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Abstract: The effect of mutations in individual proteins on protein homeostasis, or “proteostasis,”
can in principle depend on the mutations’ effects on the thermodynamics or kinetics of folding,
or both. Here, we explore this issue using a computational model of in vivo protein folding that
we call FoldEcoSlim. Our model predicts that kinetic versus thermodynamic control of mutational
effects on proteostasis hinges on the relationship between how fast a protein’s folding reaction
reaches equilibrium and a critical time scale that characterizes the lifetime of a protein in its
environment: for rapidly dividing bacteria, this time scale is that of cell division; for proteins that
are produced in heterologous expression systems, this time scale is the amount of time before
the protein is harvested; for proteins that are synthesized in and then exported from the eukary-
otic endoplasmic reticulum, this time scale is that of protein secretion, and so forth.

Additional Supporting Information may be found in the online version of this article.

Abbreviations: Ui, Ni, and Ai, unfolded, natively folded and misfolded/aggregated state of protein i; G, K, and D, machinery of the
GroEL/GroES, DnaK/DnaJ/GrpE, and degradation systems; H, heat shock transcription factor; species with two letters separated
by a colon indicate a complex between the two species in question (e.g., K:Ui is the unfolded state of protein i bound to the
DnaK/DnaJ/GrpE machinery); kf,i, ku,i, and kagg,i, unimolecular rate constants for the folding, unfolding, and misfolding/aggregation
of protein i; Kf,i = kf,i/ku,i, protein folding equilibrium constant for protein i; kK,in, kG,in,i and kD,in, bimolecular rate constants for pro-
tein entering the DnaK/DnaJ/GrpE, GroEL/GroES, or degradation systems; kK,out, kG,out and kD,out, bimolecular rate constants for
protein exiting the DnaK/DnaJ/GrpE, GroEL/GroES, or degradation systems; kD,deg, rate constant for degradation of protein in
the degradation system; kK,disagg,i, rate constant for disaggregation of misfolded/aggregated protein bound within the
DnaK/DnaJ/GrpE system; γi, accounts for any acceleration of folding in the GroEL cavity relative to its rate in bulk solution; σi, syn-
thesis rate of protein i; σK, σG, σD, and σH, synthesis rates of K, G, D, and H; ρK, ρG, and ρD, proportionality constants between the
concentration of H and the synthesis rates of K, G, and D; Γi, contribution of the GroEL/GroES system to the folding of protein i; κi,
contribution of the DnaK/DnaJ/GrpE system to mitigating the aggregation of protein i.
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This prediction was validated experimentally by examining the expression yields of the wild type
and several destabilized mutants of a model protein, the mouse ortholog of cellular retinoic
acid-binding protein 1.

Keywords: protein folding; kinetics; thermodynamics; aggregation; degradation; mutation; protein
homeostasis; proteostasis; loss-of-function disease

Introduction
Protein homeostasis, or proteostasis, is the condition
of an organism maintaining sufficient natively folded
protein to carry out its essential functions while mini-
mizing protein misfolding/aggregation and the toxic spe-
cies generated by these processes.1–3 Proteostasis can be
challenged by environmental conditions that destabilize
the native state, like heat or oxidative stress. The effects
of such conditions can be mitigated by the activation of
stress-responsive signaling pathways that upregulate
the expression of the components of the proteostasis net-
work (the chaperones, proteases, and other factors that
manage in vivo protein folding).4,5 Proteostasis can also
be challenged by mutations, although such a challenge
is fundamentally different. Mutations affect specific pro-
teins, whereas environmental stresses affect the entire
proteome. As a result, the burden on the proteostasis
network from a mutation that destabilizes an individual
protein is likely to be small and may not provoke a cor-
rective stress response. Nevertheless, such failures of
proteostasis for individual mutated proteins are the root
causes of many human diseases because they can lead
to catastrophic losses of function and/or toxicity from
protein aggregates.2,6,7

The effect of a mutation on proteostasis can be
difficult to gauge. Biological systems must tolerate
mutations, even when they negatively impact protein
folding, to evolve proteins with improved or new func-
tions. However, mutations that are too costly in terms of
protein folding energetics can be lethal, especially when
the mutation is in a protein with an essential function.
Herein we explore what factors determine the effect of a
mutation on proteostasis for a given protein in a given
proteostasis environment. In other words, we address
the questions: “how do the mutation-induced changes in
folding energy landscapes read through to proteostasis?”
and “what are the differential contributions of folding
kinetics and thermodynamics?.” In any question about
whether a process is controlled by kinetics or thermody-
namics, the time scale is a crucial issue.8–10 We thus
began ourworkwith the hypothesis that the relative con-
tributions of folding kinetics and thermodynamics to
proteostasis for a given protein are governed by the rela-
tionship between some aspect of the folding kinetics and
a critical time scale that is characteristic of the protein’s
lifetime in its folding environment and therefore varies
from case to case. For example, for populations of grow-
ing and dividing cells, the critical time scale ismost likely
to be that of cell division. For overexpression systems,
the critical time scale is the length of time allowed before

cells are harvested. For proteins that are secreted from
a cell or organelle, the critical time scale is the time
required for secretion.

We explored the hypothesis stated above using a
version of our mathematical model for proteostasis
in Escherichia coli called FoldEco11,12 that has been
modified to simplify chaperone and folding mecha-
nisms while adding features—like population growth,
a dynamic protein folding stress response, and a
description of the background proteome (including rate
constants for aggregation derived from measurements
of protein solubility13 which, to our knowledge, are not
available elsewhere in the literature)—that are essen-
tial for understanding the interplay between protein
folding energetics and organismal fitness. Analysis of
our model enables us to refine our hypothesis, and spe-
cifically identifies the unfolding rate as the aspect of
protein folding kinetics whose relationship with the
critical time scale determines kinetic versus thermody-
namic control of proteostasis. We test this computa-
tional prediction experimentally by examining the
dependence on folding energetics of expression yields
of several variants of the mouse ortholog of the protein
cellular retinoic acid-binding protein 1 (MmCRABP1)
when they are expressed in E. coli. Finally, we discuss
the implications of our findings in the broader context
of proteostasis.

Results

FoldEcoSlim: A simplified yet expanded model for
proteostasis in E. coli
FoldEco contains detailed representations of protein
folding/aggregation and chaperone mechanisms.12 This
approach has the advantage that model parameters
generated by fits to experimental data can accurately
reflect true microscopic rate constants. However, such
detailed models require parameters that may be diffi-
cult to measure. This problem is especially severe for
the protein folding/aggregation component of the
model, since it requires separate measurements of
monomer misfolding and aggregation energetics for
each protein of interest. Such measurements are cum-
bersome enough when performed for a single protein,
much less the entire background proteome. Thus, we
have chosen here to use a version of FoldEco, which we
term “FoldEcoSlim,” in which we have simplified both
the chaperoning and folding/aggregation mechanisms
[Fig. 1(a)]. In FoldEcoSlim, protein is synthesized in a
one-step process that yields unfolded protein (Ui; the
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state labels are subscripted to indicate that the model
tracks multiple proteins). The folding mechanism con-
sists of reversible folding to the native state (Ni) and a
one-step process that combines misfolding and aggrega-
tion to yield protein in a state (Ai) that cannot sponta-
neously revert to the unfolded state. The latter process
reflects cases in which protein aggregation is strongly
favored but rate-limited by a unimolecular misfolding
step. This approximation provides the enormous bene-
fit that a protein’s overall tendency to “misbehave” can
be summarized by a single parameter. Furthermore, we
will show below how this parameter can be estimated on
a proteomic scale using extant experimental datasets.

