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Background: CRISPR-Cpf1 has recently been reported as another RNA-guided endonuclease of class 2 CRISPR-Cas
system, which expands the molecular biology toolkit for genome editing. However, most of the online tools and
applications to date have been developed primarily for the Cas9. There are a limited number of tools available for

Results: We present DeepCpf1, a deep convolution neural networks (CNN) approach to predict Cpf1 guide RNAs
on-target activity and off-target effects using their matched and mismatched DNA sequences. Trained on published
data sets, DeepCpf1 is superior to other machine learning algorithms and reliably predicts the most efficient and
less off-target effects guide RNAs for a given gene. Combined with a permutation importance analysis, the key
features of guide RNA sequences are identified, which determine the activity and specificity of genome editing.

Conclusions: DeepCpf1 can significantly improve the accuracy of Cpfl-based genome editing and facilitates the

Background

The clustered regularly interspaced short palindromic
repeats (CRISPR)-CRISPR-associated proteins (Cas), ori-
ginally derived from bacterial adaptive immune systems
[1-3], has become the center of attention since the in-
vention of CRISPR-Cas9-based genome engineering
technology [4-6]. After that, a dazzling line of CRISPR-
Cas9 applications quickly emerged: genome-scale knock-
out/activation/repression screening [7-9], epigenome
editing [10], base editing [11, 12], live-cell RNA imaging
[13], gene drive [14] and many other applications. Des-
pite the huge success of the CRISPR-Cas9 tool in gen-
ome editing, the demand for more precise and robust
CRISPR-based tools is still growing [15]. Several recent
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efforts have focused on exploring the power of alterna-
tive CRISPR-Cas systems [16—18].

CRISPR-Cas systems can be classified into two dis-
tinct classes and further subdivided into at least six
types [19-21]. The class 1 CRISPR-Cas systems (in-
cluding type I, III, and IV) are found in diverse bac-
terial and archaeal phyla, comprising about 90% of
the CRISPR-Cas loci. The remaining 10% of the
CRISPR-Cas loci belong to class 2 CRISPR-Cas sys-
tems (including type II, V, and VI), which are found
in diverse bacterial phyla but virtually absent in
archaea [17]. An additional difference between class 1
and class 2 CRISPR-cas systems is the organization of
effector module. Class 1 systems form multi-protein
effector complexes to achieve RNA-guided nucleic
acid targeting and degradation, whereas class 2 sys-
tems rely on a single-protein effector [19]. The rela-
tively simple architecture of effector complexes has
made the class 2 systems an attractive choice for use
in the new generation of genome-editing tools.

Recently, a Cas protein named Cpfl, which belongs to
the class 2 type V CRISPR-Cas system, has been
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repurposed for genome editing applications [22, 23].
Cpfl has differences from Cas9 in several aspects. First,
Cpfl is a single ctRNA nuclease that does not require a
tracrRNA. Second, Cpfl recognizes thymidine-rich PAM
sequence at the 5’end of the protospacer region. Third,
Cpf1 cleaves target DNA distal to the PAM site and pro-
duces cohesive (not blunt) ends with 4- or 5-nt over-
hangs [24-26]. Fourth, Cpfl has a conserved RuvC
nuclease domain, but lacks the HNH domain. Fifth,
Cpfl processes its own crRNAs [27]. These distinguish-
ing features of Cpfl make it a useful tool for enriching
the CRISPR-based genome editing toolkit, broadening
the spectrum of targetable genomic sites.

It's time consuming and laborious to test all guide
RNAs before staring a gene-editing experiment. In silico
guide RNAs design has accordingly become a key issue
for successful genome-editing. A number of online tools
and applications have been developed for the design of
guide RNAs. There are also several excellent reviews
and articles comprehensively summarizing and bench-
marking these tools [28—31]. Despite considerable efforts
to date, predicting the activity and specificity of guide
RNAs is still a challenge. In addition, most of tools and
methods are developed for Cas9. The number of tools
and methods for Cpfl is relatively limited. Therefore,
there is an urgent need to develop new computational
tools for Cpfl.

