA-null cells were significantly reduced in
the rate of phagocytosis (unpaired, two-tailed Student’s t test, p <
0.01) compared with control cells, whereas, lvsB-null and control
cells were not significantly different.

Figure 7 indicates that the rates of endocytosis (A) and
exocytosis (B) were statistically similar in the control and
both of the lvs mutant cell lines. The rates of phagocytosis
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(C) were also comparable in both the control and lvsB-null
cells. In contrast, the rate of phagocytosis was reduced by
40% in the lvsA-null cells as compared with control cells.
These data suggest that LvsB does not play a significant role
in the uptake of either fluid phase or particles, nor does this
protein regulate fluid phase movement along the endosomal
pathway. Instead, it appears that LvsA may regulate inter-
nalization of particles but not of fluid.

The CV System Is Morphologically Normal in 1vsB-
Null Cells but Is Altered in 1lvsA-Null Cells

The CV is an osmoregulatory organelle consisting of a retic-
ulum network (the collecting ducts that run throughout the
cytoplasm) and the bladder, a contracting vacuole that emp-
ties the collecting ducts and expels water from the cell
(Heuser et al., 1993). The membrane of the CV and the
endocytic pathway are distinct, and no apparent trafficking
of the bulk flow of membranes and protein occurs between
these organelles (Gabriel ef al., 1999). Despite this, these two
pathways share some common proteins, such as RabD (Bush
et al., 1994) and the vacuolar H*-ATPase (Heuser et al.,
1993), and we have hypothesized that RabD regulates traf-
ficking of a subset of proteins between lysosomes and the
CV system (Bush et al., 1996). Therefore, because LvsB reg-
ulated the morphology of the lysosomes, we asked whether
this protein also regulated the morphology of the CV. Im-
munofluorescence microscopy using antibodies directed
against the membrane-inserted 100-kDa subunit of the H*-
ATPase revealed that the morphology of the CV appeared
normal in both the parent strain (Figure 8, A and B) and
lvsB-null strain (Figure 8, E and F). In contrast, as described
in more detail elsewhere (Gerald ef al., 2001), the CV net-
work in the lvsA-null cells appeared more filamentous and
finer in morphology, suggesting that LvsA plays a role in
maintaining CV morphology and function (Figure 8, C and D).

The Enlarged Lysosomes in the 1lvsB-Null Cells May
Result from an Increase in Vesicle Fusion

Overexpression of LYST in both normal and CHS fibroblasts
results in numerous smaller-than-normal lysosomes that
distribute near the periphery, interpreted to mean that LYST
acts as a positive regulator of fission (Perou et al., 1997).
However, this result is also consistent with LYST being a
negative regulator of fusion, and therefore a greater amount
of LYST in the cytoplasm would more efficiently inhibit
fusion, resulting in the accumulation of smaller lysosomes.
To further investigate the role of LvsB, we developed a
fusion assay designed to distinguish whether the large
lysosomes in the [vsB-null cells accumulate as a result of
an increase in fusion or as a result of a decrease in fission.
Cells were first pulsed with RITC-dextran for 5 min,
washed for 2 min, pulsed with FITC-dextran for 5 min,
chased for 10 min, and then fixed in formaldehyde. This
pulse-chase format will label endosomes and lysosomes.
Fluorescent microscopic images were collected in both the
fluorescein and rhodamine channels, and the number of
red, green, and red/green-merged vesicles were counted
in several pools of cells. The fluorescence micrograph
shown in Figure 9 reveals that the relative number of
red/green-merged vesicles appeared greater in the [vsB-
null cells (B) versus the number observed in control cells
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Figure 8. The CV system of membranes appears normal in the [vsB-
null cells in contrast to the altered morphology seen for CV membranes
in lvsA-null cells. Control NC4A2 (A and B), lvsA-null (C and D), and
IvsB-null (E and F) were fixed, permeabilized, and incubated with an
antibody against the 100-kDa subunit of the proton pump, a marker for
the CV membranes. CV reticular network membranes were visualized
with a fluorescent microscope at 1000X.

