Skip to main content
. 2019 Apr 26;11(5):945. doi: 10.3390/nu11050945

Figure 2.

Figure 2

The proposed mechanisms of action for omega-3 polyunsaturated fatty acid (PUFA) intake in cancer-related complications, which affect the central and peripheral nervous system, besides adipose tissue and skeletal muscle. Hematological changes depict the switched production of systemic inflammatory mediators under cancer progression. (1) The balance between omega-3 and omega-6 PUFAs is essential for the generation of pro-resolution mediators, the sensing of free fatty acid receptors, and membrane modulation. (2) Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can stimulate Free Fatty Acid Receptor 1 (FFA1) and Free Fatty Acid Receptor 4 (FFA4) receptors in different ways, leading to anti-inflammatory effects. FFA1 activation can evoke analgesia and antidepressant effects. Additionally, this receptor could have benefits in relation to paraneoplastic syndromes, such as neuropathy and cachexia-anorexia syndrome, represented herein by fatigue. (3) E-series resolvins (RvE) promotes anti-inflammatory effects via ChemR23 activation, likely contributing to the alleviation of painful symptoms. They might also induce beneficial effects in other paraneoplastic syndromes. (4) The inhibitory effects of D-series resolvins (RvD) on transient receptor (TRP) channels could also produce favorable effects on cancer-related pain. (5) As for the omega-3 PUFA membrane enrichment, the production of thromboxane A2 (TBXA2), prostaglandins E3 and I3 (PGE3/I3), and leukotriene B5 (LTB5) promotes anti-inflammatory effects that prompt cachectic patients’ welfare. (6) Finally, RvD-series, protectins/neuroprotectins (PD/NPD), and maresins (MaRs) have beneficial effects on pain and depression; thus, they could similarly relieve the signs and symptoms of paraneoplastic and cachexia-anorexia syndromes.