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Abstract: This paper presents a high-temperature probe suitable for operating in harsh industrial
applications as a reliable alternative to low-lifespan conventional solutions, such as thermocouples.
The temperature sensing element is a Schottky diode fabricated on 4H-SiC wafers, with Ni as the
Schottky metal, which allows operation at temperatures up to 400 ◦C, with sensitivities over 2 mV/◦C
and excellent linearity (R2 > 99.99%). The temperature probe also includes dedicated circuitry for
signal acquisition and conversion to the 4 mA–20 mA industrial standard output signal. This read-out
circuit can be calibrated for linear response over a tunable temperature detection range. The entire
system is designed for full electrical and mechanical compatibility with existing conventional probe
casings, allowing for seamless implementation in a factory’s sensor network. Such sensors are tested
alongside standard thermocouples, with matching temperature monitoring results, over several
months, in real working conditions (a cement factory), up to 400 ◦C.

Keywords: high-temperature sensor; read-out circuit; silicon carbide; Schottky diode; harsh environment;
industrial temperature monitoring

1. Introduction

Temperature sensors are required in virtually all monitoring applications, irrespective of investigated
settings [1]. As advancements in regulations targeting the minimization of industrial impact on the
environment are carried out, precise temperature control and energy efficiency have become essential
research topics, which exert ever-growing standards from temperature sensors [1–19]. This aspect works
in tandem with the fact that most industrial processes demand careful monitoring of temperature levels
in order to ensure optimal quality and yield [1,6]. Therefore, accurate, robust, and reliable temperature
sensors are among the primary requirements in the industrial sector, especially for the cement, drilling,
aviation, automotive, or geothermal industries [6]. To cater to these needs, industrial temperature probes
need a read-out circuit in addition to the sensing element, in order to adequately acquire and convert its
output signal to standard levels [16].

Currently, thermocouples represent the preferred solution for temperature sensing, because of their
wide measurement range, good accuracy and fast response time. Industrial working conditions often
include elevated heat levels, strong vibrations, corrosion, erosion (etc.), which exact a heavy toll on the
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reliability of thermocouples, restricting their lifespan [6]. Additionally, a thermocouple’s temperature
response is non-linear, with sensitivities usually restricted under 0.1 mV/◦C, which considerably
increases the expected performances of read-out circuits [17].

As such, wide band-gap semiconductor-based temperature sensors have become a promising alternative
for harsh industrial applications [2–15]. Silicon carbide (SiC) is a particularly suitable material due to
its mechanical robustness, radiation, chemical inertness, and high bandgap (Eg = 3.25 eV for 4H-SiC),
which allows fabricated devices to operate at temperatures up to 400 ◦C or more [2–15]. Among all devices
fabricated on SiC (PN, PIN, JFET, etc.), Schottky diodes are the most cost-effective and technologically
mature, with considerable commercial success in power and sensing applications [2–27]. Hence, due to their
simple structure, very compact size and quasi-linear voltage-temperature dependence (with sensitivities
exceeding 2 mV/◦C), SiC Schottky diodes are excellent candidates for high-temperature monitoring in hostile
industrial environments [2–16,18–24].

This paper demonstrates the viability of SiC-Schottky diode-based high-temperature sensors in
industrial applications, which are fully electrically and mechanically compatible with existing probes.
Diodes with annealed Ni/4H-SiC contacts, used as sensing element, are designed, fabricated and
measured up to 400 ◦C. Parameter extraction and subsequent modeling of forward behavior evince
best performing devices in terms of sensitivity value and stability.

To process the Schottky diode signal, a dedicated read-out circuit was designed and implemented.
Thus, sensor output voltage was converted to current in the industrial standard (4 mA–20 mA).
Following calibration, the sensor system was assembled and incorporated into an industrial casing.
Several such temperature probes were tested in the raw meal mill of a cement factory alongside
standard thermocouple-based counterparts for several months. Results showed good agreement
between both temperature-sensing solutions and emphasized the exemplary reliability potential of
SiC-based devices working in harsh industrial environments.