In this work, we propose a deep learning approach to
design Cpfl guide RNAs. Our approach of using two
convolutional neural networks classifiers stems from
classification strategies used in image classification [32],
where a first classifier predicts on-target activity using
the matched DNA sequences and a second classifier pre-
dicts off-target effects using the mismatched DNA se-
quences. Each classifier is composed of a combination of
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“one-hot” feature representations. To capture the im-
portant characteristic of functional guide RNAs, we
present the permutation importance analysis on the neu-
rons extracted by the convolution and pooling processes,
and map top neurons to original input matrix. We find
that the seed region of guide RNA sequences determines
target activity and specificity.

Results

DeepCpf1 architecture

The DeepCpfl was built and trained using the
MXNet framework in the R environment on a stand-
ard PC. The training architecture of the DeepCpfl is
given in the Fig. 1. The input layer for on-target ac-
tivity prediction is a “one-hot” matrix with a size of
16 x 26 (Fig. la). The first convolutional layer per-
forms 50 convolutions with 5 x5 filter on the input
layer, producing 50 feature maps of size 12 x 22. The
second pooling layer performs 2 x2 spatial pooling
for each feature map using the sum value, and pro-
duces 50 new feature maps with a size of 6 x 11. The
flatten layer reshapes the output of pooling layer into
a 1l-dimensional vector comprising 3300 neurons. A
fully connected layer receives the output of the flatten
layer and contains 650 neurons. Finally, the output of
the fully connected layer is fed to a linear regression
layer that assigns a score for the on-target activity.
The off-target effects classifier has a CNN architecture
similar to the on-target activity classifier (Fig. 1b). The 35
filters of size 7 x7 are applied to the input in the first
convolutional layer, followed by a pooling layer taking the
sum value of 2 x 2 regions. The flatten layer and fully con-
nected layer are composed of 1050 and 300 neurons,
respectively.

-

a

prediction. b off-target specificity prediction

Fig. 1 Inside the DeepCpf1 architecture. Data flow is from the lower left to upper right. The DNA sequence is translated into a “one-hot” matrix
as original input (white indicates 1 and black indicates 0). The convolution and pooling operations are applied to the input and produces the
output of each layer as feature maps. The feature maps are visualized as gray scale images by the image function in R. a on-target activity
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DeepCpf1 predicts Cpf1 activities using matched target
sequences
Many interrelated architectural factors determine the
performance of the convolutional network model, in-
cluding the number of layers, feature map dimen-
sions, number of parameters, etc. Therefore, the
model architecture must be carefully designed and
sized to make it appropriately for our purpose. Here,
we focused on assessing the independent contribu-
tions of three important factors: kernel sizes, the
numbers of feature maps per layer, and the numbers
of layers. For other factors, we chose rectified linear
units (ReLU) to follow each convolutional layer and
performed sum-pooling after each convolution and
rectification (Additional file 1: Figure Sla). We first
provided an overview of the model’s performance at
different kernel sizes (Additional file 1: Figure S1b).
To assess the effect of variation in kernel sizes, we
held fixed the numbers of layers and feature maps.
The 5 x5 kernel size showed the best performance as
compared to the other sizes. Next, we tested the ef-
fect of varying the number of feature maps while
holding fixed the numbers of layers and kernel sizes
(Additional file 1: Figure Slc). The best performance
was achieved when using 50 feature maps. We finally
compared the average performance of one stage
(comprising one convolutional layer and one pooling
layer) and two stages (comprising two convolutional
layers and two pooling layers) (Additional file 1:
Figure S2), but did not find an improvement in their
performance as the number of layers increases
(Additional file 1: Figure S1d).