We have found that the full representations of
the chaperone mechanisms used in FoldEco, while
illuminating,11,12,14–16 are not always necessary to un-
derstand how these systems affect the in vivo fate of pro-
teins. The crucial aspects of the chaperone systems are
the “input state” (i.e., the state to which they bind; usu-
ally the unfolded, misfolded, or aggregated state), the
“output state” (i.e., the state that they release; usually
the unfolded or the native state), and the rate of turnover
of the chaperone cycle. With this in mind, two chaperon-
ing processes were included in FoldEcoSlim [Fig. 1(a)].
The first is based on the GroEL/GroES system,17 in

which an unfoldedmonomeric substrate is recognized by
the tetradecameric, cavity-containing chaperone GroEL,
and then encapsulated when the GroES lid binds to the
complex. While in the cavity the protein can fold (per-
haps with an enhanced rate,18 although not necessar-
ily19), but whether it folds or not, it is released with a
timing that corresponds to the ATP binding and hydroly-
sis cycle of GroEL. In FoldEcoSlim, the GroEL/GroES
system is simplified to one component (G) which binds to
an unfolded protein to form a complex (G:Ui). The bound
protein can then fold to yield a complex with the native
state (G:Ni). The unfolded or native forms of the protein
are then releasedwith the same rate constants.

The second chaperone system is based on the
DnaK/DnaJ/GrpE system,20–22 in which unfolded,
misfolded, or aggregated protein is bound by DnaJ
(or the ATP-bound form of DnaK). This binary complex
then recruits the ATP-bound form of DnaK (or DnaJ) to
form a ternary complex. DnaJ catalyzes ATP hydrolysis
by DnaK, causing it to clamp down on its substrate in a
way that promotes reversion of the substrate to the
unfolded state.23–27 GrpE then binds to DnaK, causing it
to release ADP. This event is followed by ATP binding to
DnaK, which causes substrate release. In FoldEcoSlim,
the DnaK/DnaJ/GrpE system is simplified to a single

Figure 1. The reaction network for FoldEcoSlim. (a) Proteostasis for the general proteome. Capital letters represent species as
follows: Ui, Ni, and Ai are the unfolded, natively folded, and misfolded/aggregated state of protein i; G, K, and D represent the
machinery of the GroEL/GroES, DnaK/DnaJ/GrpE and degradation systems; species with two letters separated by a colon
indicate a complex between the two species in question. For example, K:Ui is the unfolded state of protein i bound to the
DnaK/DnaJ/GrpE machinery. The black box represents degraded protein. This scheme is repeated in the model for each protein
(or cluster of proteins) that is being individually tracked. Thus, for our coarse-grained proteome that is separated into 16 clusters,
this scheme would be repeated 16 times. Lowercase “k’s” represent rate constants as follows: kf,i, ku,i, and kagg,i are the
unimolecular rate constants for the folding, unfolding, and misfolding/aggregation of protein i; kK,in, kG,in,i, and kD,in are the
bimolecular rate constants for protein entering the DnaK/DnaJ/GrpE, GroEL/GroES, or degradation systems; kK,out, kG,out, and
kD,out are the unimolecular rate constants for protein exiting the DnaK/DnaJ/GrpE, GroEL/GroES, or degradation systems. kD,deg is
the rate constant for degradation of protein in the degradation system. kK,disagg,i is the rate constant for disaggregation of
misfolded/aggregated protein bound within the DnaK/DnaJ/GrpE system. The parameter γi accounts for any acceleration of
folding in the GroEL cavity relative to its rate in bulk solution. The parameter σi represents the synthesis rate of
protein i. Parameters with an “i” in the subscript vary from protein to protein. Those without are protein-independent. (b) Synthesis
of proteostasis network components, which is required to account for dilution by cell population growth. H represents the heat
shock transcription factor, which controls the synthesis rates of K, G, and D. The parameters σK, σG, σD, and σH represent the
synthesis rates of K, G, D, and H. The synthesis rates of K, G, and D are proportional to the concentration of H with
proportionality constants ρK, ρG, and ρD. This interdependence of synthesis rates provides feedback control of the proteostasis
network component concentrations.
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component (K), which can bind to unfolded or aggregated
protein (to yield K:Ui or K:Ai, respectively). While bound,
aggregated substrates can be converted to the unfolded
state (i.e., K:Ai can be converted toK:Ui), in a process that
competeswith substrate release.

Finally, we treat the degradation of unfolded pro-
teins by proteases like Lon (denoted D in themodel) as a
Michaelis–Menten enzymatic process, in which unfolded
protein is bound by protease to yield an enzyme-
substrate complex (D:Ui). Degradation then yields free
protease and irreversibly eliminates the substrate from
the system. We do not account for the degradation of
native substrates or aggregates, although we note that
the latter is an importantmeans for the disposal of aggre-
gates via autophagy in eukaryotes.28

FoldEcoSlim is simpler than FoldEco in the ways
described above; however, it also contains some fea-
tures that FoldEco does not have that are important
for understanding proteostasis. Following Santra and
co-workers,14 FoldEcoSlim accounts for cell popula-
tion growth by adding a term −λ[X] to the rate equa-
tion for each species X, where λ is the rate constant
for population growth and [X] is the concentration of
X. This term represents the dilution of all species by
the increase in total cell volume (i.e., the sum of the
volumes of all cells; the average volume of individual
cells does not change as the population grows) due to
population growth. It is important to note that the
proteostasis network components, like the proteome in
general, are diluted by cell growth, and must therefore
be synthesized actively to maintain their concentrations
[Fig. 1(b)].

FoldEcoSlim also includes a dynamic response to
the accumulation of non-native protein [Fig. 1(b)]. We
follow El-Samad et al.29 by modeling the synthesis
rate of chaperones as being proportional to the con-
centration of the unbound form of a transcription factor
(H; representing rpoH/σ32 in E. coli). The concentration
of H is low under normal circumstances because it is
bound by DnaK (forming the complex K:H) and deliv-
ered to the protease FtsH for degradation.30 Thus, in
this model, increases in non-native protein concentra-
tions drive down the concentration of DnaK that is avail-
able to bind to H, which increases the concentration of H
and therefore the synthesis rate of DnaK, GroEL, and
proteases. This results in an increased concentration of
DnaK, which then binds to excess H, creating a negative
feedback loop. The system eventually reaches a new
steady state with an upregulated proteostasis network
that is better suited to handling the protein-folding
burden.

