
sensors

Article

Design and Implementation of an Integrated IoT
Blockchain Platform for Sensing Data Integrity

Lei Hang and Do-Hyeun Kim *

Department of Computer Engineering, Jeju National University, Jeju 63243, Korea; hanglei@jejunu.ac.kr
* Correspondence: kimdh@jejunu.ac.kr; Tel.: +82-64-7543658

Received: 11 March 2019; Accepted: 1 May 2019; Published: 14 May 2019
����������
�������

Abstract: With the rapid development of communication technologies, the Internet of Things (IoT) is
getting out of its infancy, into full maturity, and tends to be developed in an explosively rapid way, with
more and more data transmitted and processed. As a result, the ability to manage devices deployed
worldwide has been given more and advanced requirements in practical application performances.
Most existing IoT platforms are highly centralized architectures, which suffer from various technical
limitations, such as a cyber-attack and single point of failure. A new solution direction is essential to
enhance data accessing, while regulating it with government mandates in privacy and security. In this
paper, we propose an integrated IoT platform using blockchain technology to guarantee sensing data
integrity. The aim of this platform is to afford the device owner a practical application that provides a
comprehensive, immutable log and allows easy access to their devices deployed in different domains.
It also provides characteristics of general IoT systems, allows for real-time monitoring, and control
between the end user and device. The business logic of the application is defined by the smart
contract, which contains rules and conditions. The proposed approach is backed by a proof of concept
implementation in realistic IoT scenarios, utilizing Raspberry Pi devices and a permissioned network
called Hyperledger Fabric. Lastly, a benchmark study using various performance metrics is made
to highlight the significance of the proposed work. The analysis results indicate that the designed
platform is suitable for the resource-constrained IoT architecture and is scalable to be extended in
various IoT scenarios.

Keywords: Internet of Things; sensing data integrity; smart contract; permissioned blockchain;
resource-constrained

1. Introduction

The adoption of IoT-based technologies opens up new opportunities in various aspects of our
daily lives, such as home automation, intelligent transportation, and manufacturing [1]. With the
evolution of embedded computing hardware and network technology, the integration of these two
technologies makes large-scale autonomous IoT systems come into being [2]. In general, the IoT system
consists of heterogenous devices that produce and exchange vast amounts of safety-critical data, as
well as privacy-sensitive information. Therefore, the network is becoming especially critical. Due to
working in unattended environments, the wireless sensor network is most vulnerable to a variety of
cyber-attacks [3]. Most current IoT solutions depend on the centralized architecture by connecting to
cloud servers through the Internet. This solution provides magnificent elastic computation and data
management abilities, as IoT systems are growing more complex; however, it still faces a variety of
security issues. One of the disadvantages is that the widely-expanded IoT-based infrastructure can
introduce a single point of failure, which can compromise the availability of the entire data center. It is
necessary to implement a tamper-proof environment as well as a fault-tolerant network for the large
number of IoT devices [4].
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More suitable solutions need to be proposed, and some researchers started to introduce new
paradigms by using a decentralized technology for the IoT device access control, that is blockchain [5].
From a conceptual level, blockchain is a kind of secured, distributed database comprised by numerous
peers that are able to track, verify, and execute transactions and store information from a large
variety of entities. This idea has already been applied to dream up high-level use cases in various
realistic scenarios [6], such as intelligent transport system [7], medical records management [8–10],
decentralized web applications [11,12], and prediction platforms [13,14]. In short, the main advantages
of the blockchain are great transparency, enhanced security, improved traceability, high efficiency, low
costing, and no third-party intervention [15].

Blockchain technology is a revolution in systems of record and has been foreseen by the industry
and research community as emerging technology that can play a significant role in monitoring,
controlling, and, most importantly, securing IoT devices [16–20]. The authors describe a blueprint
on the combination of IoT and blockchain technologies, which facilitate the sharing of IoT resources
and services, and allow the automation of time-sensitive workflows in cryptographically manner [21].
This work identifies solutions and workarounds to highlight that the blockchains and IoT can be used
together. For example, data transmitted by IoT devices is always cryptographically proofed by the
signature of the sender who holds a unique key pair; therefore, the authentication and integrity of
transmitted data are guaranteed. Moreover, all transactions made to or by IoT devices are recorded
on the distributed ledger that can be traced back securely. Although the blockchain may look like a
panacea to solve IoT security of privacy issues that exist in the current centralized architectures, there
are still many research challenges that prevent its incorporation into modern IoT networks. In fact,
most consensus algorithms used by current blockchain-based systems are not designed to be run
on devices with extreme limitations in computing resources. Proof-of-Work (PoW) [22] is the first
consensus algorithm introduced in the blockchain network, and is used by many existing systems.
It spreads the responsibility for a decision to all the individual nodes, namely miners. This process is
so called mining, which requires massive computing capacities.

The development of embedded devices like smart phones increases much more slowly than
desktop systems. As a result, it is difficult for these kind of devices [23] to operate transactions properly
using the current blockchain-based systems, in terms of low computing powers and limited data
storage. Although there are an increasing number of devices with integrated blockchain capabilities
available on the market. For example, embedded devices such as Raspberry Pi and Beaglebone Black
are permitted to install the full Ethereum node by EthEmbedded [24]. Furthermore, the use of wallet
for Bitcoin and Litecoin are supported by Raspnode [25], thus mining can be done on embedded
devices. However, as stated by Raspnode, it would be useless to perform mining on IoT devices.
Alternatively, some hardware such as application-specific integrated circuit (ASIC) chips are designed
and manufactured for mining, since it is improper to try it on IoT devices [26]. There is still a lot of
research to be done for enabling a wide integration of IoT devices as blockchain components.

Therefore, new ways of solving these issues are needed when considering the integration of
blockchain with IoT, for instance, one of the primary challenges is how to adapt the blockchain
technology that suited to embedded IoT devices with limited resources. A new or a customized
implementation of blockchain is required as different applications have different requirements.
By contrast to other existing system proposals, the proposed approach in this paper brings the
advancements in IoT as follows:

1. Scalability: Our solution meets the requirements of the practical IoT network, which is comprised
of numerous IoT devices connected, through different constrained networks, to a single blockchain.

2. High throughput: A high throughput network is needed so as to deal with simultaneous
communications among a large variety of devices. This work proposes the use of a permissioned
blockchain, in which interactions occur among a set of network entities that fully trust each other.
As a consequence, traditional voting-based protocols, like byzantine fault tolerant (BFT) or crash
fault tolerant (CFT) consensus protocols, can be used to improve the network throughput.
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3. Lightweight: In our solution, the IoT devices are not included in the blockchain, and alternatively,
a RESTful interface which handle requests from devices is defined to enable cross platform
communication between devices and the blockchain network.

4. Transparency: This system hides the details of the IoT devices and the transaction history that
records how a resource is manipulated, except for to the authorized user.

More precisely, we present a decentralized scheme in which device information could be stored on
a secure, permissioned chain and shared back and forth quickly, like email. The proposed architecture
is extended from the IoT platform in our previous work [27]. In order to ease the interaction between
the end user and the blockchain network, various interfaces are implemented by utilizing some of the
web front-end technologies, such as JavaScript and HTML5. This web-driven paradigm allows end
users to improve the access and management of the resources within the blockchain network. All the
product-specific services provided by the blockchain network are exposed as representational state
transfer application programming interfaces (REST APIs), which can be invoked by either web clients
or IoT devices. Device users can control and be aware of the surrounding environment without a
priori knowledge of the physical devices, for example, the types of physical devices and how to set
up them. These IoT devices do not need to install the full node, since the consensus process, such
as the practical byzantine fault tolerance (PBFT) algorithm, is performed in the blockchain network
from a remote space. Smart contract is used to provide controlled access to the device meta-data
and to host the ledger functions across the network. In the designed platform, we also define access
control policy, which allows participants to access a certain number of contents or transactions that
are authorized. For example, only the owner of the device is permitted to access and manipulate the
device. Since blockchain technology is not intended for large transaction data payloads so that new
data storage technologies are desired to deal with a large amount of IoT data. In our system, we apply
a separate software solution by deploying the Couch database (DB), resided on each peer, to enable the
large file storage and minimize the duplication across the entire blockchain filesystem. Lastly, we prove
the practicability of our proposed approach by implementing a real-life case study in a smart space.
The blockchain network is implemented by using the Hyperledger Fabric [28], which is a permissioned
decentralized platform designed for building decentralized applications (DApps) or distributed ledger
solutions on top of it.

The remainder of this paper is structured as follows: Section 2 provides an overview of a number
of the related projects and analyzes some common issues in current state of art. Section 3 looks into the
system architecture and demonstrates the work flow of the proposed IoT blockchain platform. Section 4
explains in-depth about the implementation of the smart space case study and presents execution
results with various snapshots. Section 5 presents the evaluation results of the proposed platform
in various performance metrics. Section 6 highlights the significance of the proposed work through
a benchmark analysis, by comparing the designed approach with some recent studies. Section 7
concludes the paper and discusses future research directions.

2. Related Work

So far, IoT technology has been widely adopted by the manufacturing industry in
machine-to-machine (M2M) communication. While the current technologies make the concept
of IoT feasible, a large number of challenges lie ahead for aiding large-scale real-world deployment of
IoT applications. In recent years, the blockchain has attracted extensive attention from researchers and
companies for its security and transparency. The blockchain has great potential to be the organizational
structure for interconnecting everything and for timestamping heterogeneous data in Industry 4.0 [29].
The common theme in this paper is the collaboration of blockchain and control of IoT. To the best
of our knowledge, research works on this theme is limited because blockchain is quite well-known
in financial services. In this section, we explore those blockchain technologies involved in IoT by
overviewing some recent studies.
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A total of 18 cases of blockchain use have been categorized [30], and four of them are specified to
IoT, including immutable log of events and access management of data [31], sensing data trading [32],
IoT equipment trading [33], and IoT devices authentication [34]. The authors discuss the integration of
the blockchain with IoT and highlight the integration benefits, challenges, and future directions [35].
Mainly due to its decentralized features in computation and management processes, the blockchain
can be a powerful technology to solve many IoT issues, especially security. They elaborate that it is the
right way to move the current centralized IoT system towards the decentralized architecture. A built-in
blockchain solution is proposed [36] for LoRaWAN network servers in order to implement an open,
trusted, decentralized, and tamper-proof system. An incontrovertible mechanism is provided to verify
the data of a transaction that existed at a specific time in the network. The authors declare that this work
takes advantages of the blockchain technology and it is the first implementation to integrate blockchain
with LoRaWAN IoT technology. Another proof of concept using LoRa nodes is proposed [37] to enable
low-power, resource-constrained IoT end-devices to access a blockchain-based infrastructure in an
Ethereum network. To achieve this aim, the authors utilize an IoT gateway as a blockchain node and
propose an event-based messaging mechanism for low-power IoT end devices. The authors review
the usage of smart contracts in IoT and describe how smart contracts can facilitate and support the
autonomous sharing of services among IoT devices [38], as proposed in [39]. The significance that
IoT can profit from blockchain networks are described in terms of trading, billing, shipment, and
supply chain management. The authors present a traceability system for tracking Chinese agri-food
supplies [40]. The proposed system combines the radio frequency identification (RFID) with blockchain
technology to enhance food quality and safety but meanwhile to reduce transportation costs. An IoT
device management system is proposed [41] to control and configure IoT devices remotely. The authors
propose a refreshing key management scheme whereby public keys are saved in Ethereum while
private keys are stored on each IoT device. The Ethereum network is used in the proof of concept
since it provides the means to model smart contract than can be run on top of the network. In this
way, the maintenance and debugging are simplified since the update of code can directly change the
behavior of IoT devices. A smart city application framework is proposed to integrate heterogenous
smart devices in a highly secure manner [42]. The proposed framework provides a variety of features,
including better fault tolerance capability, improved reliability, scalability, and efficient operation,
which set up a common blockchain eco system in which all devices could communicate with each
other in a secure distributed environment. The authors propose a lightweight architecture for IoT to
eliminate the overheads of classic blockchains, while maintaining most of its security and privacy
benefits [43]. A private immutable ledger that is managed centrally is designed to optimize energy
consumption from IoT devices. In addition, they use the distributed trust to reduce the block validation
processing time. Lastly, a representative case study specified for smart home is implemented to
explore the usability of the proposed architecture. CONNECT [44] is a theoretical blockchain-based
architecture that concentrates both on IoT service provision and heterogenous device interconnection.
The proposed architecture takes advantage of hierarchical and multi-layered blockchains, which enable
the building of a contextual service discovery mechanism. FairAccess [45] is a fully decentralized
management framework based on blockchain that enables users to own and control device data. In this
framework, new types of transactions are designed to issue and revoke the access using smart contracts.
A decentralized, cloud-based platform specified for industry manufacturing on the basis of blockchain
technology is proposed [46]. The authors build a trusted intermediary for transactions among the
users in order to provide on-demand access to manufacturing resources. Single board computers, such
as Beaglebone Black and Raspberry, are utilized for communication between machines, the cloud, and
the blockchain network. The authors propose a decentralized system, allowing sensors to exchange
Bitcoins with data [47]. To be more precise, the client requests data by sending the transaction (with
Bitcoins) to the address of the specific sensor, in turn the sensor responds to the client with sensing
data. To ensure the device ownership, the authors design a blockchain-based layer storage system
in order to give the end users full control over their devices [48]. The proposed system consists of
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three layers: data layer, control layer, and device layer. The data layer collects IoT data and provides
the decentralized hash table for data storage. The control layer manages the access control on the
data stored in the hash table. The device layer exposes various services provided by IoT sensors
and actuators. Sapphire [49] is a novel system that is aiming to exploit the computing power of IoT
devices to perform computation on collected data by using smart contracts. The results indicate that
this approach can reduce the data transfer on the IoT network and improve the transaction execution.
The authors present a decentralized system to preserve user’s privacy on IoT devices (Bluetooth low
energy modules) by using the Ethereum platform [50]. Besides, a blockchain gateway is introduced
to interact with the IoT towards the user. Two types of smart contracts are proposed: one for the
IoT device and the other for the gateway. The authors deploy the blockchain technology into cloud
architecture to enhance data transparency and decentralization [51]. The proposed platform abstracts
the physical resources into the cyber space and exposes them as services. Essentially, blockchain is used
as a middleware between the cloud and the manufacturing resources, guaranteeing the transparency
and security of the data in cloud manufacturing.

As mentioned, these studies have some common issues that are inappropriate for
resource-constrained IoT devices, such as token-based transactions, which cause the high time
cost involved in transaction executions. The nonuse of native cryptocurrency can remove the risk of
virtual currency speculation, and can roughly obtain the same processing performance as any other
distributed system. Furthermore, they deploy the copy of ledger onto embedded devices that act as
nodes of the blockchain network. In such way, the transaction execution rate is heavily impacted and it
is hard to fulfill the requirement of a global IoT ecosystem with millions of nodes. For the need of
practical application, this paper gives feasible solutions that are extensible to large-scale networks
with low latency and high throughput. In addition, the implementations that are compatible with
resource-constrained IoT devices are also presented.

3. Designed Architecture of the Proposed IoT Blockchain Platform

3.1. Conceptual Scenario of the IoT Blockchain Platform

Figure 1 represents the conceptual scenario of the IoT blockchain platform, which comprises
of a massive number of IoT devices, data storages, user devices, servers, and local bridges that are
linked together around a peer-to-peer blockchain network. The IoT server is a service provider that
can interact with the local bridges and the blockchain network to provide a large variety of services
for end users, such as collecting sensing data from the bridge, sending commands to perform some
operations on the actuators, querying data, or storing data to the storage space via the blockchain
network, etc. The data storage that resides in the blockchain network can store physical device profiles,
environmental data collected by sensors, and device owner profiles. It can either be a hardware storage
like a hard disk or a software storage such as a DB. User client can be any terminal devices, such as
smart phones, laptops, and PCs, through which end users can read or write data to the blockchain
network. For example, home users can view the status of different home appliances that are stored
in the blockchain at a specific period. There exists a wide choice of communication protocols for
developers to apply on products and systems in IoT, such as Bluetooth, ZigBee, WiFi, and 2G/3G/4G
cellular. Local bridges connect a cluster of IoT devices to the server through these communication
technologies and act as the service agent for these devices as well. Nowadays, with the advancement
of hardware technology, embedded devices such as Raspberry Pi can directly consume web services by
invoking representational state transfer application programming interfaces (REST APIs). Therefore,
two approaches are presented for communicating with physical devices, that is either via the local
bridges or via direct wireless communications. Unlike most existing projects that focus on the use
of bridge to connect IoT devices with the blockchain network, the proposed work concentrates on
the communication in a straightforward manner. The IoT devices can be classified into sensors and
actuators: sensors are used to collect environmental data such as temperature and send these data to
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servers for further usage, while actuators are used to perform particular actions (e.g., turn on the light)
according to commands received from end users.Sensors 2019, 19, 2228 6 of 26 
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3.2. Proposed IoT Blockchain Platform System Architecture

Figure 2 presents the layer-based architecture of the proposed IoT blockchain platform that is
extended from our previous work [27]. It is a modular architecture whereby each layer is decoupled
from other layers so that developers can replace or add any new module without affecting the
rest of the system. The IoT physical layer consists of various linked devices with the abilities of
communication, computing, and data storage. The main function provided by the connectivity layer is
routing management, because self-organization is required since physical devices themselves have
no global internet protocols (IPs). This layer also contains other modules for providing services,
including network management, security management, and message broker. The IoT blockchain service
layer contains all modules that organize common services to provide various features of blockchain
technologies, including identity management, consensus, and peer-to-peer (P2P) communication.
The distributed ledger is a consensus of replicated, shared, and synchronized digital data that spread
across the whole blockchain network, where all participants with the network can have their own
selfsame copy of the ledger. It also provides secure storage space to record the device configuration
and sensing data provided by physical sensors. Any changes to the ledger are reflected in all copies in
minutes, or in some cases, seconds. The ledger can be either permissioned or permissionless, regarding
if anyone or only approved members can run a peer to validate transactions. The big data analytics
module enables the blockchain to be an efficient mode for online data storage. Lots of transactional
data from various parties are stored in structured forms of ledgers, which makes it a perfect source
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for further analysis. All of these parties can be granted access to one single network and it will be
convenient to access these details. The smart contract is sort of code invoked by an external client
application to manage access and modifications in the ledger. It is usually installed and instantiated
onto every peer of the network. The event management sends events every time a new block is added
to ledger or triggered whenever the predefined condition in the smart contract is fulfilled. The API
interface exposes the services provided by the blockchain network as services through which the client
application can access and manage the network. The top layer is the application layer, where various
interfaces are provided to visualize the data from physical devices, to manipulate and control devices.
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3.3. Interaction Model for the Proposed IoT Blockchain Platform

Figure 3 describes the system work flow and gives a solid understanding for each component
of the proposed IoT blockchain platform. The designed platform encompasses not just a technical
infrastructure but also a user service framework that exposes the distributed ledger and smart contract
as services to applications. The app client provides an intuitive interface to submit transaction proposals
to the blockchain network for consuming services such as user enrollment, device registration, and
task generation services provided by the blockchain network. Before submitting a transaction, the
enrollment is required to supply a specific participant with certificate, which contains private keys to
sign the transaction. A transaction can be defined as a process of reading or writing data from the
ledger that is performed among the blockchain network. The device owner can submit transaction to
register a new device or generate a new task through the IoT server. In turn, the server transfers the
request to the blockchain network to perform some certain operations. It can also transfer the task
request from client to the device and send back collected sensing data/ status changes from the device
in real time. Since the identity of the device owner is authenticated, the physical device associated with
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the specific owner can directly submit transactions (including owner info) to the blockchain network.
The sensing data or status is then appended in the ledger and compared with the threshold defined by
the smart contract. If the value exceeds the threshold level, a notification will be generated to alert the
device owner.
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Figure 4 illustrates the detailed transaction execution process taken place in the blockchain
network. The client application must have credentials issued by the identity management service so as
to get the authorized permission for submitting transaction proposals. The identity manager holds
user IDs and authenticates clients who want to enroll in the network. Transactions start out from client
applications sending transaction proposals to peers in the blockchain network. The communication
between the blockchain network and the client application happens over the application software
development kit (SDK). These peers can either be endorsers or committers: Endorsers cam simulate
and sign transaction proposals, respond to granting, or deny approvals; while committers validate
transaction results prior to the writing of a block of transactions to the ledger. Each endorser peer
receives and executes the transaction proposal by invoking the smart contract in their own simulated
environment. It is worth noting that in this stage, the execution results will not be reflected in the ledger.
These endorser peers just capture the set of Read and Written data, namely RW sets, which record what
was read from the current state when the transaction is simulated and what would write to the state
after the transaction has been executed. Each endorser peer signs the RW sets and returns proposal
responses to the client application for endorsement inspection. The client verifies the endorsing
signatures to determine if the specified endorsement policy (the set of peers that must endorse the
smart contract execution results) has been fulfilled. Then the client packages the signed transaction and
submits this transaction along with RW sets to the consensus manager. Consensus happens across the
network, in parallel with signed transactions, and RW sets are submitted; this information is ordered
into a block and delivered to all committer peers. Each committer peer validates the transaction by
checking whether the RW sets match the current state. Specifically, the Read data still exists even if
the transaction simulated by the endorser is identical to the current state. After the committer peer
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validates the transaction, the transaction is written to the ledger, and the state is updated with the
Write data from the RW set accordingly. Lastly, the committer peers asynchronously notify the client
application as to whether the submitted transaction succeeded or not. Client applications can register
for events so that they can be notified by each committer peer when events occur.
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3.4. Smart Contract in the Proposed IoT Blockchain Platform 

The concept of the smart contract [52] was first introduced by Nick Szabo in 1994, which is 
defined as “a computerized transaction protocol that executes the terms of a contract”. Within the 
context of blockchain, the smart contract acts as a trusted distributed application that gains its trust 
from the blockchain and the underlying consensus among the peers. Since they reside on the 
blockchain, smart contracts have a unique address through which the end user can address a 
transaction to it. According to the data that triggers the predefined condition, the smart contract then 
executes automatically and independently in a prescribed manner by every peer in the network. 

In principle, smart contracts are written in a non-standard, or domain-specific language (such as 
Solidity) in order to reach consensus among all of the peers. This becomes one of the greatest 
challenges to the wide-scale usage of smart contract, since blockchain developers must learn a new 
language to write smart contracts, and this may lead to various problems in coding. Moreover, 
transaction execution performance and scale are limited since all transactions are executed 
successively by all peers. To address these issues, we deploy smart contracts onto a specific subset of 
peers rather than to all peers, hence, the transaction only needs to be executed by a set of peers. This 
approach also supports parallel execution, which can prominently increase the overall performance 
and scale of the system. Furthermore, we use the standard languages such as Node.js or Java to code 
the smart contract so that developers can use their familiar programming languages without 
spending time learning a new language. As shown in Figure 5, the proposed smart contract contains 
various functions that allow users to interact with the ledger, which is a combination of the state 
database and blockchain. For example, users can create, update, and query device information from 
the ledger by submitting transactions to the smart contract. It also provides functionalities to handle 
the transactions proposed from the devices, such as collecting sensing data or updating state changes 
of actuators. A block contains a hash value of the transactions and the hash value of the prior block 
in order to insure the security of the ledger data. Even though the ledger hosted by one peer is 
tampered with, it would not be able to convince all the other peers because the ledger is distributed 
throughout a network. A sample structure of a ledger is given in Figure 5, where the blockchain 
contains four blocks. Block 0 is the genesis block, which does not contain any transactions. Each of 
the other blocks contain one transaction, and these transactions are associated with various assets 
(e.g., sensor, actuator) in the ledger state. The application running on the smart contract receives the 
transaction and performs different kinds of queries and updates. The transaction is appended in the 
block, and meanwhile the ledger state is updated. In the end, the ledger updating result is returned 
to the application as the response. 
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3.4. Smart Contract in the Proposed IoT Blockchain Platform

The concept of the smart contract [52] was first introduced by Nick Szabo in 1994, which is defined
as “a computerized transaction protocol that executes the terms of a contract”. Within the context of
blockchain, the smart contract acts as a trusted distributed application that gains its trust from the
blockchain and the underlying consensus among the peers. Since they reside on the blockchain, smart
contracts have a unique address through which the end user can address a transaction to it. According
to the data that triggers the predefined condition, the smart contract then executes automatically and
independently in a prescribed manner by every peer in the network.

In principle, smart contracts are written in a non-standard, or domain-specific language (such as
Solidity) in order to reach consensus among all of the peers. This becomes one of the greatest challenges
to the wide-scale usage of smart contract, since blockchain developers must learn a new language
to write smart contracts, and this may lead to various problems in coding. Moreover, transaction
execution performance and scale are limited since all transactions are executed successively by all
peers. To address these issues, we deploy smart contracts onto a specific subset of peers rather than
to all peers, hence, the transaction only needs to be executed by a set of peers. This approach also
supports parallel execution, which can prominently increase the overall performance and scale of the
system. Furthermore, we use the standard languages such as Node.js or Java to code the smart contract
so that developers can use their familiar programming languages without spending time learning a
new language. As shown in Figure 5, the proposed smart contract contains various functions that
allow users to interact with the ledger, which is a combination of the state database and blockchain.
For example, users can create, update, and query device information from the ledger by submitting
transactions to the smart contract. It also provides functionalities to handle the transactions proposed
from the devices, such as collecting sensing data or updating state changes of actuators. A block
contains a hash value of the transactions and the hash value of the prior block in order to insure the
security of the ledger data. Even though the ledger hosted by one peer is tampered with, it would
not be able to convince all the other peers because the ledger is distributed throughout a network.
A sample structure of a ledger is given in Figure 5, where the blockchain contains four blocks. Block 0
is the genesis block, which does not contain any transactions. Each of the other blocks contain one
transaction, and these transactions are associated with various assets (e.g., sensor, actuator) in the
ledger state. The application running on the smart contract receives the transaction and performs
different kinds of queries and updates. The transaction is appended in the block, and meanwhile
the ledger state is updated. In the end, the ledger updating result is returned to the application as
the response.
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After the enrollment, the device owner is allowed to access and consume services provided by 
the network. Various operations happen among different components within the designed platform, 
which are presented in Figure 7. The device owner inputs information of the IoT device through the 
client application to register a new device. This information is sent along with the request and the 
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3.5. Proposed IoT Blockchain Platform Execution Procedure

As mentioned above, the network user must have credentials before they are permitted to submit
transaction proposals to the blockchain network. Therefore, the system execution procedures are
classified into two sequence diagrams, respectively. Figure 6 represents the processes of identity
registration and enrollment for the device owner. In order to obtain the identity, the device owner
submits the registration request to the blockchain network. This request is handled by the identity
management module, which issues a secret for the enrollment process through the client app. Enrollment
request is then sent from the client, passing the enroll ID and secret obtained in the registration process.
The identity management service passes the enrollment certificate (ECert) along with the public key
for response. The ECert is used to request for the transaction certificate (TCert), and finally the TCert is
returned for signing the transactions.
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After the enrollment, the device owner is allowed to access and consume services provided by the
network. Various operations happen among different components within the designed platform, which
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are presented in Figure 7. The device owner inputs information of the IoT device through the client
application to register a new device. This information is sent along with the request and the server, in
turn, invokes the device registration transaction defined by the smart contract. The consensus process
is then executed in the blockchain network, where each peer appends the transaction into blockchain
and stores the device information in the state database. After updating the ledger, a response is
initialized to inform the client that the transaction is executed. Similarly, the device owner can generate
tasks that are used for performing some operations (e.g., read temperature from the thermometer) on
particular devices. The device owner can deploy a certain task to a specific device through the client.
The IoT server converts the request into the specified protocol of the device and transfers the task info
to that target device. The target device in the IoT network performs the task accordingly and returns
the execution result (e.g., temperature value) to the server as well as to the blockchain. The execution
result forwarded to the server is displayed to the device owner in the client immediately. For the
other one, the execution result is packaged as a payload of the transaction and sent to the blockchain
network. The blockchain network appends the task execution result to the distributed ledger of each
peer and responds the execution results to the device. It also generates the notification to alert the
device owner whenever the predefined condition is triggered, for example, the current temperature
exceeds the threshold defined by the owner.
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4. Implementation of the Proposed IoT Blockchain Platform

4.1. Development Environment

The proposed platform consists of three parts as shown in Figure 3, so that the development
environments are summarized into three tables to describe each part, respectively. The technology
stacks for implementing the IoT blockchain network in docker environments are depicted as shown in
Table 1. The operating system is Ubuntu Linux 18.04 LTS with Intel Core i5-8500 @ 3.00GHz processor
and 12 GB memory. Docker engine (version 18.06.1-ce) provides the docker running environment and
docker-compose (version 1.13.0) provides the integrated development environment (IDE) to configure
docker images and containers in the virtual machine. We used the Hyperledger Fabric (v1.2) project,
which is an open-source blockchain framework hosted by the Linux Foundation. The Fabric network
utilizes Node to develop the client software development kit (SDK) so that Node (v8.11.4) is installed.
The web playground provides an interface to design and implement the smart contract definition
that contains existing assets and related transactions. Couch DB is used to hold the current values
of a set of ledger states. The Composer command line interface (CLI) tool enables developers and
administrators to deploy and manage smart contract definitions. REST APIs are generated by the REST
server, exposing the blockchain logic to web or mobile applications.

Table 1. Development environment for the IoT blockchain network.

Component Description

CPU Intel Core i5-8500 @ 3.00 GHz
Memory 12 GB
Operating Systems Ubuntu Linux 18.04.1 LTS
Docker Engine Version 18.06.1-ce
Docker-Compose Version 1.13.0
Node v8.11.4
Hyperledger Fabric v1.2
IDE composer-playground
CLI Tool composer-cli, composer-rest-server
DBMS Couch DB
Programming Language Node.js

Table 2 describes the development tools and technologies for implementing the IoT device server
that resides on the Raspberry Pi. Android Things is installed on the Raspberry Pi so that the application
can be easily programmed in Java language, like a regular Android application. The communication
between the device server and the IoT server uses the constrained application protocol (CoAP), while
for the communication between the device server and the blockchain network, HTTP is used. Physical
resources, such as temperature sensor, humidity sensor, and two LEDs, are abstracted into CoAP
resources as part of the server. Each resource is assigned with a unique URI in order to be identified by
the server.

Table 2. Development environment for the Raspberry-based IoT device server.

Component Description

Hardware Raspberry Pi3 Model B
Memory 1 GB
Operating Systems Android Things v0.8
Server CoAP Server
Resources Temperature, Humidity, Green LED, Red LED
IDE Android Studio 3.1.4
Library and Framework Californium CoAP, HttpURLConnection
Programming Language Java
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Table 3 presents the development stacks to implement the blockchain web application.
The application that hosted on the Apache Tomcat can be divided into backend and frontend, which
are implemented by Eclipse Photon and WebStorm, respectively. For the backend, the Californium
CoAP framework is used to implement the server that translates the communication protocol between
web application and IoT device from HTTP to CoAP, and vice versa. For the frontend, a variety of
web techniques such as HTML, Cascading Style Sheets (CSS), and JavaScript are used. We make
use of Bootstrap and jQuery, which are two popular open-source frontend toolkits for web frontend
development. Notify.js is another jQuery plugin to provide customizable notifications to the client.
The client can interact with the REST server through which the end user can invoke relevant APIs to
submit transactions by HTTP requests using GET or POST.

Table 3. Development environment for the blockchain web app.

Component Description

Operating System Windows 10 Pro 64 bit
Server Apache Tomcat
IDE Eclipse Photon (4.8.0), WebStorm (2018.2.3)
Browser Chrome, Firefox, IE
Library and Framework Californium CoAP, Notify.js, Bootstrap, jQuery
Programming Language Java, HTML, CSS, JavaScript

4.2. Use Case Implementation and Deployment

Figure 8 illustrates the implementation environment for the case study, and also presents the
means of connection between the IoT devices, the server, and the blockchain network. The IoT
device server is hosted on the Raspberry Pi, which is integrated with various physical sensors and
actuators, that are apparent in the figure. We utilize the Hyperledger Fabric framework to construct
the blockchain network, where four peers and an orderer node are running as images in the docker
container. Each peer contains the smart contract and data storage to write a block of transactions to the
ledger. Couch DB is used as the state database that provides rich query support and the smart contract
data is modeled as JavaScript Object Notation (JSON). It supports various query methods such as get,
put, and delete in conjunction with a state key, which enables the application to invoke a smart contract
to access world states through simple APIs. The example in Figure 8 shows ledger states for one sensor,
containing a key and a value. The Couch DB supports a simple state value with only one key-value
pair, and a complex state value with multiple key-value pairs as well. In contrast to the state database,
the blockchain is physically implemented in a file, as the blockchain data structure is always used to
record a limited small set of simple operations. The REST server provides various RESTful APIs that
expose the functions defined by the blockchain network. All these services can be invoked by either a
web client or a physical device directly. It also hosts the Fabric client, which utilizes Google remote
procedures calls (gRPC) system to communicate with the Hyperledger Fabric network. The blockchain
acts as a transaction log that records all the state changes. Transactions are; therefore, collected into
blocks that are cryptographically linked together to form a sequence of chains, where all transactions
on the ledger are sorted in time order, enabling the user to know the history changes that happened in
the state database. The orderer node is employed with the PBFT algorithm to ensure the consistency of
every copy of the leger. This node exists independently of the peer processes and orders transactions
on a first-come-first-serve basis across the network. The notification generated from the blockchain
network is emitted to the client using WebSockets.
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4.3. Smart Contract Modeling for the Case Study 

The smart contract is designed and implemented by using the Hyperledger Composer [53], 
which is an extensive, open development toolset and framework to facilitate the implementation of 
blockchain applications. Participants are members of a business network, with the ability to have 
assets and submit transactions. In the proposed case study, they can be device owners who have the 
ability to access and manage their devices. In general, assets can be goods, services, or property, and 
are stored in registries. These two types are modeled with an identifier and can have any other 
properties as required. For example, as represented in Table 4, a device asset that represents the IoT 
device is summarized into sensor and actuator, typically containing general information such as ID, 
name, and owner of the specific physical device. 

Table 4. Device asset definition in the smart contract. 

Category Component Type 

Sensor 

sensor_ID String 
name String 
device_owner String 
unit String 
event_threshold Integer 
timestamp DateTime 
value String 

Actuator 

actuator_ID String 
name String 
device_owner String 
state Boolean 

As part of the smart contract, we define the transactions that can interact with assets. Participants 
can interact with them and each of which can be associated with an identity, across multiple 
blockchain networks. The condition defines which users are permitted to perform create, read, 
update, or delete operations in the blockchain network. As given in Table 5, for example, only the 
device owner of the device can perform update operations on the instance of the device asset. Events 
are defined in the same way as assets or participants. Once events have been defined, they can be 
included in the transaction processor functions to be emitted as part of a transaction. Table 6 presents 
a sample of events defined in the smart contract. 
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4.3. Smart Contract Modeling for the Case Study

The smart contract is designed and implemented by using the Hyperledger Composer [53], which
is an extensive, open development toolset and framework to facilitate the implementation of blockchain
applications. Participants are members of a business network, with the ability to have assets and
submit transactions. In the proposed case study, they can be device owners who have the ability
to access and manage their devices. In general, assets can be goods, services, or property, and are
stored in registries. These two types are modeled with an identifier and can have any other properties
as required. For example, as represented in Table 4, a device asset that represents the IoT device is
summarized into sensor and actuator, typically containing general information such as ID, name, and
owner of the specific physical device.

Table 4. Device asset definition in the smart contract.

Category Component Type

Sensor

sensor_ID String
name String
device_owner String
unit String
event_threshold Integer
timestamp DateTime
value String

Actuator

actuator_ID String
name String
device_owner String
state Boolean

As part of the smart contract, we define the transactions that can interact with assets. Participants
can interact with them and each of which can be associated with an identity, across multiple blockchain
networks. The condition defines which users are permitted to perform create, read, update, or delete
operations in the blockchain network. As given in Table 5, for example, only the device owner of
the device can perform update operations on the instance of the device asset. Events are defined in
the same way as assets or participants. Once events have been defined, they can be included in the
transaction processor functions to be emitted as part of a transaction. Table 6 presents a sample of
events defined in the smart contract.
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Table 5. Sample transaction definition in the smart contract.

Component Type Participant Condition

Sensor reading Transaction Sensor Asset = Sensor
Actuator writing Transaction Actuator Asset = Actuator
Device creating Transaction Device owner Participant = Device owner
Device updating Transaction Device owner Participant ID = Device owner ID in device asset
Device deleting Transaction Device owner Participant ID = Device owner ID in device asset

Table 6. Sample event definition in the smart contract.

Component Type Role

Sensor event Event Give notice when sensing value exceeds the threshold
Actuator event Event Give notice whenever the actuator state is changed
Device creating event Event Give notice when new device is added
Device updating event Event Give notice when specific device is updated
Device delete event Event Give notice when specific device is deleted

The transaction process function is the logical operation of a transaction defined in the smart
contract. As shown in Figure 9, the structure of the transaction processor functions contains a JavaScript
function. Here is an example, the transaction processor function relating to the actuator writing
transaction is to update the status of the actuator asset. More precisely, this function replaces the status
of the actuator asset with the value passed from the physical device, updates the actuator asset in the
registry, and then emits an event.
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Queries are written in a bespoke query language and are defined in a single query file within a
smart contract definition. By using queries, data can be easily extracted from the blockchain network.
As shown in Figure 10, queries contain a description and a statement, where the query descriptions are
a string that describe the function of the query and the query statements contain the operators and
functions that control the query behavior.
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Table 7 summarizes a part of REST APIs generated by the composer-rest-server for communication
between the web client, IoT device, and the blockchain network. HTTP-based RESTful APIs contain a
base URI, a media type that defines state transition data elements (e.g., Application/json), and verbs (e.g.,
GET, POST, PUT, DELETE). The URI typically represents the path of the data entity, and the verb indicates
the desired action to be performed in the identified resource along with the request. For example, a GET
request to a resource URI such as /api/Sensor would return a list of sensor information, while a POST
request to the same URI would ask the server to accept the entity enclosed in the request.

Table 7. RESTful API used for interaction.

URI Verb Media Type Action

/api/DeviceOwner ALL Application/json Device Owner Management
/api/Sensor ALL Application/json Sensor Management
/api/Actuator ALL Application/json Actuator Management
/api/Task ALL Application/json Task Management
/api/SensorReading GET, POST Application/json Add Sensing Data, Retrieve Sensing Data Log
/api/ActuatorWriting GET, POST Application/json Update Actuator State, Retrieve Actuator State Log
/api/system/historian GET Application/json Retrieve All Historian Records
/api/system/identities GET Application/json Get All Identities
/api/systemidentities/issue POST Application/json Issue an Identity to the Specific Participant
/api/system/ping GET Application/json Test the Connection to the Blockchain Network

4.4. Execution Process and Results of the Smart Space Case Study

The execution sequence of the case study is described in Figure 11. First off, the device owner
inputs the information of a new device through the client and in turn the IoT server requests the REST
server using the POST method. The device information contained in the request is ingested by the
blockchain network. The device information is stored in the state DB and the related transaction is
recorded in the blockchain file system. Similarly, the task can be generated by the device owner in
the blockchain network. The device owner can issue a task request (e.g., read temperature) to the
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target device and this request is first fetched by the IoT server. The server parses it in the respective
format and then passes it to the designated address of the device (e.g., temperature sensor). The device
collects the temperature data from the sensor and responds the sensing data to the server. Then the
server visualizes the data to the device owner in the client. At the same time, the device submits a
sensor reading transaction to the blockchain network by invoking the related API. The blockchain
network records the transaction in the blockchain file system and stores the sensing data in the state DB.
It also emits the notification to the client via WebSockets, since the sensing value exceeds the threshold
defined by the smart contract.
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Various snapshots of user client are overviewed with the RESTful APIs represented in Table 7 in
conjunction with their responses. The client can initialize a request to the REST server for submitting
the transaction to the blockchain network. The network invokes the corresponding functions in the
smart contract to perform the transaction and returns the response to the client when the transaction is
executed. Figure 12 represents the web dashboard used to register and manipulate IoT devices. The IoT
device can be either sensor or actuator; therefore, two dashboards are implemented, respectively.
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The snapshot of the task dashboard, where the device owner can generate and allocate IoT tasks
is presented in Figure 13. Each task contains a URI that stands for the endpoint of the service exposed
by the IoT device. The device owner can deploy the task to the specific device, and after confirming
the operation, the request is sent to the physical device. For example, to turn off a red LED, and in
turn, the dashboard displays the notification generated from the blockchain network to inform that the
device status is changed accordingly.
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Figure 13. Snapshot of task dashboard.

Figure 14 represents the snapshot of sensing log history in a timed sequence. Sensing time is an
unalterable blockchain ledger record time indicating when the sensor reading transaction is submitted.
The value presents the numerical values of readings from the physical device, in this case, this value
represents the temperature value.
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5. Performance Evaluation and Analysis

This section offers actual evaluation results to assess the performance of the proposed IoT
blockchain platform. Several experimental tests were carried out using different performance metrics
in order to provide a comprehensive manner. The service execution time included the time for a
transaction request to be sent plus the length of time it takes for an acknowledgement to be received
by the web client. For this test, we utilized the Postman, which is a tool to dissect RESTful APIs.
It provides a sleek user interface to customize scripts for simulating a heavy load on network. The first
study was analyzed for the service execution time cost on device registration and the results are shown
in Figure 15. For this study, four groups of 50, 150, 250, and 500 devices information were provided
to the proposed platform. This was implemented by using the simulation tool called Hyperledger
Caliper [54], which allows users to configure the use case script of a specific blockchain implementation
with a set of indicators. The execution time taken by the proposed blockchain platform to perform this
transaction were recorded in minimum, average, and maximum time. For the 50-device group set,
the minimum time was recorded to be 2262 ms, averaging at 2286 ms, and the maximum time was
recorded to be 2375 ms. For the 150-device group set, the minimum time taken was recorded to be
2257 ms, averaging at 2335 ms, and the maximum time was recorded to be 2801 ms. For the 250-device
group set, the minimum time was recorded to be 2254 ms, averaging at 2585 ms, and the maximum
time was recorded to be 3004 ms. Lastly, for the 500-device group set, the minimum time was recorded
to be 2267 ms, averaging at 2923 ms, and the maximum time was recorded to be 4013 ms.

In our second study, we evaluated the service execution time on storing sensing data in the
blockchain network. All the devices had a HTTP client that was able to request the sensor reading
API from the REST server. Once the sensing data was appended in the blockchain, the REST server
fetched the execution results from the blockchain network and returned the response to the device.
The evaluation results of execution time on performing sensor reading transaction are reported in
Figure 16. In both scenarios, the experimental tests were performed by a number of concurrent clients,
and every test was measured ten times at randomly selected system resource utilization levels. It is
obvious from these two graphs that the transaction execution time increased when the scale of device
groups expanded. However, the response graph was steady and the overall transaction execution
capability could be assessed if no network congestion happened. Bitcoin takes 10 minutes to mine a
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blockchain; however, a bitcoin transaction generally needs six confirmations before it is finalized. As a
result, it can be expected that a transaction takes around an hour on average, which is unbearable to
the general public. Ethereum transaction times are around 15 seconds but the average time would
increase exponentially according to varied network environments. The experiment results from the
case study indicate that the proposed blockchain platform outperforms most other popular blockchain
systems in terms of transaction time. The limitation of this work is that the experiment given was built
on a limited size network, with only four peers. However, this is just a small case in order to prove the
usability of the designed approach. As we mentioned earlier, the proposed architecture is adopted in a
modular design that would be easy to extend. This can be achieved by adding a large number of peers
in the network, as the Hyperledger Fabric provides the scripts to construct the underlying structure of
the business network.Sensors 2019, 19, 2228 20 of 26 
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For the third study, we evaluated the system performance when querying sensing records stored
from the distributed ledger in the blockchain network. Figure 17 measured the execution time to
query data records from the blockchain by varying the amount of data from 500 to 10,000 records.
The minimum, average, and maximum delay time in ms taken by the proposed platform to retrieve
the sensing records were noted down ten times at randomly selected system resource utilization levels.
For the worst-case performance, with 10,000 records set, the minimum delay was recorded to be 606 ms,
averaging at 752 ms, and the maximum delay was recorded to be 853 ms. It can be seen from the figure
that the size of data records had great influence on the round-trip latency. However, the increase was
maintained at such a low level that it could even be ignored, in other words, the impact on the user’s
experience could be neglected.

Sensors 2019, 19, 2228 21 of 26 

 

 
Figure 16. Performance analysis graph of the sensor reading. 

For the third study, we evaluated the system performance when querying sensing records stored 
from the distributed ledger in the blockchain network. Figure 17 measured the execution time to 
query data records from the blockchain by varying the amount of data from 500 to 10,000 records. 
The minimum, average, and maximum delay time in ms taken by the proposed platform to retrieve 
the sensing records were noted down ten times at randomly selected system resource utilization 
levels. For the worst-case performance, with 10,000 records set, the minimum delay was recorded to 
be 606 ms, averaging at 752 ms, and the maximum delay was recorded to be 853 ms. It can be seen 
from the figure that the size of data records had great influence on the round-trip latency. However, 
the increase was maintained at such a low level that it could even be ignored, in other words, the 
impact on the user’s experience could be neglected. 

 
Figure 17. Performance analysis graph of the sensing data query. 

268

538
601 606

271

559

656

752

274

583

791
853

0

100

200

300

400

500

600

700

800

900

500 records 2500 records 5000 records 10000 records

Se
rv

ice
 E

xe
cu

tio
n 

Ti
m

e 
(m

s)

Sensing Data Query Execution Time

Min Time Avg Time Max Time

Figure 17. Performance analysis graph of the sensing data query.

6. Comparison and Significance

The following section conducts a comparative analysis of the proposed platform with some of the
current studies that have been reviewed in the related work. In order to demonstrate the efficiency and
capability of the designed platform, a benchmark study was carried out, and the evaluation results are
presented in Table 8.

Table 8. Comparative study of the proposed IoT blockchain platform with existing platforms.

Name Native
Cryptocurrency

Consensus
Determination

Mining
Required

Smart
Contract

Device as
Node Access Policy Support

Client

[36] Yes All Nodes Yes No Yes Permissionless Yes
[37] Yes All Nodes Yes Yes No Permissionless No
[41] Yes All Nodes Yes Yes Yes Permissionless Yes

[43] No Arbitrary Nodes No Yes No Permissionless/
Permissioned Yes

[45] Yes All Nodes Yes Yes Yes Permissionless Yes
[46] Yes All Nodes Yes Yes Yes Permissionless Yes
[47] Yes All Nodes Yes No No Permissionless Yes
[48] Yes All Nodes Yes No Yes Permissionless Yes
[49] No All Nodes Yes Yes Yes Permissionless Yes
[50] Yes All Nodes Yes Yes No Permissionless Yes
[51] Yes All Nodes Yes Yes No Permissionless Yes

Proposed
Platform No Arbitrary Nodes No Yes No Permissioned Yes
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The following properties that play a pivotal role to compare the overviewed platforms are
considered for this study. Additionally, it reflects the overall performance of blockchain platform
and highlights the significance of our proposed approach. As shown from the table, the presented
system in [43] is a somewhat similar approach, with the most similar characteristics to our proposed
work. As a result, we chose to compare this system with our proposed approach. The simulation
environment for this analysis was set up the same as the selected system in [43]. We simulated a
network of 50 peers and ran the simulation for 60 s, during which 960 transactions were executed.
The processing time metric refers to the time cost on verifying new blocks in the network. Simulation
results for evaluating the processing overhead are presented in Figure 18. As shown in the graph, the
processing overhead with our approach was lower than the selected system by varying the number of
blocks from 10 to 60. In general, our approach decreased the processing time by 22%.
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It is obvious to see that most systems are built on a permissionless blockchain network, which
allows anyone to participate, and every participant is anonymous. This means that neither can there
be confidentiality of the contracts themselves, nor of the transaction data that they process. In order to
mitigate the lack of confidentiality, these systems issue their own tokens to incent costly mining or
to fuel smart contract execution. The transaction cost and transaction speed can be greatly affected
by negative associations with cryptocurrencies. In addition, it obstructs the interaction with other
distributed systems, as the token used in both systems must be unified. In contrast, the proposed
system is built on a permissioned network, which diminishes the risk of a participant intentionally
introducing malicious code through the smart contract. These participants are known to each other
and all the actions are recorded on the blockchain in terms of the endorsement policy that was
established for the network and transaction type. Furthermore, most existing systems lack the support
of resource-constrained IoT devices, since they simply deploy full nodes on these devices to perform
time-consuming mining. However, the resource-constrained architecture of IoT has always been the
main hindrance in integrating IoT with the blockchain, since the consensus algorithms have to be
limited to work within these constraints. Some current works deploy heavy consensus algorithms
on other devices that are part of the IoT system, such as gateways. However, IoT gateways are
generally small devices lack storage space. Many blockchain platforms do not yet provide support for
lightweight nodes, and full nodes with an entire blockchain (more than 46 GB in Ethereum) must be
deployed on the gateway for validation of transactions and blocks. Furthermore, this makes gateways,
themselves, targets and also the first line of defense, since they act as bridges between devices and
the Internet. The proposed solution, however, presents a lightweight solution that avoids integrating
blockchain technology into IoT devices and these devices do not need any modification. The blockchain
is used as an external service to provide a reliable and secure storage. Besides, the transactions made
by IoT devices are validated in the blockchain network without downloading the entire blockchain.
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This improves the usability of our solution in a large variety of IoT scenarios with limited capabilities.
In addition, the communication between IoT devices and the blockchain network happens through
web service APIs, which enable cross platform communication. This approach also makes it possible
to integrate with existing systems.

This paper presents a real-life case study for smart space, which was implemented as part of the
experimental test in order to demonstrate the feasibility of the proposed system. This system is built on a
modular architecture that can be easily extended to meet all kinds of requirements in various application
domains, such as supply chain, energy trading, and data marketplace. For example, the proposed
system can be expanded in the food supply chain to improve transparency and efficiency, since the
blockchain technologies can provide a trusted source of information and traceability across the food
network. IoT sensors can be attached to any product, like fish that is relegated to someone for transport,
with remotely sensed data such as temperature, humidity, and location. By making a shared ledger
accessible to each party in the supply chain, all food processing steps can be recorded and stored on the
blockchain, including digital compliance documentation, test results, and audit certificates. The demand
for an IoT blockchain application that offers a permissioned network, no currency exchange, friendly
interface, flexible architecture, low latency of transaction, and high transaction throughput is high, and
this work aims to look for ways to solve all these issues mentioned above.

7. Conclusions

With billions of connected devices coming online, there are systemic challenges to scaling IoT.
Connected devices are always diverse and different from factors and manufactures. Therefore, identity
and interoperability need to be assured in a secure manner. Furthermore, centralized architecture
like the cloud model can have high costs, latency, and the risk of single point of failure. Blockchain
technologies provide a new security protocol and infrastructure to enable billions of IoT devices to
have trusted interoperability for both data and commerce. This paper outlines a novel approach for
the design and implementation of a decentralized IoT platform to address scalability, identity, and data
security challenges based on a permissioned blockchain network. A proof of concept of the proposed
approach is implemented by using the Raspberry Pi and various physical devices. We evaluate the
performance of the proposed system in various performance metrics, which indicated a steady level,
allowing effective transaction execution. Furthermore, a comparative analysis of the designed system
with existing works is performed to highlight the significance of this system in variety of aspects.
Although the coevolution of blockchain and IoT research studies is still in its infancy, this work
explores the potential applications of IoT and blockchain to improve efficiency and bring automation,
to revolutionize robust business solutions in various IoT scenarios. Future research directions aim at
testing the interoperability of the proposed system with different IoT frameworks. Furthermore, we
are planning to test other consensus algorithms and data storage technologies in order to improve the
transaction processing rate and make data query more efficient.
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