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Abstract

Background: Detection of central nodes in asymmetrically directed biological networks depends on centrality
metrics quantifying individual nodes’ importance in a network. In topological analyses on metabolic networks,
various centrality metrics have been mostly applied to metabolite-centric graphs. However, centrality metrics
including those not depending on high connections are largely unexplored for directed reaction-centric graphs.

Results: We applied directed versions of centrality metrics to directed reaction-centric graphs of microbial
metabolic networks. To investigate the local role of a node, we developed a novel metric, cascade number,
considering how many nodes are closed off from information flow when a particular node is removed. High
modularity and scale-freeness were found in the directed reaction-centric graphs and betweenness centrality
tended to belong to densely connected modules. Cascade number and bridging centrality identified cascade
subnetworks controlling local information flow and irreplaceable bridging nodes between functional modules,
respectively. Reactions highly ranked with bridging centrality and cascade number tended to be essential,
compared to reactions that other central metrics detected.

Conclusions: We demonstrate that cascade number and bridging centrality are useful to identify key reactions
controlling local information flow in directed reaction-centric graphs of microbial metabolic networks. Knowledge

metabolic pathways are assembled.

Information flow

about the local flow connectivity and connections between local modules will contribute to understand how
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Background

Models and methods from the graph theory have been
developed to characterize structural properties in various
kinds of complex networks in social, technological, and
biological areas [1, 2]. In the analysis of biological net-
works, graph theory has been successful in detecting
global topological features of biological networks such as
short path lengths, scale-freeness with the appearance of
hubs [3], hierarchical modular structures [4], and net-
work motifs [5]. While the topological analysis as a
whole can give insight on network evolution and cellular
robustness [3, 6], investigation of influences of individual
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nodes in a biological network has potential for practical
applicability such as identification of drug targets, design
of effective strategies for disease treatment [7], and
development of microbial hosts for mass-production of
various bioproducts [8].

Ranking of a node by its topological feature depends
on various centrality metrics, each of which identifies
central nodes affecting the network architecture from
global or local perspectives [1, 9]. For example, degree
centrality and clustering coefficient which are based on
nodes’ degree identify nodes of global topological
importance of hubs and modules, respectively. Examples
of centrality metrics based on information flow are
betweenness centrality which is the proportion of short-
est paths passing through a node [10] and bridging
centrality that identifies bridging nodes lying between
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modules [11]. Such global topological analyses have been
mostly performed using undirected bionetworks. Recent
studies extended several global measures, such as in/out-
degree distribution, betweenness, closeness, clustering
coefficient, and modularity for application into directed
networks [1, 12, 13]. These measures are strongly corre-
lated with high degrees, focusing on densely connected
sub-structures. Although they discovered global topo-
logical properties and global roles of individual nodes,
they are insufficient to explain connections between mod-
ules and local connectivity, typically within a few of steps
of neighbors surrounding the node, in networks with
directed flows. For example, nodes of high degree have
global topological importance in a network, however, the
fact that they have so many interactions means that they
are poor channels for conveying information. A signal that
controls a specific cellular process must have some specifi-
city in how its signal is received and interpreted [14, 15].
If systems in several parts of the cell responded to the sig-
nal, as they do with high degree nodes, the node in ques-
tion would not be a control for the specific process. Such
need for specificity of signal effect means that high degree
nodes in the network may be ignored or removed when
performing topological analysis to locate nodes that are
critical in particular pathways.

As majority of biological networks such as metabolic,
gene regulatory, and signal transduction networks show
the sequential interaction of elements, they can be best
represented as directed graphs [1]. Unlike undirected
networks, there is a directed information flow, creating
an asymmetric influence between the nodes in a directed
network. Any directed path in a network represents a
sequence of reactions, ordered in pairs where each is a
pre-requisite of the next. Information flow arises from
these reaction cascades, and thus, it can represent the
potential for temporal correlation of activity changes in a
network. The information flow through a node in a net-
work can be estimated as the number of nodes down-
stream from it whose behavior will be influenced if that
node is removed or disables. Thus, centrality metrics
based on a node’s information flow can be well suited to
reflect the directionality of information flow in real bio-
logical networks.

Metabolism is the totality of all biochemical reactions
that produce building blocks, energy, and redox re-
quirements for cellular functions. Metabolism consists
of metabolic pathways, each of which is a directed path
from the source metabolites to target metabolites
mediated by a sequence of biochemical reactions. Re-
cent sequencing technology and databases of metabolic
pathways allow the reconstruction of genome-wide
metabolic networks in diverse organisms [16, 17]. Data-
bases about metabolic pathways, such as KEGG [18],
Reactome [19], MetaCyc, and BioCyc [20] are available;
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methods have been developed for the (semi-) automated
reconstruction of metabolic networks [21, 22]. The
existing availability of databases of metabolic networks
has greatly facilitated the computational analysis of meta-
bolic networks.