2. Materials and Methods

The proposed sensing element of the temperature probe is a SiC-Schottky diode, due to its ability
to operate at elevated temperatures (at least 400 ◦C). Temperature detection is quantified by exploiting
the forward characteristics (ISD-VSD) of this device. Explicitly, biasing the diode at constant currents
leads to a quasi-linear decrease in voltage as temperature rises. The sensitivity is inversely proportional
to the current level [6–11].

2.1. SiC-Schottky Diode Sensor Technology

The high-temperature sensors were fabricated on research grade n-4H-SiC wafers from Cree Inc.
(Durham, NC, USA), (3.85◦ orientation, Si-face, 20 mΩ/cm resistivity), with an epitaxial layer with a thickness
of approximately 8 µm and a concentration of around 1 × 1016 cm−3. A cross section of this SiC-Schottky
structure is depicted in Figure 1. The first technological step was a chemical cleaning process, based on
piranha and 10% HF solutions, for 30 s. Then, a two-stage oxide deposition by Low-Pressure Chemical
Vapor Deposition (LPCVD) was performed.

An initial oxide layer (Oxide 1—Figure 1) was deposited at a temperature of 750 ◦C, followed
by a densification process at 1000 ◦C in inert atmosphere (N2) for 30 min. The value of the refraction
index for as-deposited SiO2 was 1.4405 at a wavelength of 632.8 nm, and 1.4392 after the densification,
at the same wavelength.

For the ohmic contact, a Ni (150 nm) deposition on the backside of the wafer (with a covered front
side) was also performed by sputtering, followed by a rapid thermal annealing at a temperature of
950 ◦C, for 5 min, in an N2 atmosphere.

Afterwards, a second oxide layer (Oxide 2—Figure 1) was added on the front side, over the
densified oxide (Oxide 1—Figure 1), leading to a total thickness of around 1 µm.

To ensure a uniform current density, wet etching of the oxide layers, using a photoresist mask,
was performed, yielding an oxide ramp termination [6–14]. This etching process occurred at a rate of
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approximately 145 nm/min, in a (NH4F/CH3-COOH) (2:1) solution. Two different angles (under 20◦)
were obtained, due to the different densities of the oxide layers, as evinced in Figure 2a. These low angles
can be modified by changing the temperature of the etching solution between 25 ◦C and 40 ◦C [24].
Hence, circular active windows, with diameters of 400 µm were opened in the oxide layers. Afterwards,
150 nm of Ni were deposited by sputtering on the front side of the wafers for the Schottky contacts.
A rapid thermal annealing in the N2 atmosphere, at a temperature of 800 ◦C for 8 min was carried out
in order to obtain a Ni-silicide (Ni2Si) Schottky contact [6–8].

Finally, metallic layer stacks consisting of Cr (20 nm)/Au (200 nm) were deposited on both sides of
the wafers in order to achieve the pad contacts (Figure 1). The Cr layer serves to improve the Schottky
barrier stability, as it prevents Au diffusion at high temperatures (over 400 ◦C).

High pad areas (1 × 1 mm) were used in order to facilitate electrical connection of the sensor
structures with the package terminals [6,11,12].

Sensors 2019, 19, x FOR PEER REVIEW 3 of 16 

 

angles can be modified by changing the temperature of the etching solution between 25 °C and 40 °C [24]. 
Hence, circular active windows, with diameters of 400 µm were opened in the oxide layers. 
Afterwards, 150 nm of Ni were deposited by sputtering on the front side of the wafers for the Schottky 
contacts. A rapid thermal annealing in the N2 atmosphere, at a temperature of 800 °C for 8 min was 
carried out in order to obtain a Ni-silicide (Ni2Si) Schottky contact [6–8]. 

Finally, metallic layer stacks consisting of Cr (20 nm)/Au (200 nm) were deposited on both sides 
of the wafers in order to achieve the pad contacts (Figure 1). The Cr layer serves to improve the 
Schottky barrier stability, as it prevents Au diffusion at high temperatures (over 400 °C). 

