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Abstract

Acute Kidney Injury (AKI) in critical care is often a quickly-evolving clinical event with high morbidity and mortality.
Early prediction of AKI risk in critical care setting can facilitate early interventions that are likely to provide ben-
efit. Recently there have been some research on AKI prediction with patient Electronic Health Records (EHR). The
class imbalance problem is encountered in such prediction setting where the number of AKI cases is usually much
smaller than the controls. This study systematically investigates the impact of class imbalance on the performance of
AKI prediction. We systematically investigate several class-balancing strategies to address class imbalance, includ-
ing traditional statistical approaches and the proposed methods (case-control matching approach and individualized
prediction approach). Our results show that the proposed class-balancing strategies can effectively improve the AKI
prediction performance. Additionally, some important predictors (e.g., creatinine, chloride, and urine) for AKI can be
found based on the proposed methods.

Introduction

Acute Kidney Injury (AKI) is a clinical event characterized by a sudden decrease in kidney function, which affected
about 15% of all hospitalizations and more than 50% of patients in intensive care unit (ICU)1. Despite some precaution
measures employed in hospitals, the incidence rate of AKI keeps increasing in recent years, which affects 13.3 million
patients per year and resulting in 1.7 million deaths per year2. The mortality rate of AKI can reach 50% in the ICU and
cause a considerable increase in healthcare expenditures that range from $5.4 to $24.0 billion in the United States3.
In addition, AKI is associated with with end-stage renal disease, and chronic kidney disease, which might require
ongoing dialysis and kidney replacement4.

According to the International Society of Nephrology5, identifying patients at risk of developing AKI may produce
better outcomes than merely treating the established AKI. A direct method for AKI risk stratification is by analyzing
any rise in serum creatinine level or decrease in urine output6. A number of biomarkers-based (e.g., NGAL, Cystatin C,
and KIM-1, OPN, IL-18) methods were proposed for early detection of AKI by considering serum, plasma, or urine7.
However, quantifying biomarkers is very expensive and time-consuming. Some score-based methods were used for
the identification of AKI. Both the Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential
Organ Failure Assessment (SOFA) severity scores were used to examine outcomes in patients with AKI8. Several
studies assessed clinical decision support (CDS) tools for the identification of AKI9, 10. However, these methods mainly
focused on the retrospectively identifying AKI patients, rather than on prospectively predicting AKI risk.

With the rapid development of computer hardware and software technologies, patient EHRs are becoming increas-
ingly available. These data become a great resource for healthcare analytics. Recently, numerous data-driven models
were proposed to predict AKI risk in different clinical settings11–16. Some of these methods used machine learning
algorithms to analyze patient EHRs and develop models for the prediction of AKI in critical care15, 16.

Generally speaking, the prevalence of AKI is usually lower than 20%, which results in an imbalanced class ratio in
collected patients dataset. This class imbalance could severely impact the prediction performance. This is because
most machine learning classifiers are constructed to maximize the entire number of correct predictions, which are
more sensitive to the majority class and less sensitive to the minority class17. Thus, if the imbalance issue is not
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properly addressed, the classification output can be biased towards majority class and lead to poor performance on
AKI prediction. The misclassification of AKI prediction including false negative cases and false positive cases can
affect the choice of therapeutic and the prognosis, which may increase the risk of condition deterioration and the
overuse of medical resource, respectively. Most of previous studies on AKI prediction did not explicitly address the
class imbalance problem. In addition, class imbalance is pervasive in many medical predictive modeling tasks. Thus,
it is important to address the class imbalance problem and improve the performance of minority class prediction.

This study systematically addresses the class imbalance problem in AKI prediction. Specifically, the traditional statis-
tical approaches, case-control matching approach, and individualized prediction approach are investigated. Our 5-fold
cross-validation experimental results demonstrate that with class balancing techniques the prediction performance can
be effectively improved. Compared with traditional statistical methods, case-control matching shows better perfor-
mance, and individualized prediction approach performs the best.

Methods

Data Set

The patient data used in our study are from the Medical Information Mart for Intensive Care III (MIMIC-III) database18.
The collection of MIMIC-III dataset is passive and de-identified, which is in compliance with the Health Insurance
Portability and Accountability Act (HIPAA) Privacy Rule and does not produce significant impacts on patient safety15.
This database was open sourced and freely accessible, and contained approximately sixty thousand admissions of pa-
tients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. In
particular, this database included information such as patient demographics, vital signs, laboratory test results.