In general, metabolic networks have been represented
as a metabolite-centric graph with the metabolites as
nodes and reactions as edges [23-25]. In a metabolite-
centric graph, two metabolites are connected if there is a
reaction using one metabolite as a substrate and the
other as a product. The other way is a reaction-centric
graph where two reactions are connected by at least one
arc representing a substrate or product metabolite. The
practical advantage of the reaction-centric graph is that
its topological analysis can yield testable biological
insights, such as the identification of essential reactions,
which can be experimentally verified by a gene deletion
study. Another way to describe metabolic networks is a
bipartite graph with two types of nodes representing me-
tabolites and reactions [26], however, centrality metrics
used for topological analysis of unipartite metabolic net-
works cannot be directly applied to the bipartite meta-
bolic graph [13]. So far, centrality metrics for topological
analysis of unipartite metabolic networks have been
mostly performed with metabolite-centric graphs. Only a
few studies have attempted to apply centrality metrics to
reaction-centric graphs, such as the topological analysis
of cancer metabolic networks using degree-based cen-
trality metrics [13]. Especially, to our knowledge, cen-
trality metrics that are not based on high connections
are unexplored for directed reaction-centric graphs.

In this work, we investigated the topological roles of in-
dividual reaction nodes in directed reaction-centric graphs
using centrality metrics including those not depending on
nodes’ degree. We applied various centrality metrics to
analysis of directed reaction-centric graphs of metabolic
networks of five phylogenetically diverse microorganisms
of Escherichia coli (Gammaproteobacteria), Bacillus subti-
lis (Firmicutes), Geobacter metallireducens (Deltaproteo-
bacteria), Klebsiella pneumonia (Gammaproteobacteria),
and Saccharomyces cerevisiae (Eukaryota). To identify
nodes of global topological importance, central metrics
depending on high connections (degree, modularity, clus-
tering coefficient, and betweenness centrality) were
applied. To investigate the role of a node more locally, we
modified bridging centrality reflecting reaction direction-
ality and developed a novel metric called cascade number.
To link reactions highly ranked with each central metric
to their biological importance, the proportions of the
essential reactions predicted by flux balance analysis
(FBA) were calculated according to the centrality metrics.
These analyses identified topological features of individual
nodes in the directed reaction-centric graphs from global
and local connectivity perspectives.
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Results

We begin by explaining concepts of central metrics
using a toy network model. Next, we investigated global
features and roles of existing central metrics in the five
directed reaction-centric graphs, each of which was
derived from the metabolic network model of E. coli
(iJO1366) [27], B. subtilis (iYO844) [28], G. metalliredu-
cens (1AF987) [29], K. pneumonia (iYL1228) [30], or S.
cerevisiae (iIMM904) [31] (Table 1). Then, as for the five
reaction graphs, global and local features of central met-
rics were accessed, followed by analysis of the cascade
number. As E. coli metabolic network is the most accur-
ate and comprehensive metabolic model developed up
to date [27, 32], we provided in-depth analyses using
reaction-centric network of E. coli.

Toy example: topological roles of centrality metrics in a
directed network
In graph theory, various kinds of centrality metrics have
been developed, and each of them expresses an individ-
ual node’s importance in a network by summarizing
relations among the nodes from a different perspective.
The most frequently used centrality metrics are degree,
betweenness centrality, and clustering coefficient, and each
of them detects a central node with a different character.
Bridging centrality combines two measurements of be-
tweenness centrality and bridging coefficient. Therefore, it
detects nodes which act as the bottlenecks of information
flow, as well as the bridges (Additional file 1: Figure S1).
We explained the properties of the centrality metrics
using a synthetic directed network (Fig. 1 and Table 2).
Node A has the highest cascade number with a cascade
set of {B,C,D,E}, meaning that the removal of node A
closes off the information flow from A, to nodes B, C, D,
and E. This also implies that the removal of node A
would result in the separation of local connectivity if the
exemplified network belongs to the larger network. A
node with high bridging centrality tends to be in the cas-
cade set, for example, node E with the highest bridging
centrality belongs to the cascade set of node A. Nodes B
and C have zero values of betweenness centrality and
bridging centrality, as no shortest path passes through
them. This implies that a bridging node plays an import-
ant role in connecting information flow; it has to be

Table 1 Metabolic networks and their reaction-centric graphs
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located between modules. The clustering coefficients of
nodes B and C are the highest, as all of their neighbors
are still connected after their removal. Node D has the
highest betweenness centrality as there are many short-
est paths passing through it. As node D has the highest
degree in a module, and is connected to a bridge, it has
the lowest bridging coefficient, resulting in a moderate
value of bridging centrality. Node E has the highest
bridging coefficient as it is located between two neigh-
bors with high degrees. It also has high betweenness
centrality, resulting in the highest bridging centrality
value. This indicates that bridging centrality which was
modified for the directed network analysis in this study
reflects the importance in considering the topological
location of a bridging node well as connection of infor-
mation flow.

The toy example demonstrates that both bridging
centrality and the cascade number measure a type of
influence of a node on the flow of information within a
network. Nodes with high bridging centrality are at
points where large parts of the graph, called modules,
are connected to one another and so have relatively high
information flow through them. Nodes with high cas-
cade number will have locally large influence as they
have many downstream nodes that depend on them,
which means that they have substantial control of infor-
mation flow in their neighborhood.

Global topology in the reaction-centric metabolic graphs
There are many ways to translate metabolites and reac-
tions into a graph [33]. In many cases, metabolic networks
have been represented as a metabolite-centric graph with
metabolites as nodes and reactions as arcs [23—25]. In this
study, we represented a metabolic network as a directed
reaction-centric graph (reaction graph, hereafter) with re-
actions as nodes and metabolites as arcs.