Finally, FoldEcoSlim incorporates the background
proteome, which to a great extent determines the prot-
eostasis environment in which a protein of interest
must fold. Our treatment of the background proteome
is described in detail in the Supporting Information.
Briefly, we used proteome-wide measurements of
protein abundances,31 stabilities,32,33 aggregation

propensities,13 responsiveness toward chaperoning
by DnaK/DnaJ/GrpE and GroEL/GroES34 along with
calculated values of protein folding rates based on
protein structures35–39 to obtain parameter estimates
for 640 proteins, which constitute 37% of the proteome
by mass, easily enough to be representative of the pro-
teome as a whole.

Individually tracking each of the 640 proteins for
which full parameter sets were available would be
excessively computationally expensive, even in a rela-
tively simple model like FoldEcoSlim. We therefore
coarse-grained the proteome by clustering the pro-
teins into 16 groups based on the similarities between
their parameters. The clusters were assigned the
abundance-weighted mean parameters of their mem-
bers. One cluster (cluster 16) was set aside to contain the
obligate GroEL substrates, as defined by Fujiwara and
co-workers.40 The resulting proteome produced an unre-
alistically high amount of protein aggregation (~12% of
the proteome). However, there are chaperone systems in
E. coli that suppress aggregation in vivo that are not
included in FoldEcoSlim (e.g., ClpB41 and IbpA/IbpB42).
In addition, it is possible that the cytosolic environment
is more solubilizing for proteins than the environment of
the in vitro translation system in which the solubilities
were originally measured. To account for these factors,
we found that a decrease in the aggregation rate con-
stants (by a factor of about 7) and an increase in the effi-
ciencies of the DnaK/DnaJ/GrpE cycle (by a factor of
about 3) across the proteome mitigated the excessive
aggregation that we observed (see below). The final
protein-dependent parameters for the protein clusters
are displayed in Figure 2 and are listed in Table S1. The
un-adjusted parameters for individual proteins are listed
in Table S2.

Behavior of the background proteome in
FoldEcoSlim
We ran FoldEcoSlim with the coarse-grained back-
ground proteome described above and a growth rate
constant of λ = 0.00053 s−1, corresponding to a dou-
bling time of about 20 min for E. coli in Luria-Bertani
(LB) media as reported by Schmidt and co-workers.31

Assuming a total protein concentration of 7.5 mM
(based on a protein mass concentration of 200 g L−1

in the cytoplasm43 and an abundance-weighted aver-
age molar mass calculated to be 26,500 g mol−1 using
the data of Schmidt and co-workers31), the overall
protein synthesis rate has to be about 4 μM s−1,
which is divided among the protein clusters according
to their fractional abundances. The binding of H by
DnaK (kK,in,H and kK,out,H), the turnover rate of H
from the K:H complex (kK:H,deg), and the proportional-
ity constant between the concentration of H and the
synthesis rates of K, G and D (ρK, ρG, and ρD) were
then adjusted to ensure that the concentrations of K,
G, and D were roughly equal to the measured values
for DnaK and GroEL (using their reported copy
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numbers31 and a cell volume of 4.4 fL for E. coli grow-
ing in LB media44; see the Supporting Information).
For DnaK the steady-state concentration in
FoldEcoSlim was ~30 μM; for GroEL it was ~34 μM,
but GroEL is a tetradecamer with two cavities that
operate sequentially, so the effective concentration of
functional GroEL particles was 2.4 μM. For proteases,
the target concentration was taken to be twice the
concentration of hexameric Lon protease, since Lon
has been shown to be responsible for degrading

about 50% of misfolded protein in E. coli.45,46 The
concentration of D was therefore adjusted to
~0.5 μM. The values of kD,in, kD,out, and kD,deg (which
were taken to be substrate independent) were then
adjusted to match the observation that between 3%
and 5% of the proteome is turned over per hour by
degradation in E. coli.47,48

At steady state in this simulation, the vastmajority
of protein in most of the clusters achieved the native
state (gold bars in Fig. 2, bottom). In two of the

Figure 2. Parameters and in vivo protein folding fates of the clusters that make up our coarse-grained proteome. The top four
plots show the values of kf,i, ku,i, ΔGf,i, and kagg,i. Note the logarithmic scales for kf,i, ku,i, and kagg,I and the inverted scale for ΔGf,i.
The cell division rate (λ) and mutation response categories are indicated in the plot for ku,i (see text). Data points are also colored
by mutation response category: blue for Category 1, red for Category 2, green for Category 3, and gray for Category 4. Below the
plots are qualitative indications of the responsiveness toward chaperoning by DnaK/DnaJ/GrpE and GroEL/GroES systems
(++: excellent substrate; +: good substrate; −: poor substrate), the mutation response category, and the fractional proteomic
abundances of each cluster. The bottom bar chart shows the fractional occupancy for each cluster of the natively folded (Ni),
unfolded (Ui), aggregated (Ai + K:Ai), chaperone bound (K:Ui + G:Ui + G:Ni + D:Ui), and degraded states for E. coli under fast
growth conditions (λ = 0.00053 s−1, corresponding to a doubling time of about 20 min).
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clusters—those with the slowest folding (cluster 10) or
least stable (cluster 11) proteins—there were notably
higher levels of degradation (~9% and ~13%, respec-
tively; blue bars in Fig. 2, bottom). The amount of aggre-
gation was minimal: 0.6% overall, 1/3 of which was
chaperone bound (reddish-brown bars in Fig. 2, bottom).
Most of the chaperones were bound to substrates. For
example, the concentrations of freeK andGwere 64 and
95 nM, respectively, corresponding to 0.2% and 4% of
the total concentrations of these chaperones. Binding to
K was dominated by unfolded proteins from clusters
10 and 11 (which is consistent with their having rela-
tively high concentrations of the unfolded state) and
aggregated protein from clusters 7 and 8 (cluster
7 because of its high propensity to aggregate; cluster
8 simply because of its high abundance). Binding to G
was dominated by the proteins in clusters 7, 9, and
16, because these clusters contain the proteins that
were found experimentally to be efficiently chaperoned
by the GroEL/GroES system and therefore have the
highest values of kG,in.

34

The effects of mutations on protein fate
To probe our hypothesis that the relationship between
protein folding kinetics and a critical time scale
would dictate how protein folding energetics impact
proteostasis, we explored how mutations affected prot-
eostasis for proteins from the various clusters of our
coarse-grained proteome. We added virtual test pro-
teins one at a time to the FoldEcoSlim simulations.
These test proteins had expression levels of 7.5 μM, or
0.1% of the proteome, and initial folding and chaperon-
ing parameters that matched those of each cluster in
turn (this is a fairly high expression level, given that the
median concentration of an individual protein is
~0.2 μM [see Table S2]; nevertheless, it is still a small
fraction of the proteome). We consideredmutations that
affect only the folding energetics, which we will term
“simple mutations.” We ignore, for now, “complex
mutations,” which we define as mutations that also
affect other parameters, like themisfolding/aggregation
propensity or chaperone interactions.We then computa-
tionally “mutated” the test proteins by diminishing
their folding equilibrium constants (Kf) by up to
~1000-fold. The effect of these mutations on the folding
rate constant (kf,i)—which is often quantified by the
φ-value,49 where φ =Δln kf,i/ΔlnKf,i—was then assigned
to account for between 0% and 100% of the effect of the
mutation. (Mutations with φ-values >1 or <0 are possi-
ble, but rare.50) Since Kf,i = kf,i/ku,i, the former case, in
which φ = 0, corresponds to situations where the effect
of the mutation on Kf,i is entirely due to an increase in
ku,i, the unfolding rate. The latter case, in which φ = 1,
corresponds to situations where the effect of the muta-
tion onKf,i is entirely due to a decrease in kf,i. It is impor-
tant to note here that the expression level of our test
proteins is low enough that deleterious mutations do
not provoke a substantial stress response, and therefore

the composition of the proteostasis network will be
roughly the same for allmutants.