High pad areas (1 × 1 mm) were used in order to facilitate electrical connection of the sensor 
structures with the package terminals [6,11,12]. 

 
Figure 1. SiC-Schottky diode configuration. 

  
(a) (b) 

Figure 2. (a) Ramp oxide termination profile of SiC-Schottky sensor and (b) SiC-Schottky structure on 
TO39 case (with silver nano-paste). 

Packaging is an essential process for temperature sensors operating at hundreds of degrees, in 
harsh environments. Several capsule models were tested for 1000 cycles of 50 °C–400 °C sweeps, with 
a variation rate of 50 °C/min. The temperature limits and swing speed correspond to general 
industrial equipment conditions. Following these tests, the TO39 package was selected, due to its 
good performances when working in harsh environments, specifically the hermetic sealing and good 
conductivity provided by its gold plated die pad and terminals. Figure 2b presents the bonding of a 
SiC-Schottky diode chip to the TO39 terminals. The anode is contacted through an Au wire with 25 
µm thickness, while the cathode adheres directly to the die pad. For the latter connection, a few 
attachment techniques were investigated, using an intermediary layer (high temperature metal alloy 

Figure 1. SiC-Schottky diode configuration.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 16 

 

angles can be modified by changing the temperature of the etching solution between 25 °C and 40 °C [24]. 
Hence, circular active windows, with diameters of 400 µm were opened in the oxide layers. 
Afterwards, 150 nm of Ni were deposited by sputtering on the front side of the wafers for the Schottky 
contacts. A rapid thermal annealing in the N2 atmosphere, at a temperature of 800 °C for 8 min was 
carried out in order to obtain a Ni-silicide (Ni2Si) Schottky contact [6–8]. 

Finally, metallic layer stacks consisting of Cr (20 nm)/Au (200 nm) were deposited on both sides 
of the wafers in order to achieve the pad contacts (Figure 1). The Cr layer serves to improve the 
Schottky barrier stability, as it prevents Au diffusion at high temperatures (over 400 °C). 

High pad areas (1 × 1 mm) were used in order to facilitate electrical connection of the sensor 
structures with the package terminals [6,11,12]. 

 
Figure 1. SiC-Schottky diode configuration. 

  
(a) (b) 

Figure 2. (a) Ramp oxide termination profile of SiC-Schottky sensor and (b) SiC-Schottky structure on 
TO39 case (with silver nano-paste). 

Packaging is an essential process for temperature sensors operating at hundreds of degrees, in 
harsh environments. Several capsule models were tested for 1000 cycles of 50 °C–400 °C sweeps, with 
a variation rate of 50 °C/min. The temperature limits and swing speed correspond to general 
industrial equipment conditions. Following these tests, the TO39 package was selected, due to its 
good performances when working in harsh environments, specifically the hermetic sealing and good 
conductivity provided by its gold plated die pad and terminals. Figure 2b presents the bonding of a 
SiC-Schottky diode chip to the TO39 terminals. The anode is contacted through an Au wire with 25 
µm thickness, while the cathode adheres directly to the die pad. For the latter connection, a few 
attachment techniques were investigated, using an intermediary layer (high temperature metal alloy 
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TO39 case (with silver nano-paste).

Packaging is an essential process for temperature sensors operating at hundreds of degrees,
in harsh environments. Several capsule models were tested for 1000 cycles of 50 ◦C–400 ◦C sweeps,
with a variation rate of 50 ◦C/min. The temperature limits and swing speed correspond to general
industrial equipment conditions. Following these tests, the TO39 package was selected, due to its
good performances when working in harsh environments, specifically the hermetic sealing and good
conductivity provided by its gold plated die pad and terminals. Figure 2b presents the bonding
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of a SiC-Schottky diode chip to the TO39 terminals. The anode is contacted through an Au wire
with 25 µm thickness, while the cathode adheres directly to the die pad. For the latter connection,
a few attachment techniques were investigated, using an intermediary layer (high temperature metal
alloy preforms or nano-particle silver paste) [10,11], a solid-state diffusion (Au–Au between chip and
die-pad) [28] and a transient liquid-phase bonding [29,30].