To measure modularity in each of the five reaction
graphs, we generated 1000 random networks in which
the numbers of in-degree and out-degree are set to be
those of the corresponding reaction graph. Modularity is
widely used to measure how strongly a network is segre-
gated into modules [34], and is defined as the fraction of
the arcs that belong within the given modules minus the
expected fraction if arcs were distributed at random. All

Strain (model) Metabolic network (downloaded) Reaction-centric graphs (converted)

Metabolites Reactions Genes Metabolites Reactions Arcs
Escherichia coli (iJO1366) 1805 2583 1367 2014 1251 9099
Bacillus subtilis (iYO844) 990 1250 844 741 748 6489
Geobacter metallireducens (iAF987) 1109 1285 987 835 900 8049
Klebsiella pneumoniae (iYL1228) 1658 2262 1229 956 1137 8084
Saccharomyces cerevisiae (iIMM904) 1226 1577 905 1048 881 10,460




Kim et al. BMC Bioinformatics (2019) 20:328

©

/\
\/

Fig. 1 Examp\e of a synthetic network

>®

NS

the five reaction graphs were strongly modularized
(Additional file 1: Table S1). For example, the modularity
in the E. coli reaction graph (0.6103) was significantly
higher (P-value =0) than those in the degree-matched
random networks (mean modularity of 0.2009 and
standard deviation of 0.003).

In the five reaction graphs studied, the degree (k)
distributions of in-, out- and total-degrees followed a
power-law (Fig. 2). For example, in the E. coli reaction
graph, the degree distributions of in-, out- and total-de-
grees followed a power-law, with y ;,=-1.32, y ou: =
- 1.50, and Y (ora = — 1.29, respectively. These indicate
that the reaction graph is scale-free, characterized by
a small number of heavily connected reaction nodes
(hubs).

Relation of centrality metrics and reaction essentiality

Central metrics can give a ranking of nodes according to
their importance in a network. To address biological
importance of reactions ranked highly with each central
metric, we calculated and compared proportions of the
predicted essential reactions in the top 5% of high
degree, betweenness, and bridging centralities in the five
reaction graphs (Table 3). The essential reactions were
predicted using FBA which is a constrained optimization
method based on reaction stoichiometry and steady-state
assumption [35]. Reactions with high bridging centralities
tended to be essential, compared to those with high
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degree centralities. The exception was the reaction graph
of K. pneumoniae where the percentages of essential reac-
tions with each centrality metric were almost same.

To expand insights on the influences of each centrality
metrics (bridging centrality, betweenness centrality, clus-
tering coefficient, and degrees) on the reaction graph of
E. coli, numbers of total reactions and essential reactions
were plotted according to each of the centrality metrics
in the E. coli reaction graph (Fig. 3). Reaction deletion
simulation by FBA predicted 246 out of the total 1251
reactions to be essential. Among them, 29 were ranked
in the top 5% of high bridging centralities (P-value =
1.52x 10" 7) and 23 were listed in the top 5% of high
betweenness centralities (P-value = 2.86 x 10~ %). Reac-
tions with high bridging centrality tended to be essential
(correlation coefficient (r) between bridging centrality
and percentage of essential reactions=0.87) (Fig. 3a).
For example (Additional file 1: Figure S2a), among the
reactions with high bridging centralities, DHDPRy and
HSK were identified as essential reactions by FBA, and
were placed on the bridges branched from ASAD to
synthesize lysine and threonine, respectively. They also
connected each pathway to the reaction which produced
input metabolites for the synthesis of the target. More-
over, HSK was located on the tree, which comprised
cascade sets leading with ASAD. In case of another
example (Additional file 1: Figure S2b), RBFSb and
RBFSa were identified as essential reactions by FBA, and
they were located on the linear pathway of riboflavin
biosynthesis. Interestingly, they were connected with the
cascade set that had a leading reaction GTPCI. Reactions
with high betweenness centrality tended to be essential
as well (r=0.82) (Fig. 3b). The reactions with high clus-
tering coefficients tended to be non-essential (= - 0.86)
(Fig. 3c), since in their absence, there was an alternative
connection between their neighbors. Unexpectedly, the
degree and percentage of essential reactions was not cor-
related (r=0.21) (Fig. 3d). Reaction deletion simulation
showed that the average degree of essential reactions
was 14.34, which was quite close to the average degree
of all reactions (14.54). This indicates that reactions with

Table 2 Centrality values, cascade numbers, and cascade sets shown in Fig. 1

Node Degree ol BC Br BrC CL C_number C_set

A 3 0 0.2667 0 03333 4 {B,CD,E}
B 2 0 0.8571 0 0.5 0 %)

C 2 0 0.8571 0 0.5 0 %]

D 4 9 0.1364 1.2273 0.1666 1 {E}

E 2 8 0.8571 6.8571 0 0 %)

F 3 5 0.3333 1.6667 0 1 G}

G 2 0 1.5000 0 1 0 %)

Each column represents degree in total (Degree,), betweenness centrality (BC), bridging coefficient (Br), bridging centrality (BrC), clustering coefficient (CL),

cascade number (C_number), and cascade set (C_set)
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high degree tend to have back up pathways or alternative
pathways, which acted as substitutes when the high de-
gree reaction was removed.