We use the fraction of test protein that is
natively folded at steady state (fN,i) to quantify the
impact of a mutation on the test protein. This quan-
tity is plotted as a function of Δln Kf,i (x-axis) and φ

(y-axis) in the contour plots in Figure 3. These plots
can be separated into four “mutation response
categories,” each representing a different way in
which mutations can affect in vivo protein folding
fate. The first, and largest, category contains clusters
2, 3, 4, 5, 6, 11, 13, 14, and 15, which together
account for ~50% of the proteome. In each of these
plots, the contours are vertical or nearly vertical,
indicating that the effect of a mutation on fN,i for pro-
teins from these clusters is essentially independent of
φ. The value of fN,i for a mutation is almost entirely
determined by its effect on protein folding thermody-
namics (Δln Kf,i).

The second category contains clusters 8, 12, and
16, amounting to ~32% of the proteome. In the plots
for these clusters, the contours are curved upward
from left to right. At first glance, it appears that both
thermodynamics (Δln Kf,i) and kinetics (φ) indepen-
dently contribute to the effect of mutations on pro-
teins from these clusters. However, the contour lines
in these plots closely follow the contour lines for con-
stant Δln kf,i (=Δln Kf,i × φ; see Fig. S1, which com-
pares the fN,i and Δln kf,i contours for cluster 12 as an
example). In other words, any given change in the
protein folding rate constant will yield the same fN,i

no matter how the protein folding equilibrium con-
stant changes.

The third category contains clusters 1, 9, and
10 (~14% of the proteome), which exhibit a mixture of
the behaviors of the first two categories. The contours
for these clusters follow the contours for constant Δln
kf,i in the upper left-hand portion of the plots, which cor-
responds to highly destabilizing mutations (large nega-
tive Δln Kf,i values) that are primarily due to slowing of
the folding rate (φ-values close to 1). For milder muta-
tions, the contours are still curved but begin to approach
verticality as Δln Kf,i decreases in magnitude.

The final category contains cluster 7 (~3% of the
proteome). The contour plot for this cluster is quite dif-
ferent from all the other clusters in that the contour
lines are nearly vertical for mildly destabilizing muta-
tions (Δln Kf,i ≥ −2), but for more destabilizing muta-
tions the contour lines curve to the left, such that fN,i

actually increases as φ increases for a given value of
Δln Kf,i. In other words, it is advantageous—or at least
less unfavorable—for moderate to strongly destabilizing
mutations to be more driven by diminished folding
rates than increased unfolding rates for proteins in clus-
ter 7. This result is surprising, since slower folding is gen-
erally not associatedwith enhanced proteostasis.

It is worth noting at this point that the categories
of responses to mutation seem to segregate according to
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the unfolding rate constant more than any other cluster
parameter. This can be seen by examining Figure 2,
where the ranges of values of kf,i, ΔGf,i, and kagg,i for the
clusters in the various categories overlap with each other
but the ranges of values of ku,i are distinct for Categories
1, 2, and 3. Moreover, it is interesting that the borderline
betweenCategories 1 and 2 seems to be close to λ, the rate
constant for cell division. This observation is consistent
with our hypothesis that the relative contributions of fold-
ing kinetics and thermodynamics to proteostasis would
be controlled by the relationship between folding kinetics
(specifically, in this case, the rate of unfolding) and a criti-
cal time scale (in this case, the rate of cell division). We
explore the root causes of the partitioning of themutation
responses into separate categories in the next section.

Analytical solutions for the steady state of
FoldEcoSlim reveal how proteome clusters
partition into mutation response categories
The rate equations for FoldEcoSlim (see Supporting
Information) can be solved analytically for the steady-
state concentrations of all species as functions of the
steady-state concentrations of K, G, and D. These solu-
tions enable us to write an expression akin to a “state
sum” for the system. In a system at equilibrium, the state
sum is a sum of the equilibrium constants between each
state and a reference state. Growing organisms are never
at equilibrium, so the pseudo-state sum for a protein of
interest “i” in FoldEcoSlim (Zss,i) consists of the sum of
the ratios of the steady-state concentrations of each state
to a reference state.Wewill call these ratios “steady state

Figure 3. Contour plots showing the effects of mutations on proteostasis (as measured by fN,i, the fraction of protein in the
native state at steady state) of test proteins derived from each cluster (cluster numbers are shown in the upper right of the
contour plots). The thermodynamic effects of the mutations are measured on the x-axis by the change in the folding
equilibrium constant (Δ ln Kf,I; note that the corresponding change in free energy is shown along the top of each plot). The
kinetic effects of the mutations are measured by the ϕ-value of the mutations (where ϕ = Δln kf,i/Δln Kf,i). Recall that low
ϕ-values indicate mutations where destabilization is caused by an increased unfolding rate, while high ϕ-values indicate
mutations where destabilization is caused by a decreased folding rate. The mutation response categories for each cluster are
noted in the lower right-hand corners of the plots.
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constants” and denote them with an appropriately sub-
scripted letterQ.We choose the unfolded state as the ref-
erence state. The pseudo-state sum for a protein of
interest in FoldEcoSlim is:

ZSS, i =1+QN, i +QA, i +QB, i +QD, i, ð1Þ

where the steady state constant QN,i represents the
native state; QA,i represents misfolded/aggregated
states (including A and K:A); QB,i represents states in
which the protein of interest is bound to proteostasis
network components (including K:Ui, G:Ui, G:Ni, and
D:Ui); and QD,i represents degraded protein. The
values of these steady state constants in terms of the
model parameters are as follows. For QN,i:

QN, i =
kf , i

ku, i + λ
+

kG,out
ku, i + λ

×
γikf , i

γikf , i + ku, i + kG,out + λ

×
kG,in, i G½ �
kG,out + λ

=
kf , i

ku, i + λ
+Γi:

ð2Þ

QN,i has two terms. The first depends only on the
folding energy landscape (as represented by the fold-
ing and unfolding rate constants, kf,i and ku,i) and the
rate constant for population growth (λ). The second
term, which we will represent with “Γi,” accounts for
the flux into the native state from the GroEL/GroES
system. The parameter γi accounts for the possibility
that GroEL substrates can fold faster inside the
GroEL cavity than in bulk solution; for such sub-
strates γi > 1, while for all others γi = 1. For QA,i:

QA, i =
kagg, i

λ+ kK,in K½ �× kK,disagg, i
kK,in K½ �+kK,out + kK,disagg, i + λ

=
kagg, i
λ+ κi

: ð3Þ

QA,i is the ratio of the aggregation rate constant to
the sumof the rate constant for population growth (λ) and
a term, which we will represent with “κi,” that represents
DnaK/DnaJ/GrpE-mediated disaggregation. ForQB,i:

where the first term (including the rather lengthy fac-
tor in parenthesis) represents K:U, the second repre-
sents the sum G:U + G:N, and the third D:U. Finally,
For QD:

