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Abstract

Background: Proteoglycans are large and structurally complex macromolecules which can be found in abundancy
in the extracellular matrix and on the surface of all animal cells. Mutations in the genes encoding the enzymes
responsible for the formation of the tetrasaccharide linker region between the proteoglycan core protein and the
glycosaminoglycan side chains lead to a spectrum of severe and overlapping autosomal recessive connective tissue
disorders, collectively coined the ‘glycosaminoglycan linkeropathies'.

Results: We report the clinical findings of two novel patients with a complex linkeropathy due to biallelic mutations in
B3GAT3, the gene that encodes glucuronosyltransferase |, which catalyzes the addition of the ultimate saccharide to the
linker region. We identified a previously reported c667G> A missense mutation and an unreported homozygous
c416C>T missense mutation. We also performed a genotype and phenotype-oriented literature overview of all
hitherto reported patients harbouring B3GAT3 mutations. A total of 23 patients from 10 families harbouring bi-allelic
mutations and one patient with a heterozygeous splice-site mutation in B3GAT3 have been reported. They all display a
complex phenotype characterized by consistent presence of skeletal dysplasia (including short stature, kyphosis,
scoliosis and deformity of the long bones), facial dysmorphology, and spatulate distal phalanges. More variably present
are cardiac defects, joint hypermobility, joint dislocations/contractures and fractures. Seven different B3GAT3 mutations
have been reported, and although the number of patients is still limited, some phenotype-genotype correlations start
to emerge. The more severe phenotypes seem to have mutations located in the substrate acceptor subdomain of the
catalytic domain of the glucuronosyltransferase | protein while more mildly affected phenotypes seem to have
mutations in the NTP-sugar donor substrate binding subdomain.

Conclusions: Loss-of-function mutations in B3GAT3 are associated with a complex connective tissue phenotype
characterized by disproportionate short stature, skeletal dysplasia, facial dysmorphism, spatulate distal phalanges and
-to a lesser extent- joint contractures, joint hypermobility with dislocations, cardiac defects and bone fragility. Based on
the limited number of reported patients, some genotype-phenotype correlations start to emerge.
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Background

Proteoglycans (PG) are large and structurally complex mac-
romolecules which can be found in abundancy in the extra-
cellular matrix and on the surface of all animal cells. PG are
involved in a wide variety of functions such as cell-cell
communication, cell-matrix interactions and cell growth
and differentiation. PGs consist of a core protein with one
or multiple glycosaminoglycan (GAG) sidechains covalently
attached to it. GAGs are composed of repeating disaccha-
rides consisting of an amino sugar (N-acetylglucosamine
[GIcNACc] or N-acetylgalactosamine [GalNAc]) and an ur-
onic acid (glucuronic [GIcA] or iduronic acid [IdoA]). The
PG superfamily is subdivided into two major groups: hepa-
ran sulfate (HS) and chondroitin sulfate (CS)/dermatan sul-
fate (DS) PGs [1-3]. Before the polymerization of these HS
and CS/DS chains, the synthesis of a linker region consist-
ing of four saccharides is obligatory. This is a stepwise
process requiring the coordinated action of specific trans-
ferases. First, a xylose unit is transferred onto a serine resi-
due of the core protein by xylosyltransferase s I/II (encoded
by XYLT1 and XYLT?2), followed by the addition of two gal-
actose units by galactosyltransferase I (f4GalT7, encoded
by B4GALT7) and galactosyltransferase II ($3GalTé,
encoded by B3GALT6), respectively. The formation of the
linker region is completed by the transfer of glucuronic acid
catalysed by glucuronosyltransferase I (GIcAT-I, encoded
by B3GAT3) [4-9].

