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Abstract: Proteins in the cell have to be eliminated once their function is no longer desired or they
become damaged. Most regulated protein degradation is achieved by a large enzymatic complex
called the proteasome. Many proteasome substrates are targeted for degradation by the covalent
attachment of ubiquitin molecules. Ubiquitinated proteins can be bound by the proteasome, but for
proteolysis to occur the proteasome needs to find a disordered tail somewhere in the target at which
it initiates degradation. The initiation step contributes to the specificity of proteasomal degradation.
Here, we review how the proteasome selects initiation sites within its substrates and discuss how the
initiation step affects physiological processes.
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Introduction
To maintain cellular homeostasis, protein abundance
is regulated by adjusting the rates of synthesis and

degradation. A large fraction of regulated intracellu-
lar protein degradation is performed by the ubiquitin
proteasome system (UPS), which plays pivotal roles
in a variety of cellular processes including cell cycle
regulation, membrane trafficking, and DNA repair.1–3

Proteins are targeted to proteasomal degradation
through conjugation of the small globular protein
ubiquitin to Lys residues in the substrate.4–6 The
specificity and processivity of the UPS ensure proper
cellular function and thus the UPS is indispensable
for cells to survive.

The proteasome is a large protein complex with a
molecular weight of ~2.5 MDa and consists of a 20S
core particle (CP) and 19S regulatory particles (RP,
also known as PA700) (Fig. 1) (Unverdorben P et al,
PubMed ID: 24706844). In cells, the CP is predomi-
nantly capped at either or both ends by a specific RP,
forming the holoenzyme known as the 26S
proteasome.7 The CP possesses the proteolytic sites
at the surface of an internal chamber.8 The RP con-
tains three well-characterized ubiquitin receptors
(Rpn1, Rpn10, and Rpn13) and thus is responsible for
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substrate recognition.9 Once bound to the proteasome,
substrate is unfolded by the action of six ATPase
subunits (Rpt1–6) located in the RP and trans-
located from the RP into the CP, where it is cleaved
into peptides of 3–8 amino acids.10 The ubiquitin
chain is removed by the deubiquitinating activity of
subunit Rpn11 in the RP as the substrate is pulled into
the proteasome particle.11–14 In addition to the stoichio-
metric proteasome subunits, several accessory proteins,
such as the deubiquitinases Ubp6 (USP14 in mammals)
and UCH37 (not present in yeast) and the shuttle fac-
tors Rad23 (HR23A/B), Dsk2 (UBQLNs) and Ddi1
(DDI1/2), bind transiently to the proteasome to play
auxiliary roles in degradation.15 The proteasome also
cooperates with some upstream factors including the
ubiquitin-selective chaperone Cdc48 (p97/VCP).16,17

The mechanism of proteasomal degradation can
be divided into three steps, substrate recognition,
unfolding, and proteolysis. Most proteins are targeted
to the proteasome by the covalent attachment of multi-
ple ubiquitin molecules through a cascade of three clas-
ses of enzymes acting sequentially: ubiquitin-activating
enzymes (E1), ubiquitin-conjugating enzymes (E2), and
ubiquitin ligases (E3). The E1 activates ubiquitin by
catalyzing the formation of a ubiquitin adenylate. The
activated ubiquitin is transferred to the E2. Finally,
the E3 recognizes a short sequence or degron in the
target protein and mediates the transfer of ubiquitin
from the E2 to the target. The ubiquitin moieties
are attached through isopeptide bonds between their
C-termini and amino groups in the substrate, usually