QD, i =
kD, in D½ �

λ

kD,deg
kD,out +kD,deg + λ

� �
: ð5Þ

The fractional abundance of any state in
FoldEcoSlim can be calculated as the ratio of that

state’s steady state constant to the pseudo-state sum.
The fraction native that is plotted in the contour plots
in Figure 3, for example, is given by

f N, i =
QN, i
Zss, i

=
QN, i

1+QN, i +QA, i +QB, i +QD, i
: ð6Þ

Using the expressions for QN,i and the other
steady state constants, we can use Equation (6) to
analyze the expected effects of mutations on
proteostasis. Recall that Figure 3 shows the effects of
simple mutations, that is, mutations that affect only
the folding kinetics and thermodynamics, not the
misfolding/aggregation propensity or chaperone inter-
actions. The only steady state constant that contains
folding parameters—and therefore the only one that
changes in response to such mutations—is QN,i, and
so we focus on QN,i in the following discussion.

For most proteins, excluding only those in the
last of the above-defined categories (those in cluster
7), the response of fN,i to mutations seen in Figure 3
can be explained by the behavior of the first term in
QN,i: kf,i/(ku,i + λ). In other words, it can be explained
without appealing to effects from the proteostasis
network. Importantly, this does not mean that the
proteostasis network does not affect these proteins. It
means instead that, since simple mutations do not
affect aggregation or chaperone interactions, the
proteostasis network does not determine the muta-
tion response category. The mutation response cate-
gory is determined by the shapes of the contours in
Figure 3. The proteostasis network affects the posi-
tioning of the contours, but not their shapes.

The presence of ku,i and λ together in the denomi-
nator echoes the observation made in the preceding
section that it is the relative magnitudes of these two
quantities that seems to determine how proteome
clusters segregate into different mutation response
categories. In fact, there are two limiting cases for the
quantity kf,i/(ku,i + λ) depending on the relative magni-

tudes of ku,i and λ; that is, depending on the relative
rates of protein unfolding and cell division. In the first
case, unfolding is much faster than cell division so that
ku,i � λ and kf,i/(ku,i + λ) ≈ kf,i/ku,i = Kf,i (where Kf,i

is the equilibrium constant for protein folding). For
proteins that meet this criterion, folding is fast enough
to reach equilibrium on the time scale of cell division, so
mutation response is effectively under thermodynamic
control. The effect of a mutation on fN,i is determined by

QB, i =
kK, in K½ �
kK,out + λ

1+
kagg, i × kK,disagg, i

kK,in K½ �×kK,disagg, i + λ kK,in K½ �+ kK,in +kK,disagg, i + λ
� �

 !
+
kG,in, i G½ �
kG,out + λ

+
kD,in D½ �

kD,out +kD,deg + λ
, ð4Þ
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its effect on Kf,i alone. Whether a mutation destabilizes
a protein by decreasing kf,i (high φ-value) or increasing
ku,i (low φ-value), the effect on proteostasis is the same.
The proteins in Category 1 (those in clusters 2, 3, 4, 5,
6, 11, 13, 14, and 15) meet the criterion of ku,i being
greater than λ (their ku,i values range from 0.00067
to 8.9 s−1, compared to 0.00053 s−1 for λ), which
explains why the plots in Figure 3 for these clusters
show that fN,i is largely independent of the φ-value for
a mutation.

In contrast, in the second limiting case protein
unfolding is much slower than cell division (ku,i � λ)
and a negligible amount of protein unfolding occurs
on the time scale of cell division. Once such a protein
has folded, it will stay folded until long after the cell
divides. As a result, QN,i ≈ kf,i/λ, which has two conse-
quences. First, it shows that proteins in fast-growing
organisms must fold faster than cell division to signifi-
cantly populate the native state, as observed by Zou
et al.39 If they do not, then QN,i will be less than one and
the fraction of natively folded protein (fN,i) will be
extremely small. Second, mutations can only influence
QN,i if they alter the folding rate constant kf,i (i.e., if they
have a nonzero φ-value). Mutations that destabilize a
protein purely by increasing ku,i, which is not an uncom-
mon circumstance,50 leave QN,i and therefore fN,i essen-
tially unchanged. The proteins in Category 2 (those in
clusters 8, 12, and 16) have ku,i values that are
much smaller than λ (ku,i = 3.0 × 10−9, 2.1 × 10−6, and
1.5 × 10−7 s−1, respectively, vs. λ = 0.00053 s−1), as
required for this behavior. The values of QN,i for these
clusters thus depend only on how a mutation changes
kf,i, explaining why the contours in the plots in Figure 3
for these clusters follow the contours for constant
Δln kf,i.

When ku,i is less than λ but not much so, the
response of fN,i to mutation can depend on both folding
kinetics and thermodynamics. This describes the pro-
teins in clusters 1, 9, and 10, which are in Category
3. The ku,i values of these proteins (ku,i = 1.7 × 10−5,
7.0 × 10−6, and 3.7 × 10−6 s−1, respectively) are just
large enough that they behave like Category 1 proteins
in response to destabilizing mutations that primarily
increase ku,i (low φ-value) but they behave like Category
2 proteins for mutations that primarily decrease kf,i
(high φ-value).

Based on the preceding discussion, it is clear that
our model predicts that the relationship between pro-
tein folding kinetics and a critical time scale deter-
mines whether the effects of mutations are under
kinetic or thermodynamic control, as we hypothesized
in the Introduction. In the case of growing cultures of
E. coli, the relationship that determines mutation
response categories is that between the unfolding
rate constant (ku,i) and the population growth rate
constant (λ). The relative magnitudes of these quanti-
ties determine whether a protein’s folding is at

equilibrium or not. If so, folding thermodynamics con-
trol the effects of mutations; if not, folding kinetics
are in control.

It is important to note here that λ is the critical
comparator for ku,i in fast-growing E. coli because
there are two processes that subtract from the con-
centration of natively folded protein. The first is sim-
ply the reverse of the folding process: the unfolding of
native protein, which takes place with a rate constant
of ku,i. The second is dilution of the native state by
population growth. This process is a bit abstract, but
it can be imagined as a Maxwell’s Demon removing
natively folded protein from the system and using it
to populate the proteome of a newly formed cell. The
Demon removes native protein with a rate constant
of λ. Thus, the two negative terms in the rate equa-
tion for the native state are −ku,i[Ni] and −λ[Ni] (see
Supporting Information). If there were another pro-
cess by which natively folded proteins were removed
from the system that was faster than cell growth,
then the time scale of that processwould become the criti-
cal comparator for the time scale of protein unfolding.
This circumstance could arise in an environment like the
endoplasmic reticulum of eukaryotes for proteins that
are secreted from this organelle, for which the time scale
of secretion would be the critical comparator. In addition,
for proteins that are harvested at a given time point after
being produced in an expression system like E. coli,
BHK, or CHO cells, the critical comparator for the time
scale of protein unfolding becomes the amount of time
allowed for expression.

The effect of mutations on the clusters in
Category 4 can only be understood in the context of
the contributions of the GroEL/GroES system to
proteostasis. Briefly, the effect of a mutation that
diminishes the thermodynamic stability to a given
extent is better mitigated by GroEL/GroES when pro-
tein folding is slow than when it is fast because the
GroEL/GroES system cannot be effective if substrates
fold faster than they bind to GroEL. We show in
detail how this comes about in the Supporting Infor-
mation. The DnaK/DnaJ/GrpE system and protein
degradation systems do not affect which mutation
response category the clusters fall into, although they
of course are essential to proteostasis. We therefore
discuss how each proteostasis network system con-
tributes to in vivo folding outcomes in the Supporting
Information rather than the main text.

An experimental test of the kinetic versus
thermodynamic dichotomy in how mutations
affect proteostasis
To experimentally test the prediction that for a given
protein the effect of a mutation on proteostasis depends
on the relationship between the time scale of protein
unfolding and the time scale of a critical competing pro-
cess, we determined the effects of mutations on the
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expression yields of the mouse ortholog of CRABP1
(MmCRABP1) expressed in E. coli. The folding of
MmCRABP1 has been studied in detail.51–58 It has
been shown to fold via a three-step pathway: a very
rapid hydrophobic collapse, followed by a rearrangement
to an aggregation-resistant state with native-like topol-
ogy, and then a final annealing to the native state (here
we ignore a low-amplitude fourth phase due to proline
isomerization53). To simplify this mechanism so that it
fits into the folding scheme in FoldEcoSlim, we will col-
lect the (aggregation-prone) unfolded and hydrophobic
collapse states together as the U “super-state” and the
(aggregation-resistant) native-like intermediate and
native states together as the N super-state. Thus, the
effective folding rate constant will correspond closely to
the rate of folding from the collapsed to the native-like
intermediate (kf,eff) while the effective unfolding rate
constant will correspond to the rate of unfolding from
the N super-state to the collapsed intermediate (ku,eff;
this effective rate is equal to the absolute rate of
unfolding from the native-like intermediate to the col-
lapsed intermediate multiplied by the fraction of the pro-
tein in the N super-state that is in the native-like
intermediate state; see the Supporting Information for
more discussion).

To know which mutation response category
MmCRABP1 falls into, we need to know what the
critical comparator is and what its magnitude is rela-
tive to the unfolding rate constant. In our expression
experiments, E. coli were induced to express a vari-
ant of MmCRABP1 that is His-tagged and has a sta-
bilizing R131Q mutation.53,59 We will refer to this
variant as “WT*.” Cells were harvested after 1, 2, and
3 h to measure the amount of soluble versus aggregated
MmCRABP1 by quantitative western blotting. (The
molar amounts of MmCRABP1 in the supernatant and
pellet after cell lysis and centrifugation divided by the
cell volume are the soluble and aggregated protein con-
centrations, respectively, while the total protein concen-
tration is the sum of the soluble and aggregated protein
concentrations.) Based on the slow approach to steady-
state concentrations, we surmised that cell division was
very slow (doubling times ~5 h; data not shown). Thus,
the critical comparator for the protein unfolding rates
was the time scale of cell harvesting, or 3 h. WT*
MmCRABP1 is a very stable protein (at 25�C, ΔGf,eff,WT*

= −10 kcal mol−1; Kf,eff,WT* = 2.2 × 107), with moderately
fast folding (kf,eff,WT* = 6.7 s−1) and very slow unfolding
(ku,eff,WT* = 3.1 × 10−7 s−1).51 We performed the same
experiment with several mutants of WT*MmCRABP1
that had varying degrees of destabilization (Table I).
In three of the four mutants studied, destabilization
was almost entirely due to increased unfolding rates
(M9A, V67A, and L118V). Only in the last case
(Y133S) was there a substantial (20-fold) decrease in
the folding rate.51

Given the value of ku,eff,WT*, the half-time for
WT* MmCRABP1 unfolding is about 620 h. This is

much greater than the time scale of this experiment
(3 h). Even in the most destabilized mutants we stud-
ied, the half-time for unfolding was still ~3 h. Thus,
our a priori expectation based on the analysis above was
that the effects of mutations in MmCRABP1 would be
driven by folding kinetics. In other words, MmCRABP1
would be in mutation response Category 2.

The experimentally measured concentrations of
total versus soluble WT* or mutant MmCRABP1 over
the 3 h expression time courses are shown in Figure 4
(the concentration of aggregated protein is the difference
between the total and soluble concentrations). We find
that WT*, M9A, V67A, and L118V MmCRABP1, which
all have folding rate constants >1 s−1 despite widely
varying stabilities, behaved similarly in terms of the
amount of total protein and the partitioning of this pro-
tein between the soluble and aggregated states at each
time point. For example, after 3 h, the total MmCRABP1
concentration for these variants was between 260 and
290 μM and the fraction that was soluble (fsol) was only
slightly lower for the mutants (between 0.82 and 0.85)
than for WT* (0.91). In contrast, the Y133S mutant
behaved much differently. The total protein concentra-
tion was lower (125 μM at 3 h) and a lower fraction was
soluble (fsol,Y133S = 0.28), demonstrating that this
mutant is vulnerable to both aggregation and degrada-
tion. To confirm that the lower total protein concentra-
tion of Y133S MmCRABP1 was due to degradation, we
expressed WT* and Y133S MmCRABP1 in an E. coli
strain lacking the gene for Lon. In these Δlon bacteria,
the concentrations of WT* and Y133S MmCRABP1
were comparable over the expression time course,
although Y133S still aggregated to a much greater
extent; see Figure S2.

Y133S MmCRABP1 is both the slowest folding
and the least stable of the MmCRABP1 variants
studied herein, which leaves open the possibilities
that its drastically compromised proteostasis is a con-
sequence of its folding kinetics, its folding thermody-
namics, or both. Some aggregation is observed even
for WT* MmCRABP1, indicating that its in vivo folding
must already be on the cusp of breaking down. Thus,
if it were sensitive to thermodynamic destabilization,
then any strongly thermodynamically destabilizing
mutation would lead to less effective proteostasis. V67A
is such a strongly destabilizing mutation (3.3 kcal mol−1)

Table I. Effective Folding Parameters for MmCRABP1
Variants

MmCRABP1
variant kf,eff (s

−1) ku,eff (s
−1) Kf,eff (s

−1)
ΔGf,eff

(kcal mol−1)

WT* 6.7 3.1 × 10−7 2.2 × 107 −10.0
M9A 1.5 1.4 × 10−6 1.0 × 106 −8.2
V67A 5.2 6.2 × 10−5 8.3 × 104 −6.7
L118V 1.8 4.1 × 10−6 4.5 × 105 −7.7
Y133S 0.40 6.1 × 10−5 6.5 × 103 −5.2

See Supporting Information for their sources.
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but the expression time course of V67A MmCRABP1 is
similar to that of WT* in terms of both total protein
concentration and the fraction that is soluble (Fig. 4).
Importantly, the V67A mutation does not affect the
folding rate constant. This result therefore strongly sug-
gests that MmCRABP1 is not sensitive to thermody-
namic destabilization per se, and furthermore that
Y133S MmCRABP1 is so poorly behaved specifically
because of its slow folding rate.