Biallelic mutations in all genes encoding these linker re-
gion enzymes have been identified, leading to a spectrum of
overlapping autosomal recessive multisystemic disorders,
the ‘GAG linkeropathies’ [10]. Mutations in XYLT1 were re-
ported in patients with short stature, intellectual disability,
flat face and subsequently, XYLT'I mutations were identified
in patients with Desbuquois dysplasia type 2 (OMIM
#615777) [11-16]. Deficiency of XYLT2 causes a spondylo-
ocular syndrome (OMIM #605822) with eye and heart de-
fects, hearing loss, fractures and learning problems [17-22].
B4GALT7 mutations are associated with a rare subtype of
the Ehlers-Danlos syndrome (EDS), spondylodysplastic
EDS (B4GALT7-spEDS; OMIM #130070), characterized by
short stature, joint hypermobility, hyperelastic skin, osteo-
penia and ocular problems [23-28]. A specific homozygous
B4GALT7 mutation, c.808C>T p.(Arg270Cys), is associ-
ated with the Larsen of Reunion Island syndrome, charac-
terized by severe joint hypermobility with dislocations [29].
Biallelic mutations in B3GALT6 also cause a spectrum of
overlapping disorders. Malfait et al. [30] described a sub-
type of EDS (spondylodysplastic EDS, B3GALT6-spEDS)
with skin fragility, delayed wound healing, joint laxity/con-
tractures, intellectual disability and spondyloepimetaphyseal
dysplasia, whereas Nakajima et al. [10] described a group of
individuals suffering from spondyloepimetaphyseal dyspla-
sia with joint laxity type 1 (SEMD-JL1; OMIM # 271640).
Van Damme et al. [31] expanded the spectrum of
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B3GALT6-spEDS with cardiac defects, cervical spine in-
stability, respiratory insufficiency and cerebrovascular acci-
dents. Baasanjav et al. [32] reported the first biallelic
B3GAT3 mutations in a consanguineous family and hith-
erto, B3GAT3 mutations have been reported in 24 patients
from 11 families, all displaying multisystemic conditions
characterized by craniofacial, cardiovascular and skeletal
abnormalities [32—39].

Here, we report the clinical and molecular findings in
two new independent patients with biallelic B3GAT3
mutations and we provide a literature overview of the
genetic and phenotypic findings in all hitherto reported
B3GATS3 patients. We also performed structural model-
ling of the reported missense mutations in B3GAT3 to
investigate possible genotype-phenotype correlations.
Our findings contribute to a better knowledge on the
genotypic and phenotypic spectrum of B3GAT3-related
disease and its delineation from the other linkeropathies.

Results

Review of literature

Mutations in B3GAT3 are extremely rare, with only 23 re-
ported patients from 10 families harboring biallelic
B3GAT3 mutations and one patient with a heterozygous
B3GAT3 mutation [32-39]. Consistent clinical findings in
patients with biallelic BBGAT3 mutations are: skeletal dys-
plasia (present in all) with shortening and bowing of long
bones, (kypho)scoliosis, foot deformity and radioulnar syn-
ostosis; disproportionate short stature (16/21, mentioned in
21 of 23 the cases); spatulate distal phalanges (14/15), and
facial dysmorphism, present in all patients, albeit with some
variability. Characteristic craniofacial features include ab-
normalities in cephalic index (brachycephaly and dolicho-
cephaly), frontal bossing, hypertelorism, prominent eyes,
downslanting palpebral fissures, midface hypoplasia, de-
pressed nasal bridge, microstomia and short neck. Two in-
dividuals presented with blue sclerae. Common findings,
present in many but not all patients (> 60%), include dislo-
cations of large joints (17/23), contractures of mostly the
elbow joint (10/15) and structural cardiac defects, including
septal defects and valve abnormalities (12/18). A number of
features is more variably present (< 60%). Multiple fractures
were reported in 7 patients and joint hypermobility was
noted in 8 individuals. Skin involvement is uncommon,
with hyperextensible skin, cutis laxa and excessive wrink-
ling on the palms of the hands, each reported only once
[33, 36, 38]. Ocular problems are rare (only present in 3 pa-
tients) and diverse, including glaucoma, hyperopia, esotro-
pia, amblyopia and astigmatism [36-38]. Intellectual
disability was noted in 2 patients, one of which had mul-
tiple brain infarctions and subdural hematomas [37]. Since
at least 9 of the families are consanguineous, some rare fea-
tures are possibly not linked to the B3GAT3 mutations, but
to another homozygous variant. Bloor et al. [34] reported
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the first patient harbouring a heterozygous splice-site muta-
tion in B3GAT3. This patient clearly shared some clinical
features associated with biallelic B3GAT3 mutations, but
she also displayed some unique features, including a poster-
jor cloaca, growth hormone deficiency with good response
to therapy and sensorineural hearing loss. It is currently
not clear whether all these symptoms are related to
the B3GAT3 mutation. We summarized the clinical
features in Table 1.

