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Abstract

Purpose of review—Current clinical pathological classifications of glomerular diseases are 

inadequate at predicting patient disease progression or response to therapy. With the advent of 

precision medicine and its successes in oncology, it is important to understand if similar 

approaches in glomerular diseases can improve patient management. The purpose of this review is 

to summarize approaches to obtain comprehensive molecular profiles from human biopsies and 

utilize them to define the pathophysiology of glomerular failure.

Recent findings—Multicenter research networks have provided the framework to capture both 

prospective clinical disease course and patterns of end organ damage in biopsy cohorts. With these 

sample and data sets in hand, efforts are progressing towards molecular disease characterization, 

identification of novel prognostic marker, development of more precise clinical trials and 

discovery of predictive biomarkers to more effectively stratify patients to appropriate treatment 

regiments. Partnerships between academia, public funding agencies and private companies seek to 

improve timelines and maximize resources while also leveraging domain expertise in an integrated 

framework to holistically understand disease.

Summary—The application of system biology techniques within team science frameworks 

across disciplines and continents will seek to realize the impact of precision medicine to bring 

urgently needed novel therapeutic options to patients with glomerular disease.
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INTRODUCTION

Patients with glomerular disease present with a disease driven by dysfunction of specific 

segments of the nephron, but with nonspecific, syndromic disease presentations. Access to 

kidney tissue via renal biopsy has been an essential tool to link nonspecific clinical 
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presentations to distinct structural damage pattern in the glomerulus and along the nephron. 

These damage patterns are subsequently linked to systemic autoimmune (i.e. systemic lupus 

erythematosus, vasculitis) or metabolic (diabetic nephropathy) diseases or aggregated into 

groups of intrinsic renal diseases [i.e. focal segmental glomerulosclerosis (FSGS), 

membranous nephropathy, and minimal change disease (MCD)]. However, the current 

disease classification has limited ability to predict an individual patient’s response to therapy 

or disease progression, as it does not accurately explain the underlying molecular disease 

heterogeneity. A molecular-pathophysiological characterization will help to understand the 

underlying mechanistic causes of the disease and abnormal biology to inform novel 

intervention strategies with increased efficacy and reduced toxicity [1–3].

The development of molecular profiling techniques underlying precision medicine married 

with the fact that renal tissue is readily available presents a unique opportunity for precision 

medicine to advance our understanding of glomerular disease and help improve patient care.

Precision medicine is essentially the generation, analysis, and understanding of molecular 

characterization data to more accurately diagnose and treat a patient (i.e. the right drug at the 

right time for the right patient). Precision medicine is often driven by large-scale molecular 

profiling technologies (also referred to as omics technologies), which can define a 

prospective tissue at the different layers of molecular characterization, including the 

genome, transcriptome, proteome, metabolome, lipidome, and epigenome level. These types 

of data paint a multidimensional image of a patient’s disease and can help to define the 

specific mechanism and the molecular abnormalities underlying its progression (Fig. 1).

One of the biggest challenges in precision medicine, however, is to define opportunities and 

challenges and manage expectations for this approach. The oncology field, which is 

generally regarded as the most advanced in the application of precision medicine may be 

used as an example to help contextualize the expectations of precision medicine by the 

kidney disease community. Substantial efforts and resources have been dedicated to 

precision medicine approaches in oncology, leading to initial successes, which can generally 

be summarized into four categories: molecular characterization of disease subtypes via 

improved understanding of the underlying molecular pathophysiology, improved clinical 

management through the use of prognostic biomarkers to define patient populations most 

likely to benefit from intervention, design of targeted clinical trials via molecularly informed 

patient stratification, and finally identification of predictive biomarkers to monitor individual 

patient’s responses to targeted therapies based on the patient’s disease biology.

MOLECULAR DISEASE CHARACTERIZATION

Large-scale consortia like The Cancer Genome Atlas (TCGA) and International Cancer 

Genome Consortium (ICGC) molecularly characterize cancer disease subtypes. The 

networks use multiple omics approaches including transcriptomic, proteomic, genetic, 

metabolomics, and epigenetic analysis for a deeper understanding of the disease’s molecular 

pathophysiology.
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Parallel efforts are also underway in glomerular disease (NEPTUNE, KPMP, AMP and 

CureGN). A concern raised towards implementing a molecular disease characterization 

approach in kidney disease is that it is much more difficult to procure the same sample sizes 

as those obtained in the large cancer consortiums like TCGA (n = 11000) and ICGC (N = 17 

000). Upon further analysis, the disease-specific subcohorts used for molecular analysis that 

resulted in the majority of the clinically relevant findings were significantly smaller. There 

were over 11 000 patient samples collected in the overall TCGA cohort but the average 

number of samples per disease cohort was 300. In fact, in a survey of the 212 study cohorts 

curated in the cancer cBioportal, 22% have less than 50 samples and the majority had less 

than 200 samples (65%), indicating that meaningful information can be derived from omics 

studies with less than 200 patients. Specifically, 99 out of the 137 studies (73%) in 

cBioportal with less than 200 patient led to meaningful novel discoveries that were 

published in high impact peer-reviewed journals.