Using an intermediary binding layer proved to be most effective, with either nano-particle silver
paste (Figure 2b) or preform [6–8,10,11,13,14]. For operating temperatures up to 400 ◦C, the only
available preform was Au-In. Bonding using this solution is cumbersome because the process requires
a high sintering temperature and a reduced ambient atmosphere (forming gas or H2, in order to prevent
preform oxidation).

Die connections with nano-particle paste intermediary layer were obtained similarly with those
resulting from a solid-state diffusion [25], that is, by applying pressure and heat for a specific duration.
When using the silver paste, the nano-particles significantly increase contact pressure, which reduces the
need for elevated temperature levels as well as the time demanded. Figure 2b shows an exemplification
of cathode-die bonding using nano-particle silver paste.

The SiC-Schottky diode sensors, thusly packaged, were subjected to further thermal stress at
400 ◦C for 700 min. No damage was observed for either anode or cathode connections [10].

2.2. SiC-Schottky Diode Characterization

Forward low-bias behavior of ideal Schottky diodes is conventionally characterized by the
thermionic emission (TE) equation, [6–13,31–38],

ISD � AnAST2 exp
(
−

ΦBn,T

Vth

)
exp

(
VSD

nVth

)
. (1)

In Equation (1), An is the Richardson constant (equal to 146 A/K2cm2 for 4H-SiC [6]), AS is the
Schottky contact area, T is the absolute temperature and Vth is its associated thermal voltage. The series
resistance effect was not accounted for in the equation. The conventional barrier height (ΦBn,T) and
ideality factor (n) are critical device parameters, whose values and stability are closely linked with the
technological process. They can be extracted, at each investigated temperature, from the slope and
intercept of linear ln(ISD) as a function of VSD plots (see Equation (1)) [6–14].

While, ideally, ΦBn,T and n should be temperature-independent, value variation for these
parameters has been ubiquitously observed for Schottky diodes [6–14,31–38]. This phenomenon
is attributed to inhomogeneities present on the Schottky contact surface, which leads to spatial
variations of the Schottky barrier height (SBH). This topic was widely investigated, with many
propositions of characterization methodologies [6–8,13,31–38]. One such recent development directed
towards high-temperature (room to 450 ◦C) behavior modeling was proposed for Ni/SiC Schottky
diodes [7,8,13]. The model considers a linear dependence of the conventional Schottky barrier [8]:

ΦBn,T � ΦBn,eff + pe f f Vth, (2)

where ΦBn,eff is an effective barrier height which can be temperature-stable over large spans [8,13].
The model also employs a non-uniformity parameter (peff), which gives the temperature dependence of
the conventional Schottky barrier [8,13].

Considering Equation (2), the current expression can be rewritten as [8,13]

ISD � AnAST2 exp
(
−pe f f −

ΦBn,eff

Vth

)
exp

(
VSD

nVth

)
. (3)

Hence, the effective barrier and non-uniformity parameter can be determined from the ln
(

ISD
AnAST2

)
versus T0

T Arrhenius plot. T0 is a reference temperature, usually 300 K. A high peff value usually
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indicates poor contact quality and significant mismatch between expected and actual current levels
through the diode as temperature changes.

When the diode is under constant current bias, its forward voltage has a quasi-linear temperature
dependence [13] (derived from Equation (3)):

VSD(T) = nΦBn,eff −

[
nΦBn,eff + 2nVth0 ln

(
T
T0

)
−VSD(T0)

]
T
T0

, (4)

where Vth0 is the thermal voltage at the reference temperature T0. Equation (4) is essential for evincing
a Schottky diode’s performances as a temperature sensor. It can be seen that sensitivity (the slope of
VSD in respect to T) is directly proportional to the values for the ideality factor and effective barrier
height [6–13]. Because ΦBn,eff decreases with peff (Equation (2)), it results that diode sensitivity is
inversely proportional with the non-uniformity parameter. Moreover, adequate sensor operation can
only be guaranteed for the temperature intervals where n and ΦBn,eff are constant, as any variations
will lead to sensitivity fluctuations and, hence, a degradation in linearity [34,35].