Case reports

Patient 1

Patient 1 is an Indian boy and third child from a third-
degree consanguineous marriage. His parents and two
older siblings were reportedly healthy. His birth length
was 46 cm (<P3), birth weight 2600 kg (P5-P10), and the
occipitofrontal circumference 37 cm (P75). He had a
large anterior fontanel, which communicated with the
posterior fontanel. At the moment of examination 19
days after birth (Fig. 1), he had contractures of both
large and small joints (including bilateral talipes equino-
varus, flexion contractures of elbows, hips and knees),
broad tips of fingers and toes, adducted thumbs and
long fingers with camptodactyly of digits 3—5 of the left
and digit 5 of the right hand. In addition, he had a short
neck and a severely asymmetrical thoracic cage with bul-
ging of the left thoracic side. His skin was cutis laxa-like
with excess skin folds, especially over the dorsum of
hands and feet and the frontal region. He also displayed
severe facial dysmorphic features such as dolichocephaly,
hypertelorism, large eyes, downslanting palpebral fis-
sures, lagophtalmos of the lower eye lids, blue sclerae, a
pug nose, low-set and dysplastic ears and microstomia
with a high-arched palate. Ophthalmological examin-
ation revealed bilateral corneal clouding with sclero-
cornea in the upper parts. His radiographs showed
gracile long bones with a thin cortex and multiple
fractures and some wormian bones in the occipital
region. There was no cardiovascular involvement. He
died at the age of 2.5 months because of an un-
known reason. No autopsy was performed.

Patient 2

Patient 2 is a Turkish girl, the first child of consanguin-
eous parents. She was born at 37 weeks of gestation with
a birth weight of 2140 g and length of 43 cm (both <P3).
Final height was 129,5cm (- 5,3 SDS) with a weight of
37 kg. When examined at the age of 13 years (Fig. 2), she
presented with a disproportionate short stature, short
arms and a very short neck. Her face was round with
midfacial hypoplasia, prominent eyes, downslanting pal-
pebral fissures, blue sclerae, a long philtrum, a bifid
uvula and a high-arched palate. She displayed general-
ized joint hypermobility, bilateral radial head dislocation,
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genua valga, pes planus and hallux valgus. Her fingers
had a tapered aspect with spatulate distal phalanges. Motor
development was mildly delayed but intelligence was nor-
mal. Bone mineral density at the age of 18 years was low
with a Z-score of - 1,8 at L1-L4, without fractures. Radio-
graphic imaging showed radial head dislocation, sublux-
ation of the knees, a short femoral neck and irregular tarsal
bones. Cardiac investigations were not performed.

Molecular and structural analyses

Whole exome sequencing in patient 1 identified a homo-
zygous c€.667G > A, p.(Gly223Ser) missense variant in
B3GAT3. This mutation has been reported previously in
7 patients [37] and is absent in the GnomAD database.
This variant is predicted to be ‘probably damaging’
(Polyphen-2) and ‘deleterious’ (SIFT), but is regarded as
a polymorphism by MutationTaster. Whole exome se-
quencing in patient 2 revealed a novel homozygous mis-
sense variant ¢.416C>T, p.(Thr139Met) in B3GAT3.
This variant is found in only 1 of 249,250 alleles (allele
frequency 4.012e-6) in the GnomAD database. This resi-
due is highly conserved as shown in Fig. 3 and predicted
as pathogenic by Polyphen-2 and MutationTaster.

Structural modelling of missense variants

To date, 7 B3GAT3 mutations have been reported, includ-
ing our newly found variant. There are 6 missense muta-
tions: ¢.245C > T, p.(Pro82Leu); c416C > T, p.(Thr139Met);
c419C>T, p.(Prol40Leu); c.667G>A, p.(Gly223Ser);
c671T > A, p.(Leu224GlIn) and ¢.830G > A, p.(Arg277GlIn)
. All occur in homozygous state, except for the c.671 T > A,
p.(Leu224Gln) variant, which was found in compound het-
erozygosity with a null-variant (c.1A > G), p.(Metl?) [32,
33, 35-39]. Recently, a heterozygeous splice-site variant
c.888 + 262 T > G was found in one patient [34]. GIcAT-],
located at the Golgi apparatus membrane, consists of mul-
tiple domains: a small cytoplasmic domain (res. 1-7), a
transmembrane domain (res. 8—25), a proline-rich stem re-
gion (res. 26-74) and a catalytic domain consisting of an
UDP-GIcUA (uridine diphosphate — (B-D-)glucuronic acid)
donor substrate binding subdomain (res. 75-197) and an
acceptor substrate binding subdomain (res. 198—308) [40].
All 5 missense variants are located within the catalytic do-
main of the protein. We performed structural modelling
of these missense variants on the protein structure of
GIcAT-I (Fig. 3).

Mutations in the donor substrate binding subdomain

The in silico model of the p.(Pro82Leu) variant showed
a clear overlap in the Van Der Waals forces, indicating
possible unfavourable interactions because of a disturb-
ance in the balance of the Van Der Waals forces in this
variant. The alteration of threonine to methionine resi-
due in the p.(Thr139Met) variant, identified in our



Colman et al. Orphanet Journal of Rare Diseases (2019) 14:138 Page 4 of 10
Table 1 Summary of clinical features in all reported patients with biallelic B3GAT3 mutations
Previously reported patients New patients Total®
c.830G>A[32,38] c419C>T CTA>G+c671T>A c245C>T  c667G>A  Het c888+ 1. 2.
[35] [36] [33] [37,39] 262T>G [34] c667G> c416C>
A T
N° of patients 6 8 1 1 7 1 1 1 26
Short stature 6/6 (>p3) 8/8 (>P3) 0/1 11 /4 (NRin /1 Yes Yes 19/23
3) (83%)

Skeletal 6/6 8/8 11 11 7/7 1 Yes Yes 26/26

dysplasia® (100%)

Joint 6/6 0/8 11 NR 0/T (NRin /1 Yes Yes 10/19

hypermobility 6) (53%)

Joint 6/6 (elbow, 8/8 (elbow, 1/1 (left hip) NR 3/7 0/1 No Yes 18/25

dislocations shoulders, shoulder) (72%)

radioulnar, hip)

Fractures NR NR 1/1 (multiple 11 5/6 0/1 Yes No 8/12
fractures of femur (67%)
and tibia)

Joint 5/6 (elbow) 4/8 (elbow) NR NR 7/7 NR Yes No 11/16

contractures (69%)

Facial 6/6 8/8 11 NR 6/7 11 Yes Yes 25/25

dysmorphologyb (100%)

Cardiovascular ~ 6/6 (bicuspid 0/3 (Not 1/1 (PFO, bicuspid NR 4/7 (ASD, 1/1 (VSD, No NI 12/20

involvement aortic valve, aortic  investigated  aortic valve, diltation VSD, patent pulmonary (60%)

root dilatation, in 5) of aortic root and ductus stenosis)
mitral valve ascendig aorta) arteriosus)

prolapse, ASD,

VSD)

Intellectual 1/6 0/5 11 NR 1T (NRin6) NR - No 2/14

disability (14%)

Ocular 1/1 (hyperopia, NR 1/1 (hyperopia, NR 1 with NR Yes No 4

involvement esotropia, astigmatism, bilateral (Corneal

amblyopia) amblyopia and left glaucoma clouding)
ptosis) (NR in 6)

Blue sclerae NR NR 1/1 NR T(NRin6) NR Yes Yes 4

Spatulate 6/6 8/8 NR NR 1 (NRin6) NR Yes Yes 16/17

phalanges (94%)

Hyperextensible  0/1 (NR in 5) NR 11 NR 0/7 NR No No 1

skin

Cutis laxa NR NR NR 11 NR NR Yes No 2

Hearing loss NR NR NR NR 1 with 11 NI No 2

bilateral (sensorineural)
conductive
(NRin 6)

Aditional Excessive wrinkling Restrictive lung Multiple 6 patients  Posterior Died

features of the skin'in 1 disease due to bony died before cloaca + before
scoliosis + chondroma the age of  ketotic the age
macrocepahly + 1 year hypoglycemia  of 1year
hypoglycemia + + GH
hypothyroidism deficiency