As illustrated in the synthetic network (Fig. 1 and
Table 2), the modified bridging centrality detected nodes
functioning as bottlenecks of information flow, as well as
the bridges. One of the major differences between nodes
having high bridging centrality and high betweenness
centrality is their position in the network. For example, in
the reaction graph of E. coli, while nodes having high

betweenness centrality tended to belong to the densely
connected modules (such as the pyruvate metabolism
pathway or citric acid cycle) (Additional file 1: Table S2),
nodes having high bridging centrality were located on
bridges between local biosynthesis modules with a few
connections (mostly cofactor and prosthetic group biosyn-
thetic pathways) (Additional file 1: Table S3). Moreover,
nodes having high bridging centrality have a much lesser
metabolic flux value from FBA of wild-type E. coli than
the nodes having high betweenness centrality. For a node

Table 3 Proportions of the predicted essential reactions in the top 5% of reactions with high centralities in the reaction-centric

metabolic networks

Centrality E. coli (iJO1366) B. subtilis (iYO844) G. metallireducens (IAF987) K. pneumoniae (iYL1228) S. cerevisiae (iIMM904)
Betweenness 37.0%(23/62) 51.3%(19/37) 48.8%(22/45) 28.0%(16/57) 29.5%(13/44)
Bridging 46.7%(29/62) 45.9%(17/37) 71.19%(32/45) 29.8%(17/57) 45.4%(20/44)

Degree 22.5%(14/62) 33.3%(12/36) 16.2%(7/43) 28.59%(16/56) 9.0%(4/44)

Each cell denotes % essential reactions (Number of essential reaction / Number of the top 5% of reactions with high centrality)
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to have high bridging centrality, the node itself has to have
a low degree while its neighbors have relatively high de-
grees. Majority of such cases were found in reactions in-
volved in cofactor biosynthesis. Cofactors are non-protein
chemical compounds required for activity of some en-
zymes. They participate in catalysis, however, are not used
as substrates in the enzymatic reactions. In many cases,
cofactors are required in minute amounts, and their cellu-
lar compositions are very low. For example, serial reac-
tions of RBFSa and RBFSb for riboflavin (vitamin B,)
biosynthesis showed high bridging centrality scores in the
E. coli reaction graph. Riboflavin can be synthesized by
other six reactions using the reduced form of riboflavin
(rbfvrd), which needs to be converted from riboflavin by
NAD(P)H-associated reactions. RBESb is the only ribofla-
vin biosynthetic reaction which does not use rbfvrd. As
the riboflavin has stoichiometry of 0.000223 in the E. coli
growth objective function, the metabolic flux on RBFSb
was quite small (0.0004 mmol/gDCW/h) in FBA of the

wild-type E. coli, although RBFSb was essential predicted
by the reaction deletion simulation.

Analysis of cascade sets and cascade numbers

In evaluating the local influence of a node, it is logical to
say that the node had a high degree of control over in-
formation flow if its deletion or inactivation deprived its
downstream neighbors of information flow within a net-
work. In this study, we developed the cascade algorithm
based on counting of nodes which are closed off from
the information flow when a particular node is removed.
Thus, the cascade number of a node can measure the
local controllability for the node. To address the import-
ance of a cascade number in the reaction-centric meta-
bolic networks, we checked whether the removal of a
leading reaction node generating a cascade set led to no
growth by the reaction deletion simulation of the meta-
bolic network models. Percentage of those essential lead-
ing cascade reactions in the total leading cascade
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reactions were calculated, according to the cascade
number (Table 4). In all the five graphs, more than half
reactions had zero cascade numbers and didn’t belong
to any cascade sets of other reactions. In other words,
more than half reactions neither affected network flows
when removed. This indicates that majority of reactions
did not have any influence over their local connectivity.

Nodes with higher cascade numbers tended to be essen-
tial (r>0.63) (Table 4). The exception was the reaction
graph converted from iYO844 of B. subtilis (r=043),
mainly due to the presence of non-essential reactions
having high cascade numbers. Interestingly, leading
cascade reactions became to be essential or not, depend-
ing on whether the growth objective function of a meta-
bolic network included the metabolite(s) associated with
the cascade set. For example, cascade set reactions by
GLUTRS make uroporphyrinogen III (uppg3) which is re-
quired to make prosthetic group of siroheme (sheme)
(Additional file 1: Figure S2c). Cascade numbers of
GLUTRS are 7 and 10 in the reaction graphs of iJO1366
(E. coli) and iYOS844 (B. subtilis), respectively. From the
reaction deletion simulation, GLUTRS was essential in
iJO1366 and was non-essential in iYO844. The discrep-
ancy in the essentiality of the same reaction in different
metabolic models was casused by that sheme was included
only in the the growth objective function of iJO1366. In
other words, since the growth objective function of
iJO1366 contained sheme, growth cannot occur without
GLUTRS, and thus, GLUTRS is essential in iJO1366.
However, GLUTRS is non-essential in iYO844 whose
growth objective function does not have sheme. This
example demonstrates that essentiality of a node with a
high cascade number can be used in refining a metabolic
network model.

When the E. coli reaction graph was analyzed using
the cascade algorithm, 959 out of 1251 reactions had
zero cascade number, implying that most reactions do
not have any influence over their local connectivity.
Twenty-three reactions had cascade number of >4, and
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each had independent cascade sets forming acyclic sub-
networks (Additional file 1: Table S4). Out of the 23
leading cascade reactions, 8 were predicted to be essen-
tial by the reaction deletion simulation. Remarkably, all
the reactions with a cascade number of 7 (MECDPDHS5,
ASAD, GTPCIL, and GLUTRS) were predicted to be
essential, indicating that their removal will result in
severe system failure (Table 5). For example (Additional
file 1: Figure S2a), the reaction ASAD (catalyzed by
aspartate-semialdehyde dehydrogenase) generates ‘aspsa’
(L-aspartate-semialdehyde), which is involved in both
the lysine biosynthesis and homoserine biosynthesis. Its
cascade set has seven member reactions performing the
intermediate steps in the biosynthetic pathway of
branched-chain amino acids (leucine, isoleucine, and val-
ine), serine, and glycine. In another example (Additional
file 1: Figure S2b), two reactions (GTPCI and GTPCII2)
catalyzed by GTP cyclohydrolases, which share the
source metabolite GTP, are involved in the first steps of
riboflavin biosynthesis and tetrahydrofolate biosynthesis,
respectively. The cascade sets of GTPCI, with a cascade
number of 7, and GTPCII2, with a cascade number of 3,
form subnetworks of tree and linear path, respectively.
The cascade set of MECDPDH5 connected the biosyn-
thetic pathways of isoprenoid and ubiquinol. The
cascade sets involved many reactions with high bridging
centralities, while they had much lesser intersections
with reactions with high betweenness centralities
(Additional file 1: Figure S3). This is not surprising,
considering bridging centrality tended to be placed on
bridges between modules with a few connections.

The idea of breakage of information flow was also im-
plemented in topological flux balance (TFB) failure algo-
rithm based on flux balance criterion which was devised
to search bidirectional failure along the directed bipartite
metabolic graph having two types of nodes (metabolites
and reactions) [36]. Under the steady-state assumption of
a metabolic network, TFB detects large-scale cascading
failure where the removal of a single reaction can delete

Table 4 Proportions of essential leading cascade reactions according to the cascade number in the reaction-centric metabolic networks

Reaction graphs  Cascade number

r

from 0 1 2 3 4 5 6 > 7 Total

E coli 134% (94/697)  29.1% (37/127) 30.7% (8/26)  47.6% (10/21) 153% (2/13) 25.0% (1/4) 50.0% (1/2) 100% (4/4) 17.5% (157/894) 0.68
(1JO1366)

8. subtilis 224% (101/450) 32.2% (19/59)  500% (7/14)  833% (5/6)  100% (3/3) ND 500% (1/2) 57.1% (4/7) 258% (140/541) 043
('YO844)

G. metallireducens 287% (136/473) 65.1% (56/86)  50.0% (13/26) 61.5% (16/26) 54.5% (6/11) 66.6% (2/3) 100% (4/4) 100% (1/1) 37.1% (234/630) 0.86
(iAF987)

K pneumoniae  10.4% (65/620)  28.5% (30/105) 193% (6/31)  60.0% (6/10)  41.1% (7/17) 666% (2/3) 100% (1/1) 33.3% (2/6) 150% (119/793) 063
(iYL1228)

S. cerevisiae 103% (54/520)  144% (11/76)  37.5% (9/24)  41.6% (5/12)  333% (2/6)  500% (1/2) 500% (1/2) 33.3% (1/3) 13.0% (84/645) 072
(iIMM904)

Each cell denotes % essential leading cascade reactions (No. essential leading cascade reactions / No. of total leading cascade reactions). Last column
indicates correlation coefficient (r) between cascade numbers and % essentialities
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Table 5 Cascade sets with the highest cascade number in the reaction-centric metabolic network of E. coli

Leading cascade reaction  Cascade set Subsystem (function) Subnetwork type® Flux® Essentiality®
(Cascade number)
MECDPDHS5 (7) DMPPS, IPDPS, OCTDPS, Cofactor and prosthetic Other 0.002 T

UDCPDPS, DMATT, group biosynthesis (Connecting , 4

IPDDI, GRTT Isoprenoid and ubiquinol) ﬁ 5

1 6
3 8
7

ASAD (7) THRAI, THRD, THRD_L, Threonine and lysine metabolism  Tree -1050 T

HSDy, THRS, HSK, (Junction of lysine and threonine Y

THRTRS branches) Bd-sg-58 _).Z,. 7

1 2 3 4 s B

GTPCI (7) CPH4S, CDGS, DHPTPE, Cofactor and prosthetic group Tree 0.002 T

CCGS, CDGR, DNMPPA, biosynthesis (Folate synthesis and 7

DNTPPA producing ‘glycit)) /7.6/7.

0 <—0>0>0>0>0
8 1 2 3 4 s

GLUTRS (7) GLUTRR, G1SAT, PPBNGS,  Cofactor and prosthetic group Linear path 0.004 T

HMBS, UPP3S, UPPDCT, biosynthesis (Importing glu-L to 050505050 50500

CPPPGO synthesize hemeO biosynthesis) 1 2 3 4 s 6 7 8

Abbreviations can be found in BiGG database (http://bigg.ucsd.edu/)

“Drawn for the leading cascade reaction and its cascade set reactions; All the subnetwork are acyclic subnetworks classified into three types: tree, linear path, and

other (neither linear path nor tree)
PMetabolic flux value from FBA of wild-type E. coli (mmol/gDCW/h)
“Essentiality of a reaction predicted from the reaction deletion simulation

downstream neighbored nodes which lose all the inputs as
well as upstream neighbors which lose all the outputs
[36], and thus, it is more suitable for measuring global ro-
bustness of a directed bipartite network. By contrast, the
cascade algorithm developed in this study searches only
the downstream neighbors which lose all the inputs when
a specific node is removed, focusing on the local cascading
failure in a directed network.