The implemented model architecture is shown in Fig. 1a
in detail. For the total data set (size = 1251), forty-five con-
volutional network models were trained to separate potent
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and weak guide RNAs, which were pre-classified based
upon different top- and bottom-efficacy cutoffs, respect-
ively. As seen in Additional file 1: Figure S3, by excluding
guide RNAs with modest activities, the functional guide
RNAs can be more readily predicted. Thus, the CNN
model was used to make a binary classification of the top
20% most effective guide RNAs versus the bottom 80% ef-
fective guide RNAs. In order to avoid over-fitting, the clas-
sifier was validated using a 5-fold external cross-validation
procedure. Briefly, the entire dataset was randomly divided
into five equal parts. Each of the five parts was left out in
turn to form an external set for validating the model devel-
oped on the remaining four parts. This procedure was re-
peated five times in which every sequence in the dataset
was predicted. We used standard values for the base rate of
learning (0.005), momentum (0.9) and batch size of 40 ex-
amples to train the CNN classifier. The predictive perform-
ance has been estimated by the area under the curve
(AUC) of the receiver operating characteristic (Fig. 2a). Our
classifier achieved high AUCs of 0.846 + 0.03 (mean + s.d.)
on five external test sets, indicating the robustness and re-
producibility of the convolutional network model.

We compared the performance of several different
“one-hot” encoding modes. We implemented CNN-
orderl and CNN-order3 using the same training archi-
tecture, but the input matrix size was 4 x 27 and 64 x 25
instead of 16 x 26. It is worth noting that the 5 x 5 kernel
size exceeds the dimension of 4 x27 input matrix.
Therefore, we performed 4 x 1 convolution on the input
matrix, and followed by the 1 x 2 pooling in the CNN-
orderl classifier. The CNN-order2 had better perform-
ance (0.846 and 0.77 mean AUC and F1, respectively)
than did the CNN-orderl (0.78 and 0.67) and CNN-
order3 (0.79 and 0.70) (Additional file 1: Figure S4). In
addition, we found that the dimension of input matrix
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Fig. 2 Prediction of Cpf1 guide RNAs on-target activities using deep convolutional neural networks. a ROC curves showing the predictive power
of the DeepCpf1. Fivefold external cross-validation strategy was employed. b ROC curves and AUC values comparing the performance of the
CNN and other machine learning methods




Luo et al. BMC Bioinformatics (2019) 20:332

was correlated to the running time (Additional file 1:
Figure S5). We further randomly rearranged the order of
adjacent pairwise nucleotides 100 times for each input
matrix to estimate the effect of row order. New inputs
also enabled high-performance prediction with 0.83
AUC and 0.75 F1, indicating that the row order had little
effect on performance (Additional file 1: Figure S4). Fi-
nally, we explored whether the performance of our
model would be affected by neighbor sequences around
guide RNAs binding sites. New input sequences are 40
bp in length, including the 23-bp guide sequences, 4-bp
PAM sequences as well as seven nucleotides upstream
and six nucleotides downstream of the guide RNAs
binding sites. Although the CNN-order2-40bp outper-
formed the CNN-orderl-27 bp and CNN-order3-27 bp,
it was not superior to the CNN-order2-27 bp (Additional
file 1: Figure S4).

The 5-fold cross-validation was conducted to com-
pare the performance of the CNN method with
other machine learning methods, including Neural
Network (NN), k-nearest neighbor (KNN), Support
Vector Machine (SVM), Random Forest (RF), L1-
regularized linear regression (L1 regression), L2-
regularized linear regression (L2 regression), L1L2-
regularized linear regression (L1L2 regression) and
Gradient-boosted regression tree (Boosted RT). For
SVM, we considered the radial basis function (RBF)
as the kernel function, and two parameters, the
regularization parameter C and the kernel width par-
ameter y were optimized by using a grid search ap-
proach. It could identify good parameters based on
exponentially growing sequences of (C, y) (C=2"72
27% .., 2% and y=27% 27° .., 2°). The KNN algo-
rithm needed to set the number of neighbors (K) in
the set {3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23} and
the K with the highest prediction performance was
kept. The standard feed-forward neural network was
used, with a sigmoid transfer function and an opti-
mal number of hidden layer neuron. The back-
propagation algorithm was applied in training the
NN, with random initial weights. The learning rate
was set to 0.0001 and the weight decay to - 0.001.
For RF, the two parameters, ntree (the number of
trees to grow) and mtry (the number of variables
randomly selected as candidates at each node), were
optimized using a grid search approach; the value of
ntree was from 500 to 3000 with a step length of
500, and the value of mtry was from 2 to 40 with a
step length of 2. For linear regression (L1, L2 and
L1L2), the regularization parameter range was set to
search over 100 points in log space, with a minimum
of 10°* and a maximum of 10°. The Gradient-
boosted regression trees used the default setting. All
machine learning algorithms were implemented by
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the scikit-learn package in python and the predicted
values in the Additional file 1: Figure S6 were ob-
tained using the average values of 5-fold cross-
validation from the results of parameter optimization
process.