2.3. Sensor Read-Out

The output signal of SiC-Schottky diodes used as temperature sensors is the forward voltage.
To reconcile this aspect with the industrial requirements for sensors (current-mode response in the
4 mA–20 mA range), an acquisition and conversion circuit was developed.

The schematic of the proposed sensor read-out circuit is given in Figure 3 [12]. Two identical
current generators (I1, I2—Figure 3) are necessary: one for forward biasing the SiC-Schottky sensor
and the other for injecting constant current into a potentiometer (P1—Figure 3) [12,39]. P1 is used to
set the minimum temperature detection threshold (usually 0 ◦C). This value corresponds to a read-out
circuit output of 4 mA. A high stability, integrated double current source, REF200 [40], was used to
perform these functions. Thus, any current variations owing to temperature or process fluctuations are
similar for both injected currents.
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The diode and potentiometer voltages were acquired by an instrumentation amplifier and
implemented with the dual OPA1013 precision amplifier [41] (Figure 3). An important property of this
amplifier is that the output can swing near ground despite using a single supply, which greatly reduces
PCB area, complexity, and costs. A second potentiometer (P2—Figure 3) is used for tuning the gain of
this amplifier. Essentially, it controls the span of the read-out circuit. Thus, the output voltage of the
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amplifier (VAMP) will swing between 0 V and 5 V as temperature varies between the minimum and
maximum limits [12,39]. The VAMP dependence in respect to sensor output signal (VSD) is determined
from the schematic (Figure 3):

VAMP = I2·RP1 ·

(
1 +

RP2

R1

)
−VSD·

RP2

R1
. (5)

Equation (5) demonstrates that an iterative tuning of P1 and P2 can lock the amplifier’s full output
swing (0 V–5 V) to a specific, desired temperature detection range.

The translation to the industrial standard current range is achieved using the XTR111 precision
circuit [42], which is especially suited to current-loop transfer. Resistors R2–R5 are used together
with the internal reference voltage VR for scaling VAMP to the nominal input range of the converter.
The level shift is necessary so that when VAMP is 0 V, the output current of the converter becomes 4 mA.
The voltage-current conversion slope is adjusted through a single component, resistor RSET, leading to
an overall tunable trans-conductance gain. Under these conditions, the output current of the read-out
circuit is [42]:

Io =
m

RSET·(R2 + R5)
·

[
R2·VR·

(
1 +

R4

R3

)
+ R5·VAMP

]
. (6)

Equation (6) was determined taking into account the internal 1:m (with m = 10) precision
current mirror of the XTR111 [42]. Thus, from Equations (5) and (6), a linear dependence between
the sensor signal and read-out circuit output current is achieved. This makes for an overall linear
temperature-current conversion, which is a major advantage over consecrated solutions based on
thermocouples, where the Seebeck coefficient has a non-linear temperature variation [17].

The layout for the read-out circuit (Figure 3) was designed, as shown in Figure 4, and implemented
on a double-layered board (Figure 4a,b, respectively). The ground plane was used in order to minimize
small-signal noise.
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3. Results and Discussion

3.1. Schottky Diode Sensing Performances

Forward characteristics of fabricated SiC-Schottky diodes were measured up to 400 ◦C and
parameterized in order to identify temperature-sensing performances, especially in regard to sensitivity and
linearity. Measurements were performed using a Keithley 4200 Semiconductor Characterization System
(Tektronix/Keithley, Cleveland, OH, USA) [6–13]. Temperature was controlled by means of a Varian oven,
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with a 1 ◦C resolution [43]. The main parameters (ΦBn,T, ΦBn,eff, n, peff—see Equations (1) and (2)) were
extracted for all investigated devices [6–8].

Figure 5 depicts ISD-VSD experimental curves, selected for one of the best performing samples
(D17). It can be seen that the diode exhibits exponential current-voltage behavior over at least five
orders of magnitude, even at 400 ◦C. The excellent device properties were also confirmed by the
nearly temperature-independent values for the conventional barrier height (ΦBn,T � 1.68 V, typical for
annealed Ni/4H-SiC Schottky contacts [8]) and ideality factor (n � 1.03, very close to unity), given in
Figure 6. The effective barrier height and non-uniformity parameter are ΦBn,eff � 1.64 V and peff = 1.05,
indicating only a slight degree of contact inhomogeneity [7,8,13]. These values were used in Equation (3)
to fit the exponential portion of D17’s forward characteristics, as shown in Figure 5 (red lines). A very
good agreement can be observed between experimental data and analytical results. Outstanding fitting
accuracy was identified at the 100 nA–1 mA interval, indicating that D17 can operate adequately as
a temperature sensor when biased in that current range for the entire 25 ◦C–400 ◦C domain.
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The practical temperature-sensing performances of D17 were determined by plotting the sensor
voltage temperature dependence for various currents and linear fitting, as illustrated in Figure 7.
The linearity, evinced by the coefficient of determination (adjusted R2), is shown in Figure 8, alongside
sensitivity level (S—slope of fitted line). As expected, the elevated Schottky barrier of the device
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yields high values for sensitivity (over 10 times greater than thermocouples). Sensor linearity also
slightly increases with bias current up to a current of 100 µA (Figure 8). Above this value, the impact
of the parasitic series resistance becomes significant, leading to the small linearity decay at 1 mA.
It can be noted that R2 values are greater than 99.99% for sensor currents over three orders of
magnitude (Figure 8), proving that associated sensitivity values are strongly invariable over the entire
25 ◦C–400 ◦C range. The best value for R2 (99.997%—see Figure 8) was a key criterion for selecting ISD

= 100 µA for the proper operation of the temperature sensor. The lower sensitivity associated with this
bias point can be compensated by the read-out circuit’s tunable gain.

The diode’s output signal stability at this constant current with temperature was also assessed [14].
The device was subjected to multiple cycles of 25 ◦C–400 ◦C swings for 24 h. Figure 9 depicts the initial
and final VSD values, measured at 400 ◦C over a 30 min interval. Overall variations are under 4 mV
only, leading to an error around 0.5%.
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3.2. Read-Out Circuit Calibration

After the practical implementation of the read-out circuit (Figures 3 and 4), its electrical parameters
were adjusted in order to obtain a linear response in the measurement interval of interest (25 ◦C–400 ◦C).

Circuit pre-calibration was achieved by inputting the corresponding sensor voltages (VSD) for
25 ◦C and 400 ◦C (obtained from the forward characteristics in Figure 5). These voltages were emulated
with a multi-turn potentiometer. Afterwards, P1 (Figure 3) was adjusted in order to set the circuit’s
output bottom threshold, 4 mA (corresponding to VSD � 1250 mV at ~25 ◦C—Figure 5). P2 sets the
span of the output and was tuned in order to obtain a current of 20 mA for approximately 500 mV
(corresponding to the sensor diode’s forward voltage at ~400 ◦C—Figure 5).

Figure 10 shows the pre-calibration results for the read-out circuit, catered to D17 data (Figure 5).
An identical dependence of VAMP (output voltage of the instrumentation amplifier—Figure 3) and
read-out circuit current (IO—Figure 3) as a function of sensor signal can be observed. The plots
also evince very good linearity for the input range of interest. The slight discrepancies in the
1200 mV–1250 mV interval (Figure 10), associated with low measured temperatures (under 40 ◦C),
are caused by the single-sided supply of the amplifier. This has little impact on the practical
applications of the sensor-probe, as the monitored industrial processes usually take place at significantly
higher temperatures.
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Figure 10. Voltage and current transfer characteristics of the read-out circuit.
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The response time of the read-out circuit was tested by applying a ramp signal at its input by
means of a programmable signal generator [12]. Thus, a voltage pulse, with a rise time of tens of ns,
was generated and used as a substitute for VSD. The read-out circuit’s output shifted between 4 mA
and 20 mA at a rate of approximately 5 mA/µs, which corresponds to an equivalent temperature swing
of 117 ◦C/µs. This value greatly exceeds the actual rate of change for most industrial processes.

3.3. Industrial SiC-Schottky Temperature Probe

As mentioned before, Industrial temperature-monitoring probes usually consist of a sensing
element and processing circuitry, packaged in a metal or ceramic casing (a protecting tube with
connection head), with lengths varying in the 20 mm–2 m range.

The PCB layout of the read-out circuit (Figure 4) was therefore especially designed to be mounted
inside the connecting head of a standard industrial temperature measurement casing, as displayed in
Figure 11a. The Schottky diode-sensor’s packaging allowed for placement at the end of the probe’s
protecting tube (Figure 11b). The connection wires crossing through the tube were electrically insulated
using ceramic coating, as also evinced by Figure 11b.
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Thus, using the best performing sensor-diodes, several fully electrically and mechanically
compatible industrial temperature probes were developed, with the following characteristics:

• Supply voltage: +24 V;
• Supply insulation from the grounded probe casing;
• Standard industrial current mode output in the 4 mA–20 mA range;
• Power consumption under 1.2 W;
• Ability to work in harsh conditions (dust, humidity, vibrations, high temperatures) for an extended

period of time.

The industrial sensors were calibrated inside the Varian oven between 25 ◦C and 400 ◦C, yielding
their current-temperature conversion characteristics. One such curve is depicted in Figure 12, for the
probe using D17 as a sensing element. It can be observed that, even considering the low-temperature
linearity decay, the adjusted R2 is very close to ideality (99.999%—Figure 12). Probe sensitivity was
determined from the slope of the transfer characteristic, at 38.5 µA/◦C (Figure 12).



Sensors 2019, 19, 2384 11 of 16

Sensors 2019, 19, x FOR PEER REVIEW 10 of 16 

 

the probe’s protecting tube (Figure 11b). The connection wires crossing through the tube were 
electrically insulated using ceramic coating, as also evinced by Figure 11b. 

  
(a) (b) 

Figure 11. Integration into the industrial probe casing of: (a) Read-out circuit, placed in the connecting 
head and (b) SiC-Schottky diode sensor, fitted at the end of the protecting tube. 

Thus, using the best performing sensor-diodes, several fully electrically and mechanically 
compatible industrial temperature probes were developed, with the following characteristics: 

• Supply voltage: +24 V; 
• Supply insulation from the grounded probe casing; 
• Standard industrial current mode output in the 4 mA–20 mA range; 
• Power consumption under 1.2 W; 
• Ability to work in harsh conditions (dust, humidity, vibrations, high temperatures) for an 

extended period of time. 

The industrial sensors were calibrated inside the Varian oven between 25 °C and 400 °C, yielding 
their current-temperature conversion characteristics. One such curve is depicted in Figure 12, for the 
probe using D17 as a sensing element. It can be observed that, even considering the low-temperature 
linearity decay, the adjusted R2 is very close to ideality (99.999%—Figure 12). Probe sensitivity was 
determined from the slope of the transfer characteristic, at 38.5 µA/°C (Figure 12). 

 
Figure 12. Probe output current as a function of temperature (with D17 as sensing element). 

0 50 100 150 200 250 300 350 400 450
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Pr
ob

e 
O

ut
pu

t C
ur

re
nt

, I
O
 (m

A)

Temperature (°C)

 Measured IO
 Linear fit of measured IO

Equation y = a + b*x
Adj. R-Square 0.99999

Value Standard Error
Intercept 4.06838 0.01294
Slope 0.03856 5.69671E-5

Figure 12. Probe output current as a function of temperature (with D17 as sensing element).

After the calibration process, the probes were integrated into the sensor network of the cement
factory at Fieni [44], in order to monitor key points in the fabrication process. The factory has seven
clinker kilns, eight paste mills, a raw meal mill, ten cement mills, two lime kilns and a section
for production of prefabricated asbestos cement parts. The SiC-Schottky diode-based probes were
mounted, alongside conventional thermocouple probes, at the input (high-temperature) and output
(low-temperature) of the raw meal mill. The former incorporation is illustrated in Figure 13.
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The output signals of both temperature sensor pairs (SiC-Schottky and thermocouple) were
monitored simultaneously in the control room of the factory. The temperature waveforms are shown
in Figure 14, measured at the mill input (Figure 14a) and its output (Figure 14b).
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The results presented in Figure 14 show very good agreement between SiC-diode and thermocouple-
based sensors, over very wide temperature ranges, and up to 400◦C. The slight variations (around 5%)
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can be attributed to the fact that the two compared sensors were not located in the same casing and
could not be thermally coupled. The SiC-sensors were placed approximately 2 m ahead of conventional
thermocouple-based probes. Naturally, the discrepancies are more pronounced for measurements at the
raw meal mill output (Figure 14a) because of the higher operation temperatures. The longest lifetime for
a SiC-Schottky diode-based probe during these industrial tests was around 6 months, which is about two
times longer than conventional solutions.

The most common fault of the proposed temperature probe was caused by the breaking of the Au
wire connecting the SiC-Schottky diode’s anode to the TO39 terminal, as exemplified in Figure 15.
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2 m ahead of conventional thermocouple-based probes. Naturally, the discrepancies are more 
pronounced for measurements at the raw meal mill output (Figure 14a) because of the higher 
operation temperatures. The longest lifetime for a SiC-Schottky diode-based probe during these 
industrial tests was around 6 months, which is about two times longer than conventional solutions. 

The most common fault of the proposed temperature probe was caused by the breaking of the 
Au wire connecting the SiC-Schottky diode’s anode to the TO39 terminal, as exemplified in Figure 15. 

 
Figure 15. Schottky sensor structure with broken Au wire, after operation in real industrial conditions. 
Die-pad bonding with Au-In preform (comparison with Figure 2b—bonded with silver nano-paste). 
Figure 15. Schottky sensor structure with broken Au wire, after operation in real industrial conditions.
Die-pad bonding with Au-In preform (comparison with Figure 2b—bonded with silver nano-paste).

4. Conclusions

A high-temperature probe with SiC Schottky diodes as sensing element was developed for
operating in the cement industry. Full electrical and mechanical compatibility with existing factory
sensors was proven.

4H-SiC devices with annealed Ni/4H-SiC Schottky contacts were fabricated, packaged, measured
up to 400 ◦C, and fully parameterized in order to assess temperature-sensing properties and identify
best performing devices. Exemplary diode temperature sensitivities were between 1.8 mV/◦C and
2.54 mV/◦C, for bias currents in the range 100 nA–100 µA. Excellent sensing linearity (with R2 higher
than 99.99%) was also exhibited in this current interval.

A dedicated read-out circuit was developed so as to convert the sensor output signal to the
industrial standard requirements. The circuit architecture and subsequent PCB design were dedicatedly
attuned to factory conditions regarding supply voltage (single-ended, 24 V), probe output (current-mode
response with range of 4 mA–20 mA) and physical size (matching the connecting head of an industrial
probe casing). A high response time (117 ◦C/µs) for the processing circuit was achieved, much greater
than the temperature variation speed in the operation environment.

High-performance SiC diode-sensors and associated read-out circuits were incorporated in
standard industrial casings, and the ensembles were tested inside a cement factory. High and
low-temperature points, in a raw meal mill, were selected for monitoring, alongside thermocouple-based
counterparts. Very close agreement was identified between proposed and conventional temperature
sensing solutions, between 40 ◦C and 400 ◦C. The best probe lifetime was 6 months.

These promising results evince the capability of SiC device-based sensors to operate in real
harsh industrial conditions and constitute an important milestone for silicon carbide applications.
Future developments include the automation of the calibration process and lowering the bias current
of the SiC-Schottky sensor (through minimal read-out circuit reconfiguration), in order to increase
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sensitivity. This is possible because the casing acts as an electro-magnetic shield, greatly reducing
external noise.
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