(A). The percentage of fused vesicles is graphically shown
in the bar graph in Figure 11A and demonstrates that the
number of fused endolysosomal vesicles was threefold
higher in the lvsB-null cells as compared with fusion
observed for the lvsA-null and control cells. If cells were
examined immediately after the pulse period with the
second fluor, no merged vesicles were found, suggesting
that the merged vesicles arise from fusion following in-
ternalization (Figure 9C).

The merged vesicles observed are presumed to be the result
of the fusion between red and green vesicles; unfortunately,
this method cannot quantitatively measure multiple fusion
events, especially those that occur between vesicles with the
same fluorescent substance. Also, these merged vesicles may
result from trafficking of smaller vesicles between these large
vesicles or a “kiss and run” process (Storrie and Desjardins,
1996). Therefore, to more accurately measure the number of
fusion events for each merged vesicle and to determine
whether fusion was complete, we used a previously developed
phagosomal fusion assay (Rupper et al., 2001). Cells were al-
lowed to internalize fluorescent bacteria for 10 min in shaking
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Figure 9. Large endolysosomes in the [usB-null cells are a result of an
increase in fusion. Control NC4A2, lvsA-null, and lvsB-null cells were
pulsed with RITC-dextran, washed, pulsed with FITC-dextran,
washed, chased for 5 min, fixed, and examined under a fluorescence
microscope. Most of the red and green vesicles were distinct and
separate from each other in the control (A), whereas, a higher percent-
age of vesicles in the lvsB-null (B) fused with each other. Examination
of cells at the end of the double-pulse period revealed that little
colocalization was observed in the mutant, suggesting that separately
internalized vesicles fuse over time (C). Bar, 2 um.

suspension, washed, and chased in fresh HL-5 on coverslips
for 30 min. Microscopic images were collected, and the total
number of bacteria per cell and bacteria per phagosome were
enumerated as described by Rupper et al. (2001). Fusion rates
are linear between 30 and 90 min of chase in cells (Rupper et al.,
2001). Figure 10, A-D, indicates that after the pulse period only
phagosomes containing single bacteria are observed in control
and mutant cells. At the 30-min chase point, a greater number
of multiparticle phagosomes are found in lvsB-null cells (Figure
10, G and H) as compared with control cells (Figure 10, E and
F). A quantitative analysis of fusion events indicates that the
number of phagosomal fusion events in the lvsB-null cells was
threefold higher after a 30-min chase as compared with fusion
in control and [vsA-null cells ( Figure 11). This result strongly
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Figure 10. The rate of phagosome-phagosome fusion was increased
in lvsB-null cells. Control cells were pulsed with FITC-labeled Esche-
richia coli for 10 min, washed, and chased on coverslips for 30 min. At
this time point indicated, cells were fixed and examined microscopi-
cally to determine the number of fusion events. The assay is linear
between 30 and 90 min of chase. A, C, E, and G are phase contrast
images, whereas B, D, F, and H are fluorescent images. A and B
(control) and C and D (mutant) indicate that after a short pulse period
only single-particle-containing phagosomes are observed in cells
(marked with arrowheads). E and F (control) and G and H (mutant)
indicate that at the 30-min chase point at greater number of phago-
somes contain multiparticles in the mutant cells as compared with
control cells (marked with arrows). Bar, 2 um.

suggests that the absence of LvsB led to an increase in endoly-
sosomal fusion and phagosome-phagosome fusion.

DISCUSSION

We report here that disruption of the Dictyostelium [vsB gene,
encoding a protein related in amino acid sequence to LYST/
Beige proteins, particularly in the BEACH and WD-40 do-
mains, resulted in a phenotype similar to that observed in
cells from patients with CHS. The cellular changes observed
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Figure 11.  The rate of endolysosomal and phagosomal fusion was

increased in lvsB-null cells. A enumerates the number of red/green-
merged endosomal vesicles and reveals that this number is signifi-
cantly higher in the [vsB-null cells relative to control (wt) and lvsA-null
cells (unpaired, two-tailed Student’s ¢ test, p = 0.0016). B illustrates that
the number of fusion events per cell is significantly higher at the
30-min chase point in the [vsB-null mutant as compared with lvsA-null
and control cells (wt) when using FITC-labeled bacteria (see MATERI-
ALS AND METHODS for details) as a marker for phagolysosomes
(unpaired, two-tailed Student’s ¢ test, p < 0.0001). These experiments
were repeated three times each and for each experiment between 50
and 100 cells in random fields were analyzed.