Using the same “order 2” features, the performance of
different methods is shown in Fig. 2b. CNN outper-
formed the other eight methods and the AUC scores of
0.846, 0.838, 0.832, 0.825, 0.824, 0.821, 0.811, 0.802 and
0.797 were achieved for CNN, RE, Boosted RT, L1 L2 re-
gression, L2 regression, L1 regression, NN, SVM and
KNN, respectively. Next, we tested whether the
DeepCpfl model was informative to predict the indel
frequencies of test data (Fig. 3). The activities of the 751
guide RNAs were predicted with DeepCpfl and corre-
lated to their indel frequencies. Furthermore, the per-
formance of another design tool, CINDEL [33] was also
evaluated using the same test set. The predicted effi-
ciency scores of DeepCpfl showed stronger positive cor-
relation with indel frequencies compared with CINDEL.
The spearman correlation coefficients (R) were 0.38
for the DeepCpfl and 0.27 for CINDEL, respectively.
The general applicability of both methods were fur-
ther evaluated using the independent AsCpfl-induced
indel frequency data obtained from 84 guide RNAs.
The DeepCpfl and CINDEL predicted indel frequen-
cies for guide RNAs with R=0.33 and 0.27, respect-
ively, in Fig. 3.

To further characterize the features of highly active
guide RNAs, we performed the feature analysis on
the 3300 neurons of flatten layer. We determined the
feature importance by estimating the average decrease
in node impurity after permuting each predictor vari-
able. We analyzed the top features and mapped them
from the flatten layer to the input matrix (Fig. 4a).
We observed that most of top features were gener-
ated by convolving the upper left region of input
matrix, where the thymine pairs were significantly de-
pleted at the positions adjacent to the PAM. This re-
sult provides strong evidence that the seed sequence
of guide RNAs affects CRISPR/Cpfl efficacy through
nucleotide compositions. A recent study has shown
that Cpfl pre-orders the seed sequence of the crRNA
to facilitate target binding [34]; however, thymine in
the seed sequence might destabilize interactions be-
tween the Cpfl protein and crRNA [33]. In addition,
we observed that the PAM-distal region of guide
RNAs was also crucial for prediction, suggesting that
the guide RNAs expression level was also an import-
ant factor when choosing highly active guide RNAs.
Finally, we used the kpLogo web tool [35] to visualize
the nucleotide differences between the top and bot-
tom 20% guide RNAs (Additional file 1: Figure S7).
The result is consistent with our feature analysis.
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DeepCpf1 predicts Cpf1 activities using mismatched
target sequences

The proposed network architecture for specificity predic-
tion is illustrated in Fig. 1b. The network comprises of
only one convolutional layer, one pooling layer and one
fully-connected layer with a small number of neurons.
Here, we focused on disentangling and assessing the inde-
pendent effects of two variables: the numbers of feature
maps and kernel sizes (Additional file 1: Figure S8). 35 fil-
ters of size 7 x 7 were chosen and applied to the input in