Discussion

Topological analysis of a metabolic network provides valu-
able insights into the internal organization of the network
and topological roles of individual nodes [1, 9]. Detection
of central nodes in asymmetrically directed biological net-
works depends on biological questions about the global
and local topology of the network. Various centrality met-
rics seek to quantify an individual node’s prominence in a
network by summarizing structural relations among the
nodes, although most centrality metrics correlate with de-
gree indicating that highly connections among nodes are
important. In this study, for the topological analysis of
metabolic networks, we applied various centrality metrics
to directed reaction-centric graphs of the five phylogenet-
ically distant organisms. Degree centrality, betweenness
centrality, clustering coefficient, and modularity were
found to be useful in discovering global topological prop-
erties and modular structures of the reaction graphs. To
explain connections between modules and local connect-
ivity in directed reaction-centric graphs, we modified the

bridging centrality and developed the cascade number.
We demonstrated that the cascade algorithm and the
modified bridging centrality can identify cascade subnet-
works controlling local information flow and irreplaceable
bridging nodes between functional modules, respectively.

When metabolic and biochemical networks are repre-
sented as metabolite graphs, they have been known to
be scale-free and small-world [3, 24, 37]. In this work,
we found that the distribution of the degree of the
reaction graphs of all the five phylogenetically distant
microorganisms followed a power law (Fig. 2). This
agrees with previous report that reaction graphs of
cancer metabolic networks followed power law degree
distribution [13]. However, this is in contrast with a pre-
vious work showing that the E. coli reaction graph with
undirected edges was not scale-free [38]. This discrep-
ancy can be attributed to the differences in network size
and directionality: we used a directed reaction graph of
E. coli metabolic network that is much bigger than that
in the previous study [38], and considered the direction-
ality of the reaction flow, which added more nodes and
information to the network.

In this study, we found that reaction nodes linking be-
tween modules needed not be hubs with high degree. This
is contrasting to the metabolite hubs which connect mod-
ules in metabolite-centric metabolic networks [3, 24].
There were two types of connections among the modules
in the reaction graphs: the bottleneck with high between-
ness centrality and the bridge with high bridging centrality.
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The high betweenness reactions had the potential to dis-
connect the network and damage the organism’s growth
rate when removed. Although betweenness centrality was
not correlated with degree, the degrees of high between-
ness reactions were relatively high or medium (Additional
file 1: Table S2), suggesting that betweenness centrality
would measure global connectivity among central modules
with many connections. On the other hand, bridging
centrality could detect nodes which were placed on the
bridges between local biosynthesis modules with a few
connections (Additional file 1: Table S3).

We developed a novel metric, called the cascade number,
to identify local connectivity structures in directed graphs.
The cascade number can count how many reactions shut
down if one reaction is perturbed at a steady state, and can
measure their influence over local connectivity for metab-
olite flow. Perturbation of a node with a high cascade num-
ber could alter the local route of metabolic process, or
cause damage to the metabolic system. In the E. coli reac-
tion graph, 959 out of the 1251 total reactions had the cas-
cade number of zero, which implies that most reactions
did not have any influence over their local connectivity. It
has been known that universal metabolic pathways across
species, such as citric acid cycle and glycolytic pathways,
have relatively few essential reactions [39, 40]. This fact in-
dicates that important reactions are more likely to have a
backup pathway [40, 41], and therefore, the cascade num-
ber of such reactions tended to be low or zero. By contrast,
nodes with higher cascade numbers tended to be essential,
implying that their removal will result in severe breakage
of information flow in a metabolic network (Table 4 and
Additional file 1: Table S4).

Both bridging centrality and the cascade number are
local properties, reflecting local information flow within
a metabolic network. Bridging centrality can be used to
locate nodes in the network that lie on the boundaries of
modules within a network. The nodes with high bridging
centrality, even though they are located with local infor-
mation, can have global importance, forming break-
points in the information flow. The importance of the
cascade number is also potentially global, though less so
than bridging centrality. A node with a high cascade
number is a node with larger degree of influence on the
network. The global impact of a node with high local
influence can be accessed by simulation or biological
experimentation. Knowing the nodes with a large cas-
cade number informs the design of such experiments:
these nodes are more likely than others to have a large
influence and can be looked at first.

Conclusions

In this study, we explored topological features of individ-
ual reaction nodes in reaction-centric metabolic net-
works from global and local perspectives. In particular,
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we demonstrated that the cascade number and the
modified bridging centrality can identify reaction nodes
that control the local information flow in the reaction
graphs. Identification of central connectors between
local modules with the modified bridging centrality,
together with local flow connectivity, which was ascer-
tained with the cascade algorithm, is critical to under-
stand how metabolic pathways are assembled. A
metabolic network is a map that assembles central and
local biosynthesis pathways where the metabolites run
through the reactions. Identifying reaction nodes and
their associated genes important in global and local con-
nectivity between modules can be useful to prioritize tar-
gets in the fields of metabolic engineering and medicine.