the ε-amino groups of Lys residues. Ubiquitin itself
contains seven lysine residues (Lys 6, Lys 11, Lys
27, Lys 29, Lys 33, Lys 48, and Lys 63) as well as an
α-amino group at the N-terminus (Met 1), and the
ubiquitination process typically forms poly-ubiquitin
chains on proteins, as the first ubiquitin tag becomes
itself modified and so on.18 Chains formed by ubiquitin
molecules linked through Lys 48 are the most abun-
dant in cells and represent the canonical degradation
signal that targets substrates to the proteasome.19 The
next most common linkage is through Lys 63, and
chains of this type are associated with membrane traf-
ficking, as are tags consisting of a single ubiquitin mol-
ecule.6,20 Chains in which ubiquitin moieties are linked
C- to N-terminus through peptide bonds form protein
complexes in signaling cascades. Branched chains in
which ubiquitin moieties are tagged at two Lys resi-
dues are also observed. For example, chains with Lys
11 and Lys 48 linkages are made during cell cycle reg-
ulation.21 However, there is not a strict one-to-one cor-
respondence between ubiquitin modification and cellular
process and, for example, multiple monoubiquitin and
Lys 63 chains can also target proteins for proteasomal
degradation in some circumstances.6,22

On the proteasome, ubiquitin chains are recog-
nized by the three stoichiometric proteasome subunits
mentioned above, through one (yeast) or two (human)
ubiquitin-interacting motif domains in Rpn10, the
pleckstrin-like receptor for ubiquitin domain of Rpn13,
and the T1 site of Rpn1. Cells encode additional pro-
teins that seem to function as supplementary substrate

Figure 1. Structure of the 26S proteasome (based on PDB: 4CR2). The 26S proteasome consists of a 20S CP (orange) and a 19S
RP (gray or indicated colors). The CP is responsible for proteolysis. The RP contains the ATPase subunits Rpt1–6 (purple), the
deubiquitinase Rpn11 (cyan), and the ubiquitin receptors Rpn1, Rpn10, and Rpn13 (green). Substrates enter the proteasome
through a channel at the center of a ring formed by the ATPase subunits.
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receptors. These shuttle receptors bind to ubiquitin
chains through ubiquitin-associated domains and are
recruited to the proteasome via their N-terminal
ubiquitin-like domains.23–31 The receptors perform
largely overlapping functions though mutation of indi-
vidual receptors affects degradation of subsets of
proteasome substrates.32–34

Protein binding to the proteasome is not suffi-
cient for degradation. A substrate is degraded only
when the proteasome is able to engage it at a disor-
dered region in the protein to initiate degradation.
The length, location, and amino acid sequence of the
disordered region determine how well it is recognized
by the proteasome and thus how rapidly a protein is
degraded. In this review, we highlight the mechanism
by which the proteasome initiates degradation. We
review the advances of the field from early conceptu-
alization to recent progress, including application to
disease treatment.

The Initiation Region of Proteasomal Degradation

Identification of the initiation region:
Ubiquitination is not sufficient
Ubiquitination serves as the proteasome targeting sig-
nal, but it does not always lead to rapid degrada-
tion.19,35 Substrates have to reach the proteolytic sites
inside the proteasome through a channel, and the
pore at its entrance has a diameter of approximately
13 Å.36,37 Thus, folded proteins must be unraveled and
threaded through the substrate channel to the proteo-
lytic sites to be degraded. Early studies exploring how
the proteasome unfolds proteins and initiates proteoly-
sis analyzed the degradation of artificial substrates
constructed from well-defined building blocks. At their
center were tightly folded domains derived from the ribo-
nuclease barnase or dihydrofolate reductase (DHFR).
The domains can be stabilized against unfolding by
tightly binding ligands, barstar for barnase, and metho-
trexate for DHFR.38–41 The proteins were then targeted
to the proteasome by artificial degradation tags at
their N-termini composed of four ubiquitin domains
fused to each other in frame through short linkers.
Thus, the resulting hybrid proteins consisted entirely
of compact domains. The proteasome was only able to
degrade these targets if an unstructured region was
also attached to their C-termini.42 These and other
experiments showed that the proteasome degrades
proteins by engaging them at an unstructured region
and then pulling them from there into the substrate
channel and on to the proteolytic sites, unraveling
any folded domains in the process.43 Thus, the pro-
teasome degrades proteins sequentially from an initi-
ation site that does not have to coincide with the
ubiquitin tag.42,43

