Table 1.
SVM_rbf | SVM_lin | LDA | KNN | NB | RF | DFDL | |
---|---|---|---|---|---|---|---|
Targeted Method | |||||||
Acc (%) | 91.6 | 90.6 | 69.9 | 90.4 | 73.2 | 62.1 | 94.1 |
p-val | 0.343 | 0.018 | 0.000 | 0.001 | 0.000 | 0.000 | |
Untargeted Methods | |||||||
Acc (%) | 87.6 | 86.5 | 65.7 | 86.0 | 66.0 | 60.4 | 90.2 |
p-val | 0.414 | 0.047 | 0.000 | 0.020 | 0.000 | 0.000 |
SVM_rbf = support vector machine using radial basis function, SVM_lin = support vector machine using linear kernel function, LDA = linear discriminant analysis, KNN = k-nearest neighbor, RF = random forest, DFDL = discriminative feature-oriented dictionary learning, Acc = accuracy, p-val = p-value. Bold values indicate significant differences.