Methods

Centrality metrics in a directed network

Several centrality metrics have been developed to iden-
tify important components in a network from different
centrality viewpoints [1]. Among them, we applied the
clustering coefficient and betweenness centrality to the
analysis of directed networks. As bridging centrality had
been developed for undirected networks [11], we modi-
fied it to be applied for directed networks.

Clustering coefficient

The neighbors of a node i are defined as a set of nodes
connected directly to the node i. The clustering coeffi-
cient of a node in a network quantifies how well its
neighbors are connected to each other [42]. The cluster-
ing coefficient of a node i, C(i), is the ratio of the num-
ber of arcs between the neighbors of i to the total
possible number of arcs between its neighbors. For a di-
rected network, C(i) can be calculated as:

C@) = ki,»(k;—l) ,

where #; is the number of arcs between neighbors of the
node i, and k; is the number of neighbors of the node i.
The closer the clustering coefficient of a node is to 1,
the more likely it is for the node and its neighbors to
form a cluster. By definition, it measures the tendency of
a network to be divided into clusters, and thus, is related
to network modularity. The majority of biological net-
works have a considerably higher average value for the
clustering coefficient in comparison to random net-
works, indicating that they have a modular nature [1].

Betweenness centrality

The betweenness centrality of a node is the fraction of
shortest paths from all nodes to all others that pass
through the particular node [10]. The betweenness cen-
trality of a node i, B(i), is calculated as:
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where oy is the total number of shortest paths from
node j to node k, and (i) is the total number of those
paths that pass through node i. The higher the between-
ness centrality of a node is, the higher the number of
shortest paths that pass through the node. A node with
a high betweenness centrality has a large influence on
the information flow through the network, under the as-
sumption that reaction flow follows the shortest paths
[43]. The node with a high betweenness centrality tends
to be a linker between modules, and has often been
called a bottleneck in the network [44]. Although a
bottleneck node does not necessarily have many interac-
tions like a hub node, its removal often results in a
higher fragmentation of a network, than when a hub
node is removed.

Modification of bridging centrality

The bridging centrality identifies bridging nodes lying
between densely connected regions called modules [11].
The bridging centrality of node i, BrC(i), is calculated as
the product of the betweenness centrality, B(i), and the
bridging coefficient, BC(i), which measure the global and
local features of a node, respectively [11].

BrC(i) = B(i) x BC(i)

Previously, the bridging coefficient in an undirected
network was defined [11] as:

(degree(i))™"
Zj in A(i) (degree(j))_l 7

where A(i) is the set neighbors of the node i.

In a directed network where the information flows
through a node, the node needs to have both incoming
and outgoing edges. Thus, we modified the bridging co-
efficient in a directed network as:

BC(i) =

Ay-1
> (deg;;(:;:zit)) ) if degree;,(i)=0 and degree,,; (i)#0
jin A(i) total ;

0 otherwise

BC(i) =

where degree;y,(i)
degree,,,,(i) of node i.

By definition, for a node to have a high bridging
coefficient, degrees of the node and the number of its
neighbors have to be low and high, respectively. Both
betweenness centrality and bridging coefficient have a
positive effect on bridging centrality. These indicate that
from the perspective of information flow, a good ex-
ample of a node with high bridging centrality would be a
bridge in the form of a path with length two, uniquely

is the sum of degree;,,(i) and
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delivering information between neighbors that them-
selves have high degrees (Additional file 1: Figure S1).

Development of a cascade algorithm
We devised a cascade algorithm for detecting how many
nodes are closed off from information flow when a par-
ticular node is removed in a directed network. If a node
is locked down or suffers an accidental shutdown, such a
change is propagated through the network. Any nodes
dependent on the failed node cannot receive the infor-
mation if there are no alternate path(s) bypassing the
failed node. We defined the “cascade set” of a node as
the set of nodes that cease to receive information when
the node fails, and the “cascade number” of a node as
the number of nodes in the cascade set. For two cascade
sets A and B, if a leading cascade node generating A
belongs to B, A is included in B. A cascade set becomes
independent if its member nodes are not included in any
other cascade sets. A node generating an independent
cascade set was referred to as a “leading cascade node”.
Let a directional network be an ordered pair, (V, A),
where V is the set of nodes and A is the set of arcs of
the network. Then, the cascade set and cascade number
are computed by the following algorithm:

Cascade(Node, Network(V, A))
Initialize a queue with the Node
Mark Node as cut off
Add all nodes v for which (Node,v) in A to the queue
Traverse queue
The node at the front of the queue is g
If g has no ancestors that are not marked as cut off
Mark g as cut off
Add all nodes v for which (g,v) in A to the queue
End if
End Traverse
The cascade set of Node is the set of nodes marked as cut off.