These results corroborate the hypothesis stated
in the Introduction and refined using FoldEcoSlim:
given that unfolding of MmCRABP1 variants is gener-
ally slower than the time scale on which the expression
experiment is performed, proteostasis—here gauged by
the partitioning of protein between soluble states (pre-
sumably dominated by natively folded protein) and
aggregation/degradation—is primarily determined by
how mutations affect the folding rate. These experi-
ments therefore validate the FoldEcoSlim-based analy-
sis performed in the preceding sections.

Discussion
Using FoldEcoSlim, we have found that proteins can
be categorized by whether the effects of mutations on
their in vivo folding fates are driven by changes in the
thermodynamics or the kinetics of folding. Because
FoldEcoSlim is simple enough to analytically solve for
the steady state, we were able to determine that this cat-
egorization depends on the relationship between the
unfolding rate, defined by ku,i, and the time scale of a crit-
ical competing process, which we have termed the “criti-
cal comparator.” For growing bacteria, this critical
comparator is the rate of cell division, defined by λ. Pro-
teins for which ku,I � λ can reach their folding equilib-
rium on the time scale of cell division, so the effect of a

mutation on proteostasis depends entirely on how the
mutation changes folding thermodynamics. It does not
matter whether the mutation is destabilizing because
the unfolding rate increases or the folding rate decreases;
the outcome is the same either way. Proteins for which
ku,i � λ cannot reach their folding equilibrium on the
time scale of cell division, instead reaching a steady state
in which the fraction of natively folded protein is largely
determined by the ratio kf,i/λ. Thus, mutations that
destabilize a protein but do not affect kf,i have no effect
on proteostasis. Again, we emphasize that whether the
effects of mutations on fN,i are under thermodynamic
or kinetic control is independent of the proteostasis
network with few exceptions (the proteins in cluster
7 being a case in point). The proteostasis network
tends to increase fN,i, but it does not usually change
whether a protein’s folding is under thermodynamic
or kinetic control. The specific contributions of
the various proteostasis network components—the
DnaK/DnaJ/GrpE system, the GroEL/GroES system,
and the degradation machinery—to proteostasis are
discussed in detail in the Supporting Information.

These results provide a framework in which to
understand the molecular evolution of proteins. For
example, it has been observed that proteins’ folding
nuclei—that is, the set of residues with high φ-values
that form stabilizing interactions in both the transi-
tion and the native states—are not more highly con-
served than other residues in a protein.60,61 This
finding is surprising, since one would expect a priori
that any mutation that diminished the protein folding
rate would face strong negative selection pressure. How-
ever, our analysis with FoldEcoSlim provides a potential
explanation for this observation. Most of the proteins on
which this assertion was based are relatively small, fast

Figure 4. Time courses of expression of MmCRABP1 variants in E. coli. Red lines and data points: total MmCRABP1
concentrations per cell. Blue lines and data points: soluble MmCRABP1 concentrations per cell. The difference between the total
and soluble protein concentrations is the aggregated protein concentration (red shaded area). The fractions of soluble protein at
the 3 h time point for all variants are indicated on the plots. Error bars indicate the standard errors of the mean.
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folding proteins.60 As noted above, such proteins should
be able to reach their folding equilibrium on the time
scale of cell division or any other likely critical compara-
tor. Thus, the effects of mutations on proteostasis for
such proteins should be driven by their thermodynamic
consequences and essentially indifferent to whether the
mutated residue is a part of the folding nucleus. Only
slow folding proteins, which tend to be large and incon-
venient for in vitro studies of folding mechanisms,
should be expected to face selection pressure against
mutations that slow down folding.

Our results, although obtained in the context of a
model organism, also have implications for under-
standing the role of protein folding energetics in
human protein misfolding diseases. We have shown
that it is essential to identify the process against
which the protein unfolding rate must be compared
to understand a given protein’s homeostasis. For
example, the secretion rate (determined by the rate
constant ksec,i) is the critical comparator for the
unfolding rate for loss-of-function diseases like cystic
fibrosis62 and Fabry’s disease,63 which are caused by
mutations in proteins that are secreted from the
endoplasmic reticulum. Diseases caused by mutations
in proteins for which ku,i � ksec,i are diseases of pro-
tein folding thermodynamics and they can in princi-
ple be treated with therapies that stabilize the native
state, like pharmacologic chaperoning with small mole-
cule ligands.63–65 In contrast, diseases caused by muta-
tions in proteins for which ku,i � ksec,i are diseases of
protein folding kinetics and are likely to be responsive
only to therapies that somehow increase kf,i or that sup-
press competing pathways like degradation or aggrega-
tion. This outcome could be achieved by, for example,
selectively activating certain elements of stress-
responsive signaling pathways.66–68

Finally, diseases caused by mutations in proteins
for which ku,i is similar in magnitude to the critical
comparator are expected to be edge cases. An exam-
ple is transthyretin amyloidosis.69–71 Transthyretin,
or TTR, is a tetrameric plasma protein that generally
folds efficiently in, and is secreted from, the endoplasmic
reticulum of hepatocytes.72 However, TTR can aggregate
and form deposits in distal tissues like the peripheral
nerves or the heart in an unfolding/misfolding process
that is rate-limited by tetramer dissociation.71 Thus, the
processes whose time scales must be compared are tetra-
mer dissociation (kdiss,TTR) and TTR turnover in the blood
(kturn,TTR). These rates are quite similar. Wild type TTR
tetramer dissociation in blood plasma has a half-life of
3.2 days (kdiss,TTR = 2.5 × 10−6 s−1)73 while TTR turnover
has a half-life of 2.7 days (kturn,TTR = 3.0 × 10−6 s−1).74

TTR dissociation is prevented when one or both of its
binding sites is occupied by a ligand, thereby diminishing
the dissociation rate (quantified by the effective dissocia-
tion rate constant kdiss,TTR,eff); such ligands are referred
to as “kinetic stabilizers.”71,75 Kinetic stabilizers can
therefore be expected to improve TTR proteostasis up to

the point that the effective dissociation rate constant,
kdiss,TTR,eff, becomesmuch less than kturn,TTR.Beyond this
point, further increases in ligand concentration would
not be expected to affect TTR proteostasis. This predic-
tion is consistent with the results of a recent placebo-
controlled clinical trial of the TTR kinetic stabilizer
tafamidis76,77 for TTR amyloid cardiomyopathy.78 In this
trial, patients received either placebo, 20 mg/day of
tafamidis, or 80 mg/day of tafamidis. It was found that
patients benefited significantly from treatment with
tafamidis. However, the benefit was essentially the same
at both doses, consistent with the expectation articulated
above that the plasma concentration of tafamidis
achieved at the 20 mg daily dose decreases kdiss,TTR,eff to
well below kturn,TTR, and that any further decrease in
kdiss,TTR,eff achieved with higher doses of tafamidis yield
only marginal benefits. Higher tafamidis doses could,
however, be beneficial for TTR mutants that have faster
dissociation rates.