the first convolutional layer, followed by a ReLU and a
sum pooling layer taking the sum value of 2 x 2 regions.
We evaluated the performance of the CNN classifier
by using 5-fold external cross-validation. Strikingly, our
classifier was able to distinguish highly active off-target
sites from control off-target sites with high accuracy
(Fig. 5a, mean AUC, 0.826). We next compared CNN to
several additional machine learning approaches, includ-
ing Boosted RT, L2 regression, RF, L1L2 regression, L1
regression, KNN, SVM and NN. When trained on the
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same data with the same features, CNN outperformed
the other methods and their AUC scores reached 0.826,
0.809, 0.808, 0.807, 0.794, 0.792, 0.780, 0.776 and 0.757,
respectively. (Fig. 5b and Additional file 1: Figure S9).
The genome-wide specificities of Cpfl nucleases are
distinct from those of Cas9 nucleases, owing to their dif-
ferent modes of target recognition and PAM require-
ments. To roughly compare their specificities, we used
Cas-OFFinder [36] to identify all possible sites with
seven or fewer mismatches to the 20 endogenous human
gene target sites that shared common protospacer se-
quences for both AsCpfl and SpCas9 nucleases. We ob-
served that Cpfl nucleases contained much fewer off-
target sites in comparison to Cas9 nucleases (Fig. 5c),
which is in line with previous studies that Cpfl nucle-
ases were highly specific in human cells [22, 37]. We fur-
ther evaluated whether the CNN classifier could predict
the off-target sites obtained with Digenome-seq and
GUIDE-seq, two experimental approaches for detection

of crRNA target sites [22, 37]. Kleinstiver et al. carried
out GUIDE-seq experiments with two Cpfl nucleases in
U20S human cells using 19 crRNAs [37]. Kim et al.
used a total of eight crRNAs and performed Digenome-
seq experiments to identify all genome-wide Cpfl off-
target sites in vitro [22]. There were two crRNAs
(DNMT1 site 3 and site 4) overlap between two studies.
For the DNMT1 site 4, both methods showed no detect-
able off-target sites. Although the off-target sites of
DNMTT1 site 3 identified by GUIDE-seq were also de-
tected by Digenome-seq, some were unique to
Digenome-seq and showed some differences in two
methods [22, 37]. We carefully examined all off-target
sites and removed the duplicate sites as well as the sites
that cannot be found in the human genome. We finally
found 26 and 50 off-targets sites obtained using GUIDE-
seq and Digenome-seq methods, respectively. In
addition, a total of 858 false off-target sites that differed
from the crRNAs by up to six nucleotides were found
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using Cas-OFFinder [36]. We collected these true and
false off-target sites as an independent data set to evalu-
ate different machine learning algorithms. The CNN
classifier obtained the highest AUC value of 0.784 for
the independent data set (Fig. 5d).

Similarly, we evaluated the feature importance re-
ported by the permutation importance analysis on the
flatten layer. We found that the top features were mainly
extracted from the bottom of the input matrix, where
the C or G base of guide RNA sequences mismatched
with target DNA sequences (Fig. 4b). Kim et al. seg-
mented the protospacer sequences into three regions:
seed (positions 5-10, where position 1 is located to the
left in the input matrix), trunk (positions 11-22), and
promiscuous (positions 23-27), according to the effect
of base-pairing mismatches at each position [33]. They
observed that the mismatches in the seed and promiscu-
ous regions strongly and slightly decreased indel fre-
quencies, respectively; whereas the trunk region
mismatches reduced indel frequencies to an intermedi-
ate level. Our feature analysis results support this con-
clusion that the seed and part of promiscuous regions
are most important for the target specificity.

Discussion

To validate DeepCpfl in the design of guide RNAs li-
braries, we took the protein-coding genomic sequence of
TADALI, an essential gene for cell viability in cancer and
pluripotent stem cells [38], from the UCSC Genome
Browser and used DeepCpfl to screen for both CRISPR
activity and specificity. First, targetable sites for Cpfl
were identified by searching for genomic sequence
matching TTTN-N23 motif. Next, the targetable sites
that contained polyT and extreme GC content (< 30%
or >70%) were removed and the on-target activity scores
of the remaining targetable sites were predicted by the
DeepCpfl. The top 10% targetable sites ranked by the
activity scores were further retained for predicting their
off-target specificity scores. The scores were calculated
based on the number of predicted high activity off-target
sites. Finally, the optimized libraries were designed to
maximize the activity scores and minimize off-target ef-
fects (Additional file 1: Figure S10).