NR Not Reported, NI Not Investigated
@ Skeletal dysplasia including shortening and bowing of long bones, severe (kypho)scoliosis, foot deformity and radioulnar synostosis

® Facial dysmorhpology including abnormalities in cephalic index (brachycephaly and dolichocephaly), frontal bossing, hypertolerism, prominent eyes,
downslanting palpebral fissures, midfacial hypoplasia, depressed nasal bridges, microstomia and short neck
¢ Total based on the reported frequency
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Fig. 1 Patient 1 with severe dysmorphic features. There is bulging of the thoracic cage, hypertolerism, downslanting palpebral fissures,
lagophtalmos of the lower eye lids, blue sclerae, a pug nose, low-set and dysplastic ears, corneal clouding [1], generalized cutis laxa [1-3], long
fingers with campylodactyly and adducted thumbs, broad tips of fingers and toes and bilateral club feet [2, 3]. Perinatal radiography shows
osteopenia, multiple fractures, large joint contractures and Wormian bones in the occipital region [4]

patient 2, was predicted to induce 8 new clashes (close
contacts between atoms), disrupt 3 H-bonds and a
change of surface hydrophobicity was found. The model-
ling of the p.(Prol40Leu) variant showed an alteration of
the surface hydrophobicity.

Mutations in the acceptor substrate binding subdomain
The substitution of a glycine by a serine in the
p.(Gly223Ser) variant was predicted to cause a new H-
bond and 6 clashes. Additionally, a report from Gulberti
et al. [41] showed that substitution of p.Gly223 with a
bigger alanine residue strongly impaired the enzyme
function, suggesting an essential role of this residue for
substrate specificity. The p.(Leu224Gln) variant was pre-
dicted to cause 4 clashes, and a new overlap between
Van Der Waals forces was seen. Due to the localization
of the last two variants close to the other protein se-
quence of the homodimer, they may interfere in the
dimerization process. In the p.(Arg277Gln), two new
clashes were predicted. In a previously reported muta-
genesis experiment, the p.Arg277 residue was confirmed
to be essential for the enzymic activity of GIcAT-I [42].
Overall, more alterations were predicted with the vari-
ants located in the substrate acceptor subdomain. Also,

more literature evidence is available on the importance
of the affected residues in this subdomain for enzymatic
activity of GIcAT-I (Table 2).

Discussion

Glucuronyltransferase I, encoded by B3GAT3, catalyzes
the addition of the ultimate sugar residue of the tetrasac-
charide linker region between the core protein and the
glycosaminoglycan side chains of PG. Homozygous loss-
of-function of glucuronyltransferase I causes an hetero-
genic multisystemic disorder. To date, 23 patients from
10 families with biallelic B3GAT3 mutations and one pa-
tient with a heterozygeous splice-site mutation in B3GAT3
have been reported. Consistent findings include a skeletal
dysplasia with disproprionate short stature, kyphosis,
scoliosis and deformity of the long bones, spatulate distal
phalanges, and facial dysmorphology. Joint hypermobility,
joint dislocations/contractures, bone fragility and congeni-
tal heart defects are variably present. Other, more infre-
quent features are ocular problems, intellectual disablilty
and skin abnormalities. The two new unrelated individuals
we present here showed a clear phenotypic overlap with
the previously reported patients. Patient 1, harbouring the
p-(Gly223Ser) variant, presented with a severe phenotype
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Fig. 2 Patient 2 at age 13 yrs. with a disproprionate short stature, genu valgum, a round flat face with midfacial hypoplasia, blue sclerae,
downslanting palpebral fissures and prominent eyes [1]. She has long fingers with spatulate distal phalanges and pes planus with hallux valgus
[2, 3]. Radiography shows radial head dislocation, short femoral neck, subluxation of the knee joint and irregular tarsal bones [4-6]

including contractures of both large and small joints, mul-
tiple fractures, an asymetric thoracic cage, severe dys-
morphic facial features, cutis laxa and corneal clouding,
the latter being a unique finding. He died at the age of 2.5
months. Patient 2, in which a novel p.(Thr139Met) variant
was found, displayed a milder phenotype with short stat-
ure, facial dysmorphic features, joint hypermobility and
spatulate distal phalanges.