Cascade number = size of Cascade set

Graph representation of a directed reaction-centric
metabolic network

The reaction graph was represented as a directed graph
with metabolic reactions as nodes and metabolites as
arcs. The reactions and metabolites were collected from
the metabolic network models of E. coli (ijO1366) [27],
B. subtilis (iYOS844) [28], G. metallireducens (1AF987)
[29], K pneumonia (iYL1228) [30], and S. cerevisiae
(iMM904) [31] (Table 1), which were downloaded from
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the BIGG database [45] in the SBML file format. For
each of the metabolic network models, the collected re-
actions and metabolites were used to reconstruct the re-
action graph (Table 1). For example, 1805 unique
metabolites and 2583 metabolic reactions in iJO1366 of
E. coli were reconstructed to the reaction graph consist-
ing of 1251 nodes (reactions) and 9099 arcs associated
with 2014 metabolites. Adjacency matrices of the five re-
action graphs converted from the downloaded metabolic
network models are provided as Additional file 2.

A reaction graph is G = (V, A) where V is a set of reac-
tion nodes, and A is a set of V’s arcs. There exists an arc
from the reaction B to the reaction C when a product of
B is consumed by C. For example, consider following
three consecutive reactions:

ASAD: 4pasp «> aspsa

HSDy: aspsa <> hom-L

HSK: hom-L — phom

The corresponding arcs are ASAD—HSDy, HSDy—
ASAD, and HSDy—HSK (i.e., ASAD—HSDy— HSK),
where two consecutive reversible reactions of ASAD and
HSDy form the directed cycle with length of two.

Currency metabolites such as ATP, NAD, and H,O are
ubiquitously associated with metabolic reactions. However,
they are not incorporated into the final products. As path-
ways routing through the currency metabolites result in a
biologically meaningless short path length, the currency
metabolites were removed [24, 38, 46]. Similarly, transport
and exchange reactions occurring at the cell boundary
were removed, as they do not affect any relationship or re-
action flow among intracellular reactions, while they inflate
the size of the network and the average path length, and
weaken the modular structure of intracellular connectivity.

In the converted reaction graph, the degree of a reaction
node is the number of other reactions that produce (or
consume) metabolites which are consumed (or produced)
by the reaction node. For example, consider a reaction
AACPS1  (ACP[c] + atp[c] + ttdca[c] - >amp[c] + myr-
sACP[c] + ppi[c]). AACPSI has two metabolites of ACP[c]
and ttdca[c] as reactants, and one metabolite of
myrsACP[c] as a product. (Recall that the currency me-
tabolites of atp[c], amp[c], and ppi[c] were removed in the
reaction graph.) ACP[c] and ttdca[c] are produced from
other 57 reactions, and myrsACP[c] is consumed in 7
reactions. Therefore, the in-degree and out-degree of the
reaction node AACPSI are 57 and 7, respectively.

Simulation of reaction essentiality in the metabolic
networks

To identify reactions which are essential for cell growth,
flux balance analysis (FBA) [47] was performed to
simulate cell growth when each reaction was removed
from each metabolic network model. The default flux
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boundaries in the downloaded SBML files were used for
the simulation condition and maximum growth rate was
for the objective function. In FBA, the allowed nutrients
for 01366 (E. coli) were Ca®*, CI~, CO,, Co**, Cob(l)ala-
min, Cu®*, Fe**, Fe**, glucose, H*, H,0O, HPO,*", K,
Mg**, Mn**, MoO,>", Na*, NH,", Ni**, O,, selenate, sel-
enite, SO, tungstate, and Zn%*; for iYO844. (B. subtilis),
Ca**, CO,, Fe**, glucose, H*, H,0, HPO,> K*, Mg*",
Na*, NH,*, O,, and SO,*7; for iYL1228 (K. pneumoniae),
Ca*, CI7, CO,, Co**, Cu**, Fe**, Fe*", glucose, H', H,0,
HPO,>, K*, Mg**, Mn**, MoO,*", Na*, NH,", O,, SO,
tungstate, and Zn>*; for iMMO904 (S. cerevisiae), Fe**, glu-
cose, H*, H,0, HPO,>", K*, O,, Na*, NH,", and SO,*;
and for iAF987 (G. metallireducens), acetate, Cd>*, Ca",
CI, chromate, CO,, Co**, Cu*, Cu**, Fe**, Fe**, H', H,0,
HPO,*, K¥, Mg**, Mn**, MoO,*", Na*, N,, NH,", Ni**,
SO4>7, SO5>7, tungstate, and Zn>*. A reaction was consid-
ered essential if when its removal from the model led to a
growth rate less than the default threshold of 5% of the
growth objective value simulated for the wild type strain
[48]. The simulation was carried out using COBRA toolbox
version 2.0 [49] in MATLAB R2016a (Mathworks Inc.).

Additional files

Additional file 1: Table S1. Modularity and scale-freeness of the
reaction-centric metabolic networks; Table S2. The top 2% of reactions
with high betweenness centrality in the reaction-centric metabolic
network of E. coli; Table S3. The top 2% of reactions with high bridging
centrality scores in the reaction-centric metabolic network of E. coli; Table S4.
Cascade sets (with a cascade number of >4) and their characteristics in the
reaction-centric metabolic network of £. colj; Figure S1. Example of a bridge
node (n) with high bridging centrality; Figure S2. Examples of cascade sets
consisting of a linear path and a tree; Figure S3. Comparison of reactions
with high centralities identified in the reaction-centric metabolic network of
E. coli. (DOCX 221 kb)

Additional file 2: Adjacency matrices of the five reaction graphs.
(XLSX 13419 kb)

Abbreviation
FBA: Flux balance analysis
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