AKI Case Definition: In this study, we focus on stage-I AKI, which is defined by three criteria based on Kidney Disease
Improving Global Outcomes (KDIGO) Clinical Practice Guideline19: (1) Increase in serum creatinine by ≥ 0.3 mg/dl
(≥26.5 mol/l) within 48h; or (2) Increase in serum creatinine to ≥1.5 times baseline, which is known or presumed to
have occurred within the prior 7 days; or (3) Urine volume < 0.5 ml/kg/h for 6h.

Patient Features: We extracted groups of features from MIMIC-III as follows. Additional details about features can
be found at https://github.com/xuzhenxing2018/amia/blob/master/features_name.xlsx.

(1) Demographics: Gender, age and ethnicity.

(2) Medications: Medications20 that the patient take from the patients ICU admission until prediction time. We mainly
considered the following categories: diuretics, Non-steroidal anti-inflammatory drugs (NSAID), radiocontrast agents,
and angiotensin.

(3) Comorbidities: Comorbidities that patients already have. We mainly considered the following categories: conges-
tive heart failure, peripheral vascular, hypertension, diabetes, liver disease, myocardial infarction (MI), coronary artery
disease (CAD), cirrhosis, and jaundice.

(4) Chart-events: Vital signs measured at the bedside. We mainly considered diastolic blood pressure (DiasBP),
glucose, heart rate, mean arterial blood pressure (MeanBP), respiration rate, SpO2, systolic blood pressure (SysBP),
and temperature.

(5) Lab-events: Laboratory test results. We considered bicarbonate, blood urea nitrogen (BUN), calcium, chloride, cre-
atinine, hemoglobin, international normalized ratio (INR), platelet, potassium, prothrombin time (PT), partial throm-
boplastin time (PTT), and white blood count (WBC).

(6) We also consider the average of urine output and the minimum value of estimated glomerular filtration rate (eGFR).

Data Pre-Processing: If an ICU stay contained missing demographics and discrete variables, we deleted this ICU
stay. For time-dependent continuous variables(e.g. lab, chart-events), we calculated statistics including the first, last,
average, minimum, maximum, slope and the count based on observations during the observation window. Then we
used mean imputation to fill missing continuous values and min-max scaler to normalize all these observations. And
contained discrete variables (e.g. medication and comorbidities) were encoded as zero-one multi-hot vectors. In this
way, each ICU stay is indexed by icustay id, and represented as a 147-dimension feature vector.
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Experimental Setting

We adopted a predictive modeling setting with a rolling observational window design. Specifically, suppose t is the
elapsed time (in hours) after the patient was admitted to ICU, we utilized the patient records in t to predict the AKI
risk in the next 7 days, where t takes value in 24, 48, 72, 96, 120, 144 hours. An illustration of such rolling window
design is shown in Figure 1. For each ICU stay, we obtained labels (AKI, or non-AKI) based on whether one of the
three criteria in KDIGO definition was satisfied in the prediction window. Note that, if a patient met AKI criteria on
admission to the ICU, we excluded the patient for prediction in order to avoid predicting AKI on top of AKI. We also
excluded patients whose creatinine and urine data were missing for the whole time period that is being predicted.

Figure 1: An illustration of AKI prediction. PP: prediction point; DCW: data collection window; PW: prediction
window.

Handling the Class Imbalance Problem

The Class Imbalance Problem. The AKI class ratio is highly imbalanced in our data, which is detailed in Table 1.
This may affect the prediction performance severely. We investigated the following strategies to handle such class
imbalance problem. And all the class-balancing technique was applied to the training data after cross-validation.

Table 1: The number of AKI and non-AKI samples in our dataset.

24h 48h 72h 96h 120h 144h
AKI 8537 4778 3212 2239 1592 1195

non-AKI 30729 30703 30600 30486 30410 30337
Total 39266 35481 33812 32725 32002 31532

Traditional Class-Balancing Techniques. In this section, the classical under-sampling and over-sampling methods for
addressing class imbalance problem are introduced.

(1) The random under-sampling strategy (RU): One of the most common and simplest strategies to handle imbalanced
data is uniformly random under-sampling of the controls to achieve equal number of cases and controls. This process
will be repeated multiple times and a predictor is constructed for each created balanced dataset. Then these predictors
will be combined through majority voting.

(2) Cluster Centroids (CC): This technique uses K-means method to cluster the controls, and the cluster centroids will
be extracted as the negative samples. The K was set as the number of cases to construct a balanced dataset.

(3) Instance hardness thresholding (IH)21: This technique trains a classifier on the controls and removes the controls
with lower probabilities. Due to the probability outputs, it is not always easy to acquire a specific number of samples.
Classifier we selected was random forest classifier.