To date only 7 B3GAT3 mutations have been identified.
Although the total number of patients with B3GAT3 mu-
tations is still very small, some genotype-phenotype pat-
terns start to emerge. All patients harbouring the
c.667G > A, p.(Gly223Ser) substitution, including our pa-
tient 1, have a strikingly severe phenotype with a high
mortality soon after birth. Also the phenotype of the pa-
tients harbouring the ¢.830G > A, p.(Arg277Gln) variant
and the compound heterozygous mutation c.[1A > G];
[671T > A], p. [(Met1?)]; [(Leu224GlIn)] seem to be at the
severe end of the spectrum. In contrast, our patient 2 with
c416C > T, p.(Thr139Met) displays a milder phenotype, as
do the affected members of the family harbouring

c419C> T, p.(Prol40Leu) mutations and the individual
with the heterozygeous splice site mutation ¢.888 + 262
T > G. The clinical data available of the patient with the
¢.245¢ > T, p.(Pro82Leu) variant is too limited to draw any
conclusions about the severity of the phenotype. Data on
functional consequences of these mutations was only re-
ported on 3 of the 7 reported mutations. Compared with
wild type, the enzyme activity of the p.(Leu224Gln) and
p.(Arg277Gln) variants was reduced to 3-5% and in the
p.(Prol40Leu) variant, possibly associated with a milder
phenotype, a residual enzyme activity to 10% was de-
tected. In the p.(Leu224Gln) and p.(Arg277Gln) variants,
a significant reduction of GIcAT-I protein levels was noted
in patient fibroblasts, with normal levels of mRNA. No
significant differences were found in protein levels when
using a recombinant cell system in which vectors of the
p.(Prol40Leu) and the p.(Arg277Gln) variants were trans-
fected. This suggests a decrease in activity of the mutant
protein affecting the stability of the protein rather than a
reduced production. In all 3 variants the amount of CS
and HS chains was reduced, indicating a disruption of the
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A Exonl Exonll Exon Il Exon IV Exon V

2+3 4+56 T7TGA

. €.245C>T; p.(Pro82Leu)

. €.416C>T, p.(Thr139Met)

. ¢.419C>T; p.(Pro140Leu)

. €.667G>A,; p.(Gly223Ser)
C.671T>A; p.(Leu224GIn)

. ¢.830G>A; p.(Arg277GIn)

. €.888+262T>G

NOoO ORI -

D

Human AASGLLF--THLVVLTPKAQRLREG 170
C. Elegans KRSKIPN--THLNARTPSDQKMRYD 125
Drophila M. DRAGLEKRSTLLNIKTPSEFKLKGK 157

Rattus Norvegicus RDTGLNY--THLHVETPRNYKLRGD 148

Mus Musculus AASGLLF--THLAVLTPKAQRLREG 148
Danio Rerio SASGLTY--THLNKLTPKERKLQEG 143
* ok * %k

Fig. 3 a Overview of all the known pathogenic mutations on a schematic representation of the cDNA and gDNA transcript of B3GAT3 on top and
a representation of all missense mutations on an in silico model of GIcAT-I in which the substrate donor is colored in dark grey and the substrate
acceptor subdomain is colored light grey. All mutations are highlighted in red. b-c In silico modelling. Hydrophilic residues are blue, hydrophobic
residues are red. b p.Thr139 (top row) and the p.(Thr139Met) variant (below) with hydrophobicity surface rendering showing a change in the
missense variant. The right column shows the disruption of 3 H-bonds in the missense variant. ¢ The p.Gly223 residue (on top) and the
p.(Gly223Ser) variant (below) showing the formation of a new H-bond. d Clustal Omega protein sequence aligment showing that the protein
sequence of GIcAT-l is (largely) conserved across vertebrates and invertebrates. Asterisks indicate a single, fully conserved residue, colons indicate
strong similar properties (> 0.5 on the Gonnet PAM 250 matrix), and periods indicate weak similar properties (< 0.5 in the Gonnet PAM 250
matrix). The sequence alignment shows the high conservation of the Thr residue on position 139 of the sequence (marked in yellow)

Table 2 Results of the in silico modelling of all missense variants in B3GAT3

Missense Location Change in H-  New Change in surface Possible effect on Overlap in Van Der Literature Total

variant bonds clashes hydrophobicity dimerisation Waals forces evidence

p.(Pro82Leu)  Substrate donor / / / / + / 1
subdomain

p.(Thr139Met) Substrate donor +(3) +(8) + / / / 3
subdomain

p.(Pro140Leu) Substrate donor / / + / / / 1
subdomain

p.(Gly223Ser)  Substrate acceptor +(1) + (6) / + / + 4
subdomain

p.(Leu224GIn)  Substrate acceptor / + 4 / + + / 3
subdomain

p.(Arg277GIn)  Substrate acceptor / +(2) / / / + 2
subdomain

/: no alteration was predicted
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effective GAG synthesis [32, 35, 36]. In order to gain
insight in the molecular consequences of the reported
missense mutations on protein structure, we performed in
silico modelling. Strikingly, all missense variants associ-
ated with a more severe phenotype are located in the sub-
strate acceptor subdomain of the catalytic domain of
GIcAT-1. Overall, more changes in H-bonds and more un-
favourable contacs or overlap in Van Der Waals forces
were found in the variants located in the substrate ac-
ceptor subdomain.

Biallelic mutations have been identified in all five
genes coding for the enzymes involved in the synthesis
of the tetrasaccharide linker region (Table 3). Each of
these linkeropathies is characterized by specific pheno-
typical patterns, although there is an important overlap.
All are characterized by a disproportionate short stature
with short limbs, (kypho)scoliosis and an asymmetric/
small thorax. Another persistent finding is the presence
of facial dysmorphology with a wide spectrum of find-
ings including wide forehead, downslanting palpebral fis-
sures, large eyes, blue sclerae, depressed nasal bridge
and midfacial hypoplasia. Excessive joint laxity is present
in all disorders, except in XYLT2 mutations. Joint con-
tractures are only reported in B3GALT6 and B3GAT3 mu-
tations, whereas multiple fractures due to bone fragility
are commonly found in patients harbouring B3GALT6
and XYLT2 mutations and to a lesser extent in mutations
in B3GAT3, B3GALT7 and B4GALT7. Cardiac defects, in-
cluding septal defects and valve defects, are associated
with mutations in XYLT2, B3GAT3 and, to a lesser extend,
B3GALT6. Ocular involvement is present in most reported
patients with XYLT2(cataract and retinal detachment) and
B4GALT7 mutations and is a rare and variable finding in
B3GAT3 mutations. Hearing loss is associated with muta-
tions in XYLT2 while this is uncommon in the other lin-
keropathies. Hyperextensible skin is associated with

Table 3 comparison between the linkeropathies
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mutations in B4GALT7 and B3GALT6 and, as mentioned
above, some patients with B3GAT3 mutations have skin
involvement. Intellectual disability is reported in all lin-
keropathies with a variable frequency. Mild to moderate
intellectual disability is present in most individuals with
mutations in B4GALT7 and all patients with mutations in
XYLT1 suffer from a degree of intellectual disability. A re-
cent report by La Croix et al. described the presence of
biallelic pathogenic variants in XYLT! (including a trinu-
cleotide repeat expansion associated with hypermetyla-
tion) in patients diagnosed with Baratela-Scott syndrome
(BSS) which is characterized by short stature, facial dys-
morphology and intellectual disability [43]. They stated
that further detailed phenotyping is necessary to deter-
mine whether BSS and Desbuquois dysplasia type II can
be distinguished by the presence of intellectual dis-
ability or not. Based on our literature overview, an
important overlap in clinical features exists with pres-
ence of intellectual disability in both.

Conclusion

In summary, loss-of-function mutations in B3GAT3 are
associated with a complex connective tissue phenotype
characterized by disproportionate short stature, skeletal
dysplasia, facial dysmorphism, spatulate distal phalanges
and -to a lesser extent- joint contractures, joint hyper-
mobility with dislocations, cardiac defects and bone fra-
gility. Based on the limited number of reported patients,
some genotype-phenotype correlations start to emerge.
However, pheno- and genotyping of additional patients
with mutations in linkeropathy-associated genes, and
study of the spatiotemporal effects of the specific muta-
tions on enzyme activities and GAG synthesis is needed
in order to better understand the disease mechanisms
and phenotypic outcomes of these linkeropathies.