in lvsB-null mutants included the presence of large acidic
proteinase- and glycosidase-rich vesicles that appeared to be
lysosomes. Enlarged lysosomes were not detected in [vsA-,
lvsC-, lvsD-, lvsE-, or lvsF-null mutants. In addition, a small
subset of proteins was decreased in abundance in lysosomes
prepared from lvsB-null cells, although the sorting and pro-
cessing of one of these proteins, a lysosomal glycosidase,
appeared normal. Finally, the studies described here indi-
cate that LvsB appeared to function as a negative regulator
of lysosome biogenesis, because in the absence of this pro-
tein the rate of homotypic vesicle fusion increased. Because
of the availability of biochemical and genetic approaches to
study Dictyostelium and the fact that its endolysosomal sys-
tem has been well characterized, our studies suggest that
this organism will be a useful system to explore the molec-
ular and biochemical nature of CHS.

It appears significant then that, among all six Dictyostelium
Lvs proteins, LvsB is the most closely related to LYST /Beige
in protein sequence. Intriguingly, this similarity is borne
only in the BEACH and WD domains and not in the rest
(80%) of the protein. Further studies are required to deter-
mine whether this portion of the protein contributes in any
way to the function of LvsB/LYST/Beige proteins.

The main diagnostic feature of CHS disease at the cellular
level is the striking presence of enlarged lysosomes and
lysosome-related organelles in different cells from CHS pa-
tients. Three models have been developed to explain the
formation of these enlarged structures. One model proposes
that LYST/Beige acts as a negative regulator of fusion (Ol-
iver and Essner, 1975), another suggests that this protein acts
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as a positive regulator of fission (Burkhardt et al., 1993;
Perou et al., 1997), and a third model hypothesizes that
LYST/Beige regulates vesicle trafficking (Faigle et al., 1998),
a process that contributes to lysosome morphology and size.

Early morphological and biochemical studies supported
the first model and suggested that these large lysosomes
formed from the homotypic fusion of lysosomes or the fu-
sion of lysosomes with prelysosomal endocytic vesicles (Iri-
majiri ef al., 1992; Jones et al., 1992). Furthermore, fusion can
account for identical and nonidentical membrane-enclosed
organelles in neutrophils, suggesting that vesicles along dif-
ferent stages of maturation in the endolysosomal pathway
were fusing together. Finally, homotypic fusion of lyso-
somes and phagosomes is not a process confined to CHS or
Beige cells but in fact occurs in normal cells (Tjelle et al.,
2000). Together, these data can be interpreted to support a
role for LYST/Beige as a negative regulator of endolysoso-
mal fusion processes that occur normally in cells.

More recently, it has been proposed that the formation of
large lysosomes in CHS cells may be the result of a reduction
in the rate of fission or budding of vesicles from maturing
lysosomes that have undergone fusion. First, it was demon-
strated that lysosomes and late endosomes fuse to form a
hybrid organelle in normal cells and that fission reactions
restore both late endosomes and lysosomes (Luzio ef al.,
2000). Second, when the LYST protein is overexpressed in
CHS fibroblasts, large lysosomes disappear with the emer-
gence of smaller-than-normal granules (Perou et al., 1997).

The experiments described here support a role for the
LvsB protein as a negative regulator of fusion of lysosomes.
First, our results demonstrate that the enlarged vesicles in
IvsB-null mutants were lysosomes. These enlarged struc-
tures contained fluid phase markers (Figure 2), they were
acidic (Figure 3), and they contained a host of proteins
previously demonstrated to be enriched in normal lyso-
somes (Figure 5). In addition, these large vesicles received
internalized fluid with the same kinetics as normal lyso-
somes (Figure 3). Second, we found that the rate of homo-
typic fusion of phagosomes and endolysosomes was signif-
icantly increased in [vsB-null cells relative to control cells
and [vsA-, lvsC-, lvsD-, IvsE-, and lvsF-null mutants (Figure
9). Although our studies do not exclude the possibility that
LvsB also acts to regulate fission, they more strongly sup-
port the idea that LvsB, (and by analogy, LYST/Beige),
normally acts to negatively regulate the rate of fusion of
endolysosomes.

How might LvsB and LYST/Beige proteins act to down-
regulate fusion of endolysosomal vesicles? One possibility is
that LYST-like proteins may inhibit the formation of tethering/
docking complexes, necessary to bring vesicles close together,
or SNARE complexes, necessary for membrane fusion. Noth-
ing currently known about the BEACH or WD-40 domains
suggests an interaction with docking or fusion-promoting pro-
teins, although this needs to be investigated.

Another possible function for LYST/Beige/LvsB proteins
could be to act as a molecular scaffold to regulate a signaling
pathway that modifies the vesicle membrane to regulate
fusion (Ward et al., 2000). One possible signaling pathway
may involve the formation of ceramide. Ceramide levels are
known to increase in Beige cells, and ceramide has been
demonstrated to regulate endosome fusion. Intriguingly,
FAN has BEACH and WD-40 domains related to LYST/

666

Beige and is known to interact with a neutral sphingomy-
elinase to regulate the production of ceramide. Thus, it is
possible that LYST/Beige interacts with sphingomyelinase
to generate ceramide that in turn regulates vesicle fusion.
LvsB/LYST/Beige might also alter the levels of other mem-
brane-associated lipids, including phosphoinositides, which
could alter vesicle fusion rates.

LvsB and LYST/Beige proteins may also regulate the traf-
ficking of lysosomes and endosomes along cytoskeletal
structures such as microtubules and F-actin. Movement of
lysosomes from the periphery of cells to a more juxtanuclear
position may increase the likelihood of docking and fusion.
In fact, overexpression of the Beige protein in human fibro-
blasts results in smaller-than-normal lysosomes and a more
peripheral distribution of lysosomes (Perou et al., 1997). The
LYST/Beige proteins could negatively regulate proteins like
Rab7, a small GTPase implicated in the trafficking and fusion
of lysosomes in a juxtanuclear position in the cell (Bucci et
al., 2000; Caplan ef al., 2001). Alternatively, LYST/Beige-like
proteins could positively regulate proteins like Rab27a (Ba-
hadoran et al., 2001;Hume et al., 2001) or myosin V (Wu et al.,
2001), both implicated in the F-actin- and microtubular-
dependent trafficking of melanosomes to the periphery of
melanocytes. Dictyostelium RabD, a Rab14-like GTPase (Har-
ris, and Cardelli, unpublished results), and two phospho-
inositide 3-kinases (Rupper et al., 2001) have been implicated
in the regulation of lysosome-lysosome and phagosome-
phagosome fusion and potentially could be targets for the
activity of LvsB.

The study presented here also revealed only minor defects in
protein trafficking in lusB-null cells, even although this mutant
contained enlarged lysosomes. Of >20 proteins assayed, only
mature lysosomal a-mannosidase and two cysteine proteinases
were inefficiently retained in mutant cells. The oversecretion of
a-mannosidase was not the result of missorting, because the
newly synthesized protein was processed and sorted correctly
in lvsB-null cells. Finally, the rates of endocytosis, phagocytosis
and fluid phase exocytosis were also normal in /vsB-null cells,
consistent with only minor defects in trafficking of membrane
and protein. Changes in the rate of secretion of a-mannosidase
but not other hydrolases that reside in the same organelle have
been observed before in clathrin-null mutants (Ruscetti et al.,
1994). Lysosomal enzymes are probably retained in Dictyoste-
lium by a process that involves the recycling of these enzymes
from lysosomes and postlysosomes (a secretory compartment)
back to early endosomes (Buczynski et al., 1997). In contrast,
100% of the internalized fluid is released from postlysosomes.
The large size of lysosomes may inhibit the efficient recycling
and retention of some lysosomal enzymes.