In conclusion, the preceding analysis of the role of
protein folding energetics in determining proteostasis
has yielded a framework for understanding the interplay
of kinetic and thermodynamic effects on the outcome of
protein folding reactions in vivo. This framework is
extensible, at least qualitatively, beyond the simple
model organism in which it was conceived. We hope that
it can serve as a foundation on which larger-scale
models—for example, models for human protein mis-
folding diseases—can be built and understood.

Materials and Methods

Setting up and solving FoldEcoSlim
The rate equations that make up FoldEcoSlim can be
derived fromFigure 1. They are shown in the Supporting
Information. Numerical solutions of FoldEcoSlim
were obtained by using Mathematica 11.2 or 11.3
(Wolfram Research) on a Dell Precision T7500 Work-
station running Windows 7 Professional (64 bit) with
a 3.33 GHz Intel Xeon W5590 Quadcore CPU and
24 GB of RAM or a Maingear Quantum SHIFT Work-
station runningWindows 10 Professional (64 bit) with
a 2.30 GHz Intel Xeon E5-2697 v4 18-core CPU and
128 GB of RAM.

Escherichia coli strains and plasmids
The E. coli strain K12 HMS174(DE3) (Novagen) was
used as the background strain in all the experiments.
These cells were the same as used in a previous
work11 and therefore had a plasmid containing the
DnaK/DnaJ/GrpE system (chloramphenicol resistant)
under a pBAD promoter. The KJE system was not
induced in these experiments; its expression was
suppressed by adding 0.2% w/v D-glucose, which re-
presses the expression from the pBAD promoter. The
E. coli Δlon K12 HMS174(DE3) strain used for control
experiments, in which lon was deleted/replaced by a
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kanamycin-resistant (KanR) cassette, was kindly pro-
vided by Jeffery W. Kelly (Scripps Research).

Our “wild type” model protein, MmCRABP1, is
actually a variant of MmCRABP1 with an N-terminal
His10-tag and an R131Q mutation to stabilize the pro-
tein.53,59 Here, it is referred to as WT*. WT* was
used as the template for the other MmCRABP1 vari-
ants (M9A, V67A, L118V, and Y133S).51 MmCRABP1
was inserted into the pET16b vector (ampicillin-resis-
tant) under a lac promoter. The sequence of WT*
MmCRABP1 is:

HHHHHHHHHH MPNFAGTWKM RSSENFDELL KALGVNAMLR

KVAVAAASKP HVEIRQDGDQ FYIKTSTTVR TTEINFKVGE

GFEEETVDGR KCRSLPTWEN ENKIHCTQTL LEGDGPKTYW

TRELANDELI LTFGADDVVC TQIYVRE

Protein expression in E. coli
Bacterial transformations with the pET16b plasmid
(with MmCRABP1) were done on LB plates. Bacterial
cultures were grown in LB with ampicillin
(100 μg/mL) and chloramphenicol (34 μg mL−1) at
30�C until the OD600 was ~0.4. Glucose (0.2% w/v)
was added to suppress DnaK/DnaJ/GrpE system
expression. After 1 h, when the OD was ~0.7,
MmCRABP1 expression was induced with 0.5 mM
isopropyl β-D-1-thiogalactopyranoside (IPTG) and
allowed to continue for 1, 2, or 3 h. Cells were
harvested by centrifugation for 15 min. Cells were
lysed by resuspending with Bacterial Protein Extraction
Reagent (BPER-II) (ThermoFisher Scientific), lysozyme
(0.05 mg/mL), and DNase I (1 μg/mL). Cell lysates were
incubated at room temperature for ~15–30 min. A fraction
of the lysate was transferred to one tube (this was to mea-
sure total protein concentration). An equal volume of the
lysate was transferred to another tube, which was then
centrifuged at 13,500g for 10 min at 4�C to partition the
supernatant from the pellet. The supernatant was col-
lected and used to measure the concentration of soluble
MmCRABP1, while the pellet was used to measure the
concentration of aggregated MmCRABP1. The pellet was
resuspended with the same volume of buffer. Gel loading
buffer was added to each sample. Samples were boiled for
10 min. Samples were loaded on a 15% glycine gel and
were separated by electrophoresis on sodium dodecyl
sulfate-polyacrylamide gels (SDS-PAGEs). Proteins were
detected by Coomassie blue staining and imaged with the
Odyssey Infrared Imaging System (Li-CORBiosciences).

The WT* MmCRABP1 and Y133S MmCRABP1
were also expressed in Δlon cells to determine the
typical protein expression in E. coli without degrada-
tion by Lon. Cells were grown in LB with ampicillin
(100 μg/mL) at 30�C until the OD600 was ~0.7 (same
OD600 as above). MmCRABP1 (WT* or Y133S) ex-
pression was induced with 0.5 mM IPTG for 0.5,
1, and 2 h. Another set of experiments with +Lon
cells [K12 HMS174(DE3)] was run in parallel to com-
pare folding fates in –Lon and +Lon cells.

Quantitative Coomassie blue staining and
Western blotting
For the quantitation, known amounts of purified recom-
binant WT* MmCRABP1 were used as standards.
These were loaded on the same gel where the samples
of unknown amounts of MmCRABP1 from the expres-
sion experiments were loaded. Each volume of sample
loaded corresponded to 108 cells, which is equivalent to
1 mL of bacteria with OD600 ~0.1.44 After running
samples by SDS-PAGE and staining with Coomassie
Blue, they were imaged using Li-COR. A standard
curve was generated based on the known amounts of
proteins, and the unknown amounts of MmCRABP1
from the expression experiments were determined by
interpolation or extrapolation. The concentration of
samples was calculated by dividing the amount of pro-
tein by the volume of cell cytoplasm. It is assumed that
for E. coli grown in LB, the total cell volume is 2.9 μL
per mL of cells per OD600 unit.44 Subtracting the peri-
plasm, which is ~10% of the cell volume, the volume of
cell cytoplasm is 2.6 μL per mL per OD600. The pres-
ence of MmCRABP1 in the samples and the location of
its corresponding band in SDS-PAGE gels were con-
firmed by western blotting. The primary antibody used
was anti-CRABP1 (Abcam, monoclonal, mouse, 1:5000).
The secondary antibody was a Li-COR anti-mouse anti-
body (emission at 800 nm, from Li-COR Biosciences).

The concentrations of total (Ti), soluble (Si), and
aggregated (Ai) protein and the fractions of soluble (fs,i)
and aggregated (fa,i) protein that existed after 1, 2, and
3 h were calculated as follows: [Ti] = [Si] + [Ai], fs,i = [Si]/
[Ti], fa,i = [Ai]/[Ti]. Note that the calculated concentration
for total protein was the sum of the concentrations of sol-
uble and aggregated protein, and not the concentration
of the total lysate lane run on the Coomassie stained
gels or Western blots. The total lysate lane was a control
to check for mass balance; the sum of soluble and aggre-
gated relative to the total lysate should be close to the
same. The mass balance was good in all samples; the dif-
ference between the total protein concentrations deter-
mined from the total lysate lane and determined from
the sum of the soluble and aggregated concentrations
was less than 20% in all cases.
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