Experiments investigating the regulation of orni-
thine decarboxylase (ODC) came to similar conclusions.
ODC is degraded without ubiquitination but requires

the cofactor antizyme.44 The proteasome recognizes
ODC at an unstructured region at its C-terminus and
initiates its degradation there.45,46 This C-terminal
region can induce the degradation of other proteins
when attached to their C-termini.47 Degradation of
ODC itself requires binding of antizyme, to induce a
conformational change that exposes the C-terminal tail
and to provide an additional interaction surface for
proteasome binding.48 These observations led to the
identification of initiation regions or initiation sites of
proteasomal degradation: a disordered region at which
the proteasome engages its substrates and initiates
unfolding and degradation [Fig. 2(a,b)]. This initiation
step can explain the behavior of physiological proteins.
For example, Ubp6, mentioned above as an accessory
factor in degradation, binds to the proteasome near
the entrance to the substrate channel but escapes deg-
radation of itself because it lacks efficient initiation
regions.31

Length: Be long enough to reach the proteasome
The proteasome is able to initiate degradation not only
at N- or C-terminal tails but also at internal disordered
regions within a protein.49,50 Interestingly, the disor-
dered regions have to be much longer to allow efficient
proteasomal degradation when they are located internally

Figure 2. The proteasomal degradation signal has two parts.
(a) Schematic representation of a proteasome substrate.
A substrate protein (green) has to contain a proteasome-
binding tag (typically poly-ubiquitin chains, yellow) and an
unstructured region (red) for efficient degradation.
(b) Substrate engagement by the proteasome. The proteasome
recognizes a substrate via the ubiquitin tag and engages it at
the disordered region for unfolding and translocation from the
19S RP to 20S CP.
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than as tails.50 This observation is compatible with a
mechanism in which the disordered region has to engage
a receptor in a channel before translocation and unfolding
can occur. Recent high-resolution structures of the
proteasome and elegant biochemical experiments show
that this is indeed how proteasomal protein degradation
takes place.51,52 The proteasome engages its substrates
with loops (pore-1 loops) in the proteasome’s ATPase
subunits. The loops contain Tyr residues that face the
substrate channel and change their orientation during
the ATPase cycle, apparently moving the substrate
through channel. These Tyr loops are located some 35 Å
from the entrance to the channel.9 This arrangement is
compatible with the experimental observation that initia-
tion regions at the C-terminus of a protein have to be
some 30 amino acids long and much longer when
flanked by folded domains to allow the proteasome to
engage the substrate effectively [Fig. 3(a)].31,42,47,53–56

After the proteasome grabs the initiation region, the
ubiquitin chain is removed from substrate by the
deubiquitinase Rpn11, which is located above the cen-
tral pore of the proteasome and repositions upon sub-
strate engagement.9,11–14

Composition: The proteasome likes sequences
with diverse amino acid compositions
The proteasome is able to process almost any protein
presented for destruction. At the same time, the surface
of the initiation regions to be recognized by the pro-
teasome will vary with the amino acids sequence and

the unique chemical features of their side chains. There-
fore, it is possible that the proteasome will recognize dis-
similar initiation sites with different efficiencies.

An effect of the amino acid sequence of a protein
on its degradation by the proteasome was originally
proposed based on the observation that the Epstein–
Barr virus protein EBNA1 escapes proteolysis and
the generation of peptides to be displayed by MHC
complexes and thus allows host cells that harbor the
provirus in their genome to avoid detection by the
immune system.57,58 It appeared that the stability of
EBNA1 was due to the presence of a long stretch of
Gly-Ala repeats within the protein that protected it
from proteasomal degradation.59–62

The proteasome’s preference for the amino acid
sequence of initiation regions was examined system-
atically by measuring the degradation of model pro-
teins. An early small-scale screen revealed that
proteins in which the initiation regions have biased
amino acid compositions show longer half-lives than
proteins with unbiased sequences in the regions.53

Analysis of ~100 different initiation regions indicated
that in addition to compositional complexity, hydro-
phobicity, charge, and flexibility of the sequence also
affect proteasomal recognition; the proteasome pre-
fers hydrophobic and nonpolar amino acid residues
and stiffer polypeptide chains, whereas polar, acidic,
and structurally flexible sequences are avoided.54

These sequence preferences seem to matter in
the cell [Fig. 3(b)]. The ubiquitin-conjugating enzyme

Figure 3. Initiation site selection by the proteasome. (a–c) Requirements for effective initiation regions. The initiation region has to
be long enough (a), with a suitable amino acid composition (b), and be located in a position accessible to the proteasome (c).
(d) Initiation of proteasomal degradation in trans. The proteasome can recognize a protein complex through ubiquitinated subunits
(yellow and blue) but degrades only subunits with accessible initiation regions (green and red). (e) Speculative models of substrate
recognition via degradation adaptors. The proteasome may recognize substrates through adaptor proteins (pink and orange) that
recognize the ubiquitin chain attached to a substrate or the substrate directly without ubiquitination.
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Cdc34 is ubiquitinated on a long disordered region
at its C-terminus, but escapes degradation. The
C-terminal tail is acidic and has biased composi-
tion, with 50 out of 130 amino acids being Asp or
Glu residues preventing the proteasome form initi-
ating degradation. Similarly, the shuttle receptor
Rad23 contains three disordered linker regions of
60–68 amino acids but these regions do not serve
as efficient initiation regions because of their biased
amino acid composition. Cdc34 and Rad23 are eas-
ily degraded when short initiation regions are fused
to their C-termini.50,53

The sequence preferences are also reflected in
the behavior of proteins observed at the system-level
when analyzing protein stability in large-scale prote-
omic studies. Proteins containing intrinsically disor-
dered segments have significantly shorter half-lives
than proteins without these features across species.55

Protein stability furthermore correlates with the
amino acid composition of the disordered region, as
proteins in which the disordered region has strongly
biased compositions are as stable as proteins without
any disordered regions.53,55

The proteasome’s sequence preferences are most
likely due to the effect of these sequences on their rec-
ognition in the ATPase subunits during transloca-
tion.63,64 For example, hydrophobic initiation sequences
may be preferred because of their interaction with the
pore-1 loops that drive substrate translocation.54,65

Negatively charged surfaces of the substrate channel
that flank the pore-1 loops may repel acidic se-
quences.54,65 Stiffer polypeptide chains may access
to the pore-1 loops more efficiently than more flexible
sequences.54 At the same time, the proteasome is able
to recognize and degrade a vast number of proteins in
cells that do not share any obvious consensus se-
quence.53 Thus, the proteasome seems to be able to
interact with a wide range of features within a stretch
of amino acids, and only if pronounced sequence bias
dilutes these features does recognition fail.53,66

Location: Fitting substrate’s geometrical
arrangement
The proteasome degrades proteins efficiently when it
binds to a ubiquitin tag on the substrate and engages
it at an initiation region. The arrangement of the
proteasome-binding tag and the initiation region on
the substrate presumably has to match the arrange-
ment of their receptors on the proteasome [Fig. 3(c)].56

This relationship can be demonstrated experimentally
on model substrates by inserting spacer domains
between ubiquitin tag and initiation region to increase
the distance between the two. When the initiation site
is located too close or too far from the proteasome-
binding tag, the proteasome is unable to initiate deg-
radation of the substrate.56

Do these restrictions on the geometry of degrada-
tion signals affect the behavior of physiological

proteins? Ubiquitin tag and initiation region have to
be close in space, but they can be separated onto dif-
ferent proteins [Fig. 3(d)].67 In protein complexes
targeted for destruction, the proteasome degrades the
subunits that contain accessible initiation regions
while leaving the others intact. An example of this
principle may be the remodeling by the proteasome of
the protein complexes formed by cyclins, cyclin-
dependent kinases (CDKs), and CDK inhibitors (CKIs).
Both cyclins and CKIs are highly reactive proteasome
substrates, yet the proteasome is able to extract them
one by one from trimeric complex. One explanation
for the selective destruction would be that the initia-
tion region on the first subunit to be degraded is
placed such that it is recognized more easily than
that of the other units, thus competing for degrada-
tion more effectively. Once the subunit with the
ubiquitin tag is degraded, the remaining subunits are
stable until they in turn become ubiquitinated and
targeted for destruction.68

At the same time, degradation signal structure
may also explain the needs for shuttle receptors. It is
possible that one function of these accessory factors is
to enhance the degradation of some substrates by
presenting them to the proteasome more favorably
for initiation than the intrinsic ubiquitin receptors
are able to [Fig. 3(e)].

Accessory factor Cdc48: The proteasome
occasionally needs help
The degradation of some proteins by the proteasome
requires the action of the ATPase Cdc48 (p97/VCP)
as an accessory factor.69,70 Cdc48 cooperates with
cofactors such as Ufd1 (UFD1L) and Npl4 (NPLOC4),
which serve as ubiquitin receptors and regulate Cdc48-
dependent degradation pathways.71–74 Most of these
proteins are associated with membranes or are sub-
units of protein complexes.69,70 For example, Cdc48 is a
component of endoplasmic-associated protein degrada-
tion where it mediates the transfer of proteins from the
retrotranslocation machinery in the endoplasmic retic-
ulum membrane to the proteasome.71,72 Other exam-
ples are the transcription factors Spt23 and Mga2,
which are synthesized as membrane-anchored precursors
and become activated when they are liberated by partial
degradation by the proteasome in a Cdc48-dependent
manner.75

Biochemically, the role of Cdc48 may be to unfold
proteins that do not contain regions that would
allow the proteasome to initiate degradation.17,76,77

This function could explain the role of Cdc48 in the
ubiquitin-fusion degradation pathway.78–81 For exam-
ple, a chimeric protein consisting of ubiquitin domain
attached to the N-terminus of green fluorescent pro-
tein is not degraded by the proteasome in vitro unless
a disordered region is fused to the protein, but can be
unfolded by Cdc48.70,74,82 Similarly, Rpb1 (RPB1), a
subunit of RNA polymerase II requires Cdc48 for
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degradation by the proteasome.83 Rpb1 has a long dis-
ordered region at its C-terminus (the C-terminal
domain or CTD), which consists of many copies of a
heptad repeat motif and serves as the binding site for
cofactors and regulators of transcription. Rpb1
becomes ubiquitinated at the CTD when the polymer-
ase stalls at sites of DNA damage but degradation of
Rpb1 requires Cdc48.80,84–87 Cdc48 may be needed to
unfold ubiquitinated Rpb1 and present it to the
proteasome, because initiation at the CTD is
prevented by the strong bias of its amino acid
sequence.

Ubiquitin-independent degradation: Another
targeting mechanism?
If a protein has a particularly effective initiation
region, it might be possible that it is degraded by the
proteasome without ubiquitination, just as bacterial
ATP-dependent proteases recognize some substrates
at C- or N-terminal targeting signals.88 Indeed, some
proteins are degraded in a ubiquitin-independent
manner either because they are recognized directly
by the proteasome or because they interact with the
proteasome via an adaptor protein [Fig. 3(e)]. The best-
established example is the ubiquitin-independent deg-
radation of ODC mediated by antizyme as described
above.44,89 Another example may be the degradation of
the cytidine deaminase APOBEC3G, which is targeted
to the proteasome by ubiquitinated viral infectivity fac-
tor (Vif).90 APOBEC3G can be degraded even when all
Lys residues in the protein are mutated to prevent
ubiquitination, presumably by ubiquitinated Vif acting
as a proteasome adaptor.67

Several other proteins have been reported to be
degraded in a ubiquitin-independent manner, including
NAD(P)H:quinone-oxidoreductase-1, steroid receptor
coactivator 3, the CDK inhibitors p21Cip1, p16Ink4a, and
p19Arf, p53, IκBα, a regulator of the transcription factor
NFκB, and the transcription factor Rpn4, although
some of these are also degraded through ubiquitin-
dependent pathways.91–102 A basal level of ubiquitin-
independent degradation of regulatory proteins may be
common in signaling networks to allow them to respond
rapidly to signals and revert back to steady state after
the signal is withdrawn.103,104 We expect that there
are still a large number of substrates of ubiquitin-
independent degradation to be identified.