The observations of only subtle defects in retention or traf-
ficking of lysosomal proteins in JvsB-null mutants are similar to
the conclusions reached by others in the study of CHS or Beige
cells. For instance, it has been reported that acidic a-mannosi-
dase levels are lower in CHS cells as compared with controls
(Tanaka, 1980) and that only two lysosomal proteinases, elas-
tase and cathepsin G, were deficient in Beige neutrophils
(Takeuchi et al., 1986). Furthermore, it was demonstrated that
the processing and targeting of lysosomal cathepsin D and the
delivery of proteins to lysosomes were normal in cytotoxic T
cells from patients with CHS, even though these cells contained
enlarged vacuoles and were defective in cytotoxic T-lympho-
cyte-mediated functions (Stinchcombe et al., 2000).
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Minor trafficking defects can, however, have profound ef-
fects. For instance, peptide loading onto the major histocom-
patibility complex type II molecules and antigen presentation
is delayed in the B cells of CHS patients (Faigle et al., 1998). In
addition, CTLA-4, a negative regulator of T-cell activation
(Karandikar et al., 1996) is normally enriched in endocytic
vesicles and the secretory granules, whereas it is found in the
large granules of the T cells from patients with CHS. Confor-
mationally altered CTLA-4 is found on the surface of cells,
leading to a disruption of T-cell homeostasis and possibly
contributing to the accelerated phase in CHS patients (Barrat et
al., 1999). The altered conformation of CTLA-4 may be the
result of decreased processing of this protein in lysosomes
because of a missorted processing enzyme.

LvsA, also closely related to LYST/Beige, has been proposed
to regulate membrane trafficking to the contractile ring, a pro-
cess important during cytokinesis (Kwak et al., 1999). As re-
ported here, lvsA-null cells, but not lvsB-null cells, were defec-
tive in phagocytosis, although lvsA-null cells were normal in
other endosomal processes, including lysosome biogenesis.
LvsA is thus added to a growing list of Dictyostelium proteins
that regulate phagocytosis (Cardelli, 2001).

Another known role of LvsA is in the function of the CV
during osmoregulation (Gerald et al., 2001). The CV network of
membranes was also altered in lvsA-null mutants and ap-
peared finer and more vesicular in structure as compared with
the more coarse tubular-vesicular structures observed in con-
trol cells or lvsB-null mutants. The possible connection between
the morphology of the CV network and the regulation of
phagocytosis is intriguing, because we have observed that
overexpression of two different dominant negative GTPases,
RabDN'21I (Bush et al., 1996) and Rab11N'2¢! (Harris et al., 2001),
alters the CV network and affects phagocytosis. Rates of phago-
cytosis are increased in cells expressing Rab11N'2¢%, and the CV
network appears “thicker” in morphology, perhaps because of
an increase in the amount of CV membrane present. In con-
trast, expression of RabDN'2!! results in decreases in the rates
of phagocytosis and the formation of a reduced patch or cluster
of vesicular CV structures next to the plasma membrane
(Harris et al., 2001 ).

We have proposed that the CV network in Dictyostelium may
function like the recycling endosomal compartment functions
in mammalian cells. Also, as proposed for recycling endosomal
compartments, we hypothesize that the CV network of mem-
branes may regulate internalization of particles by supplying
membrane to help generate the phagocytic cup (Cardelli, 2001).
The CV network and phagocytosis have also been linked in
Tetrahymena pyriformis. A 71-kDa protein, associated with the
actin-binding proteins, localizes to both the CV and oral appa-
ratus responsible for food uptake, suggesting that a connection
may exist between the membranes involved for internalization
and osmoregularity in this single-celled organism (Watanabe et
al., 1998). We are currently investigating possible trafficking
pathways between the CV membranes and the phagosomes in
Dictyostelium.

In conclusion, we have demonstrated that LvsA and LvsB,
two proteins that are related to LYST/Beige and contain
BEACH and WD-40 domains, play a role in the regulation of
phagocytosis and lysosome biogenesis, respectively. In con-
trast, null mutants of LvsC, LvsD, LvsE, and LvsF contained
normal size lysosomes, and preliminary results suggest that
endosomal processes also function normally. Future studies
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will focus on defining the molecular functions of LvsB and
LvsA and on investigating the possible membrane-traffick-
ing defects that exist in these other /vs mutants.
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