XYLT1 [11-16]

XYLT2 [17-22]

B4AGALT7? [23-28]  B3GALT6 [10, 30, 31]  B3GAT3 [32-39]

100% (15/15)
100% (15/15)

Short stature
Skeletal dysplasia®
Joint hypermobility

53% (9/17)
94% (16/17)
40% (6/15) NR

100% (8/8)
100% (8/8)
100% (8/8)

100% (27/27)
100% (27/27)
88% (22/25)

83% (19/23)
100% (26/26)
53% (10/19)

Bone fragility 7% (1/15) 94% (16/17) 62% (5/8) 48% (13/27) 67% (8/12)

Joint contractures NR NR 37% (3/8) 59% (16/27) 69% (11/16)

Facial dysmorphology® 100% (15/15) 65% (11/17) 87% (7/8) 100% (25/25) 100% (25/25)
Hyperextensible skin/ cutis laxa NR NR 87% (7/8) 68% (17/25) 12% (reported in 3)
Cardiovascular involvement 7% (1/15) 35% (6/17) NR 16% (4/25) 60% (12/20)
Intellectual disability 100% (Present in all older patients) 35% (6/17) 75% (6/8) 20% (5/25) 14% (2/14)

Ocular involvement NR 88% (15/17) 62% (5/8) NR 15% (reported in 4)
Hearing loss 7% (1/15) 53% (9/17) 25% (2/8) NR 8% (reported in 2)

@ With exclusion of the Larsen of Reunion Island syndrome cohort from Crathault et al. [23]
P Skeletal dysplasia including shortening and deformity of long bones, (kypho)scoliosis, small thoracic cage, radioulnar synostosis, deformity of the feet
¢ Facial dysmorhpology including wide forehead, downslanting palpebral fissures, large eyes, blue sclerae, depressed nasal bridge and midfacial hypoplasia
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Methods

Case reports

Both patients were referred to a clinical geneticist because
of the suspicion of a complex heritable connective tissue
disorder. DNA samples were obtained from both patients
and their parents. Informed consent was obtained from
the patients and parents participating in this study. They
consented to the publication of clinical photographs.

Molecular analyses

Whole-exome sequencing was performed for patient 1
and 2 and their parents using HiSeq 3000 (Illumina) and
SOLID 5500 (ThermoFisher), respectively. Reads were
mapped and variants were called and annotated with the
BCbio pipeline. Variants found in patient 1 were ana-
lyzed using our in-house developed analysis platform
Seqplorer. The identified variants were confirmed with
bidirectional sequencing. Nucleotide numbering reflects
¢DNA numbering, with +1 corresponding to the A of
the ATG translation initiation codon in the reference se-
quence (NM_0012200). Amino acid residues are num-
bered from the first methionine residue of the reference
sequence (NP_001275650). Pathogenicity of the variants
was evaluated using PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2), MutationTaster (http://www.muta-
tiontaster.org) and SIFT (http://sift.bii.a-star.edu.sg) in
patient 1 and with PolyPhen-2 and MutationTaster in
patient 2. Occurrence was assessed using the GnomAD
database (http://gnomad.broadinstitute.org) [44].

Structural modeling

Protein structure of GIcAT-I was obtained from the RCSB
Protein DataBank (https://www.rcsb.org). The protein
structure previously reported by Tone et al. (3CUO0) was
used as reference [9]. This model contains GlcAT-I in a
complex with UDP, Mn**, and GalB1-3Gal(6-O-sulfate)
B1-4Xyl(2-O-phosphate)p1-O-Ser. Visualisation of the
protein structure was performed using UCSF Chimera
(candidate version 1.13.1, build 41,911) [45]. Using the
rotamers function, all missense variants were modelled
into the protein structure. The ‘Find H-Bond function’
was used to identify potential hydrogen bonds based on
the distance between atoms and possible unfavorable in-
teractions were atoms are too close to each other were
identified with visualization of the Van Der Waals forces
and the ‘Find Clashes/Contacts function’.

Abbreviations
EDS: Ehlers-Danlos Syndrome; GAG: Glycosaminoglycans; GIcAT-
I: Glucuronosyltransferase I; PG: proteoglycans
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