UPS and neurodegenerative diseases: Lack of
initiation regions
Protein aggregation and inclusion body formation
underlie the pathology of several neurodegenerative
disorders including Huntington’s disease (HD), amyo-
trophic lateral sclerosis (ALS), frontotemporal demen-
tia (FTD), Parkinson’s disease, and Alzheimer’s
disease.105–108 For example, in HD the intensity of the
phenotype in mouse models correlates with the accu-
mulation of a protein fragment corresponding to exon

1 of a mutated HTT gene (Htt) in nuclear inclusions,
and a gain of toxic function in Htt mutants is impli-
cated in the pathogenesis of HD.109 Despite evidence
for the colocalization of ubiquitin and Htt as well as
direct ubiquitination of Htt, the protein is not degraded
and accumulates.110–114 Indeed, proteasome subunits
are detected in the inclusion bodies formed in HD,
suggesting that the proteasome may attempt to clear
them.115 Autophagy, which is another bulk degradation
process in cells, can also contribute to removal of pro-
tein aggregates but recent studies suggest that UPS
inhibition has a greater effect on Htt accumulation
than autophagy inhibition.116

A possible explanation for the failure of the UPS
to eliminate these aggregates is an impairment of the
proteasome. Protein aggregates can inhibit the UPS
in culture cells and they may do so by clogging up the
proteasome.117,118 However, investigations in vivo
have not yet reached a consensus. Several studies in
HD animal models did not detect general defects in
proteasome activity, while a cryo electron tomogra-
phy study using an ALS/FTD model found that
proteasome particles at the aggregates are in a
substrate-processing conformation, suggesting stalled
degradation.119–121 Another possible reason for the
stability of Htt aggregates is that Htt lacks an effective
initiation region because the amino acid composition of
its sequence is strongly biased. It consists of a short
N-terminal sequence of 18 amino acids, followed by a
stretch of at least 23 Gln residues (polyQ) and then a
Pro-rich region of 50 amino acids, and does not allow
the proteasome to initiate degradation in in vitro
experiments.53,122 In turn, attaching an effective initia-
tion region to Htt leads to its proteasomal degradation
in vitro and in yeast.53,123 Thus, the pathogenesis of
neurodegenerative diseases may in part be linked to
the lack of proteasome initiation regions in aggregate-
prone proteins.

Inducible degradation: For a better design of
protein knockdown tools
The targeted destruction of proteins in cells is a useful
tool to investigate their functions and potentially a
powerful therapeutic strategy. Various inducible deg-
radation systems have been developed, including pro-
teolysis-targeting chimeras (PROTACs), which show
promise for clinical use.124–134 Unlike DNA- or RNA-
targeting methods, inducible protein degradation sys-
tems could be effective for long-lived proteins and may
be able to distinguish between otherwise identical
target proteins with different post-translational modi-
fications. The most common strategy is to induce ubi-
quitination of target proteins, in the case of PROTACs
through small molecules that serve as adaptors that
induce the interaction of the target with ubiquitin
ligases.125,127 The design of successful degradation
tools is hindered by the fact that we do not fully
understand the signals that control ubiquitination or
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how ubiquitin modifications are interpreted in the cell.
In some cases PROTACs fail to induce degradation of
a target despite binding efficiently.135,136 One possible
explanation is that once ubiquitinated the target pro-
teins are not presented to the proteasome in a manner
that allows effective initiation and thus degradation.
Accordingly, taking into account the initiation step of
proteasomal degradation may be helpful in designing
of inducible degradation systems.

Conclusions
Ubiquitin tags target proteins to the proteasome but
proteolysis requires that the proteasome engage its
substrates at a disordered region to initiate degrada-
tion. The initiation step contributes to the specificity
of proteasomal degradation. However, there are gaps
in our understanding of how initiation regions func-
tion in cells. It is still hard to map initiation regions
on a proteome-wide scale, and the interplay between
ubiquitination and initiation region remains elusive.
The concept of proteasomal initiation has been devel-
oped mostly using model substrates, and it is neces-
sary to translate existing knowledge to the behavior
of natural proteins. Future studies will reveal the
contribution of initiation regions in physiological pro-
cesses and lead to a better understanding of protein
degradation mechanisms in the UPS.
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