Recently, Kim et al. used the deep learning to improve
the prediction of CRISPR-Cpfl guide RNA activity, and
showed better performance than the previous methods
from the DNA sequences [39]. Deep learning is a form
of machine learning that uses a synthetic neural network
architecture composed of interconnected nodes in mul-
tiple layers that can be trained on input data to perform
a task. The high performance of deep learning is based
on its ability to automatically extract sequence signa-
tures, capture activity motifs and integrate the sequence
context. Our work further extends the use of deep
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learning to the prediction of Cpfl off-target sites. Differ-
ent from previous off-target sites prediction methods,
we used the one-hot encoding to translate the off-target
sites in each position as a twelve-dimensional binary
vector, in which each element represented the type of
mismatch. The one-hot encoding is very suitable for the
numerical representations of off-target sites, which can
truly reflect the information about number, position and
type of the mismatch. In addition, the CNNs can allow
computers to process spatial representations of one-hot
matrices efficiently and holistically, without relying on
laborious feature crafting and extraction. The two deep
learning models developed for the Cpfl guide RNAs ac-
tivity and specificity prediction are combined to create
optimized guide RNA libraries that maximize on-target
activity and minimize off-target effects to enable more
effective and efficient genetic screens and genome
engineering.

Conclusion

We present DeepCpfl, a deep learning framework for
predicting the activity and specificity of CRISPR-Cpfl
that explicitly captures nucleotide dependencies between
guide RNA positions. We use two convolutional neural
network based models, inspired from deep learning work
in image recognition applications and validate them by
comparing their predictions with outcomes of high-
throughput profiling experiments. In addition, we use
the permutation importance analysis to extract import-
ant combinatorial relationships between sequence posi-
tions and sequence compositions from the trained
models. Our findings not only validate previous observa-
tions but also provide new insights for intrinsic on or
off-target mechanisms. We expect that this tool will as-
sist in reducing the numbers of Cpfl guide RNAs that
need to be experimentally validated to identify potent
and specific guide sequences for a given target gene.

Methods

Materials

In a recent study, Kim and his colleagues established a
lentiviral library of Cpfl guide RNA-target sequence
pairs [33]. They used this library to determine PAM se-
quences and evaluate the activity of Cpfl with various
guide RNA sequences at matched and mismatched tar-
get sequences. In our study, 1251 matched and 344 mis-
matched target sequences cleaved by Acidaminococcus
sp. BV3L6 (AsCpfl) were collected from this published
data set to develop our deep learning models. For the
on-target activity prediction, the 1251 matched target se-
quences were first sorted by indel frequencies in de-
scending order. Next, the data were split into training
(40%, size =500) and test (60%, size =751) data. The
training data, representing the most effective guides (top
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20% in ranking) and the least potent guides (bottom
20%), were used for model architecture design and exter-
nal cross-validation, and the test data were used to test
the model’s ability to predict the indel frequencies of the
remaining guide RNAs. An additional independent test
data set of indel frequencies at 84 endogenous target
sites was used to assess the generalization power of deep
learning model. For the off-target effects prediction, we
assigned the top 20% of mismatched sequences the class
‘High activity off-target sites’; the remaining 80% were
assigned ‘Low activity off-target sites’. We assumed that
the mismatched sequences with top 20% on-target cleav-
age efficiencies were more likely to induce off-target mu-
tagenesis in vivo compared to the remaining 80%.

Encoding the DNA sequences by the “one-hot” strategy
Here, the “one-hot” encoding refers to translating a nu-
cleotide sequence into a two-dimensional numerical
matrix, where each number can take on the value 0 or 1.
For example, we used a window of 2 nucleotides and slid
it through a 27-bp target sequence with a step of 1 nu-
cleotide. The 27-bp sequence thus got converted to a
16 x 26 matrix; the row representing the position infor-
mation of each nucleotide and the column representing
all adjacent pairwise nucleotides, such as AA/AT/AC/
AG/etc. These are “order 2” features [40]. Similarly, for
other order features, we slid the sequence using different
window sizes. How to accurately describe the mismatch
information of each off-target sequence is a key issue for
off-target effects prediction. Previous prediction algo-
rithms can roughly be categorized into two classes: some
simply use sequence alignment with mismatch counts to
exhaustively search for off-target sites [36, 41, 42], while
others use a specificity score calculation on the basis of
a matrix of mismatch weights, obtained empirically, that
reflects the importance of each position on cleavage effi-
ciency [40, 43, 44]. Taking inspiration from the “one-
hot” encoding, we translated each mismatch sequence
into a 12 x 27 matrix, which truly reflected the informa-
tion about number, position and type of the mismatch.
In the matrix, the row represents the mismatch position
and the column represents mismatch type, such as AT/
AC/AG/etc.

Convolutional neural network

Convolutional neural networks (CNN) were originally in-
spired by Hubel and Wiesel's seminal work on the cat’s vis-
ual cortex [45]. LeCun introduced the computational
architecture of CNN, which has been applied with great
success to the detection, segmentation and recognition of
objects and regions in images [46]. The typical architecture
of CNN is composed of a series of stages. Each stage is
structured as three types of layers: a convolutional layer, a
non-linearity layer, and a pooling layer [47]. The input and
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output of each layer are sets of arrays called feature maps.
In the convolution layer, the convolution operation scans
the feature maps of previous layer through a set of weights
called a filter bank to produce output feature maps using

the formula: f7 = S« wy;, where: f'; is the output
feature map, f’ Z’l is the input feature map and wy; is the fil-

ter (kernel). All components in a feature map share the
same filter bank. Different feature maps in a layer are
formed by different filter banks. The output after convolu-
tion operation is then passed through a nonlinear activation
layer, such as the Rectified Linear Units (ReLU). Compared
with traditional tanh or sigmoid functions, the ReLU has
more sophisticated non-linearities without suffering from
the vanishing gradient problem. The role of the pooling
layer is to reduce the dimension of feature maps by mer-
ging semantically similar features into one. A typical pool-
ing operation computes the average values, max values or
sum values over a region in one feature map. After one,
two or more stages of convolution, non-linearity and pool-
ing operations, a fully connected layer receives the output
of last stage and passes new output to a soft-max loss
function.

Evaluation of model performance

The trained classification models are evaluated using re-
ceiver operating characteristic (ROC) curve and F1
score. Both classification metrics are calculated from
true positives (TP), false positives (FP), false negatives
(EN) and true negatives (TN). The ROC curve plots the
true positive rate (TPR = TP/(TP + FN), also called sensi-
tivity), against the false positive rate (FPR=FP/(FP +
TN)), which equals 1-specificity. The area under the
ROC curve is AUC, representing the trade-off between
sensitivity and specificity. The maximum value of AUC
is 1.0, denoting a perfect prediction, while a random
guess gives an AUC value of 0.5. The F1 score balances
recall and precision equally and combines them in a sin-
gle score:

TP

Fl=2%—"—7"——
2TP + FP + EN

F1 score falls in the interval of [0, 1]. A perfect classifier
would reach a score of 1 and a random classifier would
reach a score of 0.5.

Additional file

Additional file 1: Figure S1. The one-stage model architecture
optimization for activity prediction. Figure S2. The two-stages model
architecture optimization for activity prediction. Figure S3. Comparison
of classification performance for different top- and bottom-efficacy
cutoffs that used to construct training data set. Figure. S4. AUC values
and F1 scores comparing the performance of the different “one-hot”
encoding modes. Figure S5. Higher order features consume more
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computation time. Figure S6. Optimized parameters determination and
5-fold cross validation for the activity prediction using scikit-learn package
in python. Figure S7. Preference of nucleotide sequences that impact
Cpf1 guide RNAs activity. Figure S8. The model architecture optimization
for specificity prediction. Figure S9. Optimized parameters determination
and 5-fold cross validation for the specificity prediction using scikit-learn
package in python. Figure S10. Visualizing and filtering guide RNAs for
the TADAT gene. The optimized 10 guides were chosen based on the
high on-target activity and less off-target sites. (DOCX 2931 kb)
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