It is, therefore, reasonable to expect meaningful results from studies with sample curation of 

50 samples, which is very well within the sample resource constraints within the ongoing 

kidney disease cohorts. As an example, the Nephrotic Syndrome Study Network 

(NEPTUNE) consortium, which enrolls adults and pediatric patients presenting with a 

clinical diagnosis for FSGS, MCD, or membranous nephropathy, has already collected 

detailed prospective clinical data and biological material including biopsies for molecular 

profiling from more than 450 Nephrotic Syndrome research participants. This type of 

sample size is well above the average enrollment for any of the major cancer studies 

mentioned above. The long-term observational data gathered include tissue level molecular 

profile such as transcriptome analysis. These data sets can be used not only to help further 

molecular characterization of Nephrotic Syndrome but also identify molecular subtypes 

useful for novel therapeutic strategies. To date this study has led to 35 publications including 

clinical, molecular, and genetic findings regarding

Nephrotic Syndrome, comparable in size to the efforts in oncology and can advance our 

understanding of the molecular pathophysiology. For example, the molecular mechanism 

mediating the excessive risk linked to variance in apolipoprotein L1 (APOL1) for glomerular 

diseases [like HIV-associated nephropathy (HIVAN), FSGS and lupus nephritis) and end-

stage renal disease (ESRD) in black patients [4–6] are being analyzed via integrative 

genomics strategies in human biopsy tissues [7].

The NIDDK’s Kidney Precision Medicine Project’s (KPMP, see www.kpmp.org) 

overarching goal is to display the molecular phenotypes of acute kidney injury (AKI) and 

chronic kidney disease (CKD) in their structural context and develop a readily accessible 

kidney tissue atlas for the renal research community and people suffering from kidney 

disease. The consortium will utilize next generation technologies for assignments of 

molecular states to renal tissue with high spatial resolution to aid in the development and 

implementation of targeted therapies.

The specific goal of these analyses is to address the tissue heterogeneity common to 

complex organ systems. The kidney shows high complexity in this context as each of the one 

million nephrons [8■] is a highly specialized unit requiring spatially tightly defined cellular 
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functions to generate and process the glomerular ultrafiltrate [9]. The renal cells are 

distinguishably by gene expression patterns and vary in origin and exist in various states of 

activity and metabolism at one time. In-silico nano-dissection methods exist to deconvolute 

the bulk transcriptome to identify unique renal cell type signatures [10] but these approaches 

are most effective when paired with data derived from single-cell analyses to discern the 

cell-type-specific molecular markers associated with the unique cells. Both approaches can 

be useful for determining cell-type specific roles in disease causality and molecular 

subtypes.

Robust information can also be derived from meta analyses of heterogeneous studies. For 

example, in the TCGA ovarian cohort, when the researchers integrated data from three 

different gene expression platforms, only 11864 out of the more than 20 000 genes were 

used for transcriptional analysis and those were enough to molecularly characterize four 

novel subtypes of ovarian cancer that associated with clinical outcome [11]. The authors also 

needed to address batch effects between the studies and after combining all data identified 

~1500 genes to perform their clustering analysis. Despite these challenges, four molecular 

subtypes of ovarian cancer were identified, which were subsequently validated 

independently using a well annotated cohort profiled on a single array platform with longer 

follow-up [12].

PROGNOSTIC BIOMARKERS

Prognostic biomarkers based on genomic tests derived from transcriptional signatures are 

now used to clinically manage patients and predict outcomes in breast and ovarian cancer. 

The landmark breast cancer article in which microarray gene expression was utilized to 

describe molecular subtypes in breast cancer included only 42 patient samples [13]. Perou’s 

seminal publication describing molecular subtypes in breast cancer has accumulated over 

12000 citations. Although larger studies since then have further refined the subtypes, the 

original subtypes they described were meaningful to clinical decision-making in breast 

cancer and provided the basis for Food and Drug (FDA)-approved gene expression 

signatures as prognostic biomarkers [14]. These tools are now utilized to determine patients 

with good prognosis who are needed to be monitored rather than subjected to aggressive 

forms of therapies. Similar type of strategies could be envisioned in glomerular disease to 

identify molecular signatures to improve the clinical management of patients [15]. Those 

patients with a good prognosis can be managed with current clinical protocols and 

monitored regularly rather than being subjected to aggressive therapies like immunologics 

with known toxicities [16–18].

The hope is that the multiscalar data integration approaches in the glomerular disease 

consortia will lead to the development of molecular signatures useful for clinical decision-

making [19]. Similarly, the Biomarker Enterprise to Attack diabetic kidney disease (BEAt-

DKD) is a large international consortium with the objective of utilizing a system biology 

approach to identifying and validating novel predictive and prognostic biomarkers in DKD 

(for more on BEAt-DKD see the public and private partnership section below).
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So far, the prognostic markers in the kidney disease are single markers. The hallmark finding 

that illustrates how a single study can change an entire disease area is the identification of 

podocyte membrane glycoprotein, N-type phospholipase A2 receptor (PLA2R), as the first 

and dominant autoantigen discovered in primary membranous nephropathy [20]. PLA2R-

positive membranous nephropathy is now a molecular defined disease entity and PLA2R 

antibody levels are starting to be utilized as diagnostic biomarker predictive of lower risk of 

spontaneous or immunosuppressant-induced remission, higher risk of Nephrotic Syndrome 

and ESRD [21–23]. Kidney injury molecule 1 (KIM-1) is an epithelial transmembrane 

glycoprotein, which has emerged as a marker of tubular injury [24–26]. Neutrophil 

gelatinase-associated lipocalin (NGAL) levels can distinguish acute kidney injury (AKI) and 

prerenal AKI and associated with unfavorable outcome [27]. Epidermal growth factor was 

identified in a comprehensive transcriptomic-based CKD biopsy study from a list of 

candidate biomarker associated with CKD progression, kidney tissue specificity, and 

correlation between its mRNA levels in kidney biopsies and urinary protein level [28,29■].

NOVEL TRIAL DESIGN

Novel trial designs based on molecular profiling data are being implemented to test precision 

medicine-based therapies [LUNG-MAP (NCT02154490), NCI-MATCH (NCT02465060), 

TAPUR(NCT02693535), and ENTRECTINIB (NCT02568267)]. For example, the landmark 

TCGA study in squamous cell lung cancers that led to the Lung MAP clinical trial included 

178 patient samples [30]. This ‘first-of-its-kind clinical trial model uses a multidrug, 

targeted screen approach to match investigational new treatments based on the unique tumor 

profiles of a patient’ (https://www.lung-map.org/about-lung-map) [31]. Molecular profile-

informed clinical trial designs are coming within reach based on data emerging from the 

ongoing glomerular disease cohort studies like NEPTUNE. One challenge for patient 

stratification in clinical trials will be to balance recruitment of a preselected patient 

population based on molecular signature and eliminating likely nonresponders with the need 

to effectively accrue patients. Defining novel clinical trial end points like proteinuria 

remission or 40% reduction in eGFR is further improving feasibilty of clinical trials in 

glomerular diseases. The emergence of consortiums in renal disease, which mirror the large 

cancer consortium will help in patient accrual and implementing precision medicine trials in 

glomerular disease. Furthermore, a shift in paradigm towards public-private partnerships 

(see below) for efficient clinical development and implementation can enhance clinical trial 

capacity further.

PREDICTIVE BIOMARKERS

FDA-approved predictive biomarkers based on genomic tests utilizing mutational analysis 

are part of targeted therapies in lung (EGFR) [32], ovarian (BRCA) [33], and skin cancers 

(BRAF) [34] and help stratify patients to the appropriate therapy regimen. Although, it is 

well established that cancer is a disease of the genome, the discoveries in oncology are not 

necessarily related to mutational changes only. A landmark breast cancer study used 

transcriptional profile as a predictive biomarker. The cyclin dependent kinase (CDK) 

inhibitor palbociclib, which had failed to reach market, obtained FDA approval to treat 

hormone receptor positive HER2-advanced or metastatic breast cancer after clinical trials 
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were designed based on a preclinical molecular profiling study that used gene expression 

data from 47 human breast cancer cell lines to help identify a responsive molecular subtype 

[35,36]. Iorio et al. [37■] demonstrated in a recent Cell article that gene expression data in 

contrast to mutation, copy number variation, or DNA methylation data were most predictive 

of response to drugs.

In renal disease, the Janus kinase signal transducer and activator of transcription (JAK-

STAT) pathway was identified as biological target for pharmacological intervention from a 

transcriptomic study in diabetic kidney disease (DKD) biopsies [38]. JAK and STAT are 

important regulators of the inflammatory signaling molecule such as IL-16, IL-12, IL-23, 

and interferon-alpha. The binding of such ligands to their receptors leads to an activation of 

the signaling pathway that results in the transcription of pro-inflammatory target genes like 

CCL2, IL-24, and SOC1, which are a major genetic signature in DKD and lupus nephritis 

[38–40]. Differential gene expression analysis comparing transcriptomes collected from the 

tubulointerstitial and glomerular compartment from early and late stage DKD with controls 

identified the activation of the pathway, specifically differential regulation of the 

downstream transcriptional targets [38]. This discovery led to a phase II clinical trial [41■], 

which demonstrated that a JAK1/2 inhibitor can significantly reduce albuminuria in patients 

with DKD.

Subsequently, expression and urinary excretion of CCL2 [42–44], a target of the JAK STAT 

pathway, is increased in patients with diabetic nephropathy and blockage of its interaction 

with CC-chemokine receptor 2 (CCR2) in animal models reduces progression of the disease 

[45,46]. High urinary CCL2 levels are also associated with worse outcomes [47]. Thus, 

several studies have explored CCR2 inhibitors in human DKD, testing their ability to reduce 

proteinuria in patients (NCT017120161, NCT01447147).

PUBLIC-PRIVATE PARTNERSHIP AS THE NEXT LEVEL OF SYSTEM 

BIOLOGY

Just as there is a continuum of data types from the clinical data to the phenotype and 

genotype, a similar continuum exists for the drug development processes that stretches from 

public academic entities and funding institutions, nonprofit disease advocacy groups, and 

private entities like molecular diagnostic companies and biopharmaceutical companies. Each 

data type provides a unique insight into the molecular pathophysiology of the disease. 

Linking data with each other in an integrated analytic approach can lead to enhanced 

molecular characterization of the disease for therapeutic target identification. Similarly, each 

entity along the drug development process has established domain expertise. Public–private 

partnership in precision medicine aims to integrate the diverse expertise with the goal to 

enhance the utility of the systems biology approach and further accelerate the development 

of novel therapies.

The Accelerating Medicine Partnership (AMP) Rheumatoid Arthritis (RA)/Lupus Network 

(LN) is a prime example of this type of initiative and is a collaborative group effort 

involving the National Institute of Health (NIH), the US FDA, biopharmaceutical 

companies, and an investigative community from many nonprofit academic organizations. 
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AMP RA/LN aims to leverage systems biology combined with single cell-profiling 

approaches to accelerate the discovery of novel biomarkers and relevant targets for the 

treatment of RA, lupus and related autoimmune disease.

BEAt-DKD is an international public–private partnership specifically developed for diabetic 

kidney disease with the aim of utilizing systems biology approaches to develop prognostic 

and predictive biomarkers to improve the clinical outcome for patients. BEAt-DKD is 

leveraging insight gained by preceding European Union-funded activities in systems biology 

of renal disease (SysKid and Summit) and is now integrating these large cohort data sets 

including clinical, pathological, and biochemical parameters. The group has already 

identified five novel subtypes of diabetes [48■], which robustly predict of risks for diabetic 

complications like DKD with the potential to identify early treatment options for patients at 

high risk of complications.

The Renal Pre-Competitive Consortium (RPC2) is a public–private partnership with the 

specific aim of accelerating drug development in chronic kidney disease (CKD) through the 

use of a systems biology approach to identify both prognostic and predictive biomarkers as 

well identify targets for novel drug discovery. The data types include clinical data from 

routine diagnostics, morphometry digital disease, gene expression, genome-wide association 

studies (GWAS) from kidney biopsies, and proteomic and metabolomics data from blood 

and urine specimen [49■].

CONCLUSION

Precision medicine has helped to improve treatment and increase survival for cancer 

patients. In kidney disease, first successes of this approach are emerging defining molecular 

subtypes like PLA2R-positive membranous nephropathy or inflammatory subtypes in DKD. 

Looking at the landscape of precision medicine in kidney disease, a critical element of 

success will be to further develop collaborative approaches across disciplines and continents, 

which evidently have been so successful in cancer research. This strategy will not only 

benefit from pooling resources but also most importantly can accelerate the time window to 

bring urgently needed novel therapeutic options to patients with CKD.
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An informative discussion about the establishment of a specific public private partnerships (RPC2) and 

how the partnership can strengthen the utility of multiscalar data.
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KEY POINTS

• Multidisciplinary precision medicine consortiums in glomerular disease will 

help advance our understanding of the molecular pathophysiology in patients 

with glomerular disease.

• The precision medicine efforts in glomerular disease are using next generation 

application of traditional omics technologies to untangle the molecular and 

cellular heterogeneity in kidney tissue.

• Multiscalar data integration approaches are aimed to develop molecular 

signatures useful for therapeutic target identification, patient stratification and 

ultimately clinical decision-making.

• Public-private partnership represents the next level of system biology 

application to improve the timeline of bench to bedside discoveries.
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FIGURE 1. 
Precision medicine in glomerular diseases. In glomerular disease, molecular profiling 

technologies can be key to defining prospective tissue at the different layers of molecular 

characterization. This approach can paint a more global multidimensional image of a 

patient’s disease, which can lead to improved molecular disease characterization and trial 

design as well as leading to novel prognostic and predictive biomarkers.
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