(4) One-sided selection method (OS)22: This technique performs under-sampling method based on Tomeks links23 and
1-nearest neighbor rule to remove the noise samples from majority class samples.
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(5) Edited data set using nearest neighbors (ENN)24: This technique uses a nearest-neighbors algorithm and selection
criteria to remove samples in the class to be under-sampled.

(6) Synthetic Minority Oversampling Technique (SMOTE)25: This technique uses the existing minority class samples
to synthesize elements for the minority class, which randomly chooses a point from the minority class and computes the
k-nearest neighbors for this point, and then the synthetic points are added between the chosen point and its neighbors.

(7) The combination of over- and under-sampling using SMOTE and Tomek links (ST)26: Since SMOTE does not
consider any knowledge regarding the underlying distribution of samples, some noisy samples can be generated, e.g.,
when the different classes cannot be well separated. It is useful to employ an under-sampling algorithm to clean
the noisy samples. Thus, the combination of SMOTE and Tomek links is performed, which uses SMOTE for over-
sampling and Tomek links for cleaning.

The Case-Control Matching Strategy (MS). This method matches each case with a control based on the APACHE II
score27 and Charlson comorbidity index28, and demographic information. Specifically, a matched control needs to (1)
have the same gender as the case, and the age difference is within 5 years; (2) have the highest similarity score with
the case measured by Manhattan distance based on APACHE II and Charlson comorbidity index. By this means, a
resampled balanced training set was constructed with matched cases and controls.

Individualized Predictive Modeling (IS). Individualized predictive models are customized for a specific sample using
the information acquired from similar samples. The similarity is measured with gower similarity which is one of the
most popular measures of proximity for mixed data types29, 30. Compared to global models built on all samples, this
strategy has the potential to find more individualized risk factors and obtain more accurate results. Specifically, the
process for the individualized predictive modeling of a sample is shown as follows.

(1) Receive a sample S for testing and obtain feature vector which were summarized in the previous section of patient
features. (2) Use gower similarity to find a cohort of K similar case samples and K similar control sample from all
training samples, which constructs a cohort of 2K samples. (3) Build a model based on the similar sample cohort and
predict label for sample S individually.

Predictive Models

For each predictive model, we used 5-fold cross validation to assess the performance. During each fold of iteration,
we applied different balancing techniques to sample a balanced training dataset, on which classifier was trained. In
general, we used global testing technique which means that all samples in testing dataset are predicted using the
same classifier trained on the same training dataset. In particular, individualized predictive model used local testing
technique, which means a customized classifier is trained on a customized training set and used to predict label for
each sample in testing dataset.

We used several predictive models including `2 norm regularized Logistic Regression (Ridge)31, Elastic Net regu-
larized Logistic Regression (EN)32, Random Forest (RF)33 and Gradient Boosting Decision Tree (GBDT)34. For the
implementations of Ridge, EN, and RF, we used Scikit-learn software library35. For the GBDT, we chose XGBoost
software library36. And the traditional balancing strategies were implemented with imbalanced-learn tool37. For class
balancing techniques involving random (under or over) sampling, the sampling process were repeated 50 times. The
gower similarity was calculated on the basis of the gower soft package38. We quantified our models with several
robust measurements including AUC (the area under the receiver operating characteristic curve), recall, precision and
F-score. For individualized predictive modeling, the size of the similar sample cohort were tuned from 200 to 600.

Results

Comparison of Different Methodologies with All Patient Features

We tested the performance of different predictive models with different class-balancing techniques using all patient
features with varying data collection windows. Figure 2 showed the performance of these approaches in terms
of AUC. For performance in terms of precision, recall and F-score one can refer to https://github.com/
xuzhenxing2018/amia.
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Figure 2: The AUC of different methods with 24-144 hours of data collection window. A-F denotes 24-144, respec-
tively. IMB: imbalance data.
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From Figure 2, we can observe that

• Class balancing techniques can improve the prediction performance in general. This validates our assumption
at the beginning that class imbalance will affect the performance of predictive models and class balancing
techniques are necessary.

• Case-control matching performs better than traditional class-balancing techniques. This suggests that determin-
istic sampling is more effective than random sampling in this scenario.

• Individualized predictive modeling performs the best. This implies the complexity of the AKI prediction prob-
lem. Because of the complicated distribution of cases and controls, it is difficult to build a single model over
the entire sample set with good prediction performance. Our individualized predictive modeling strategy can
be viewed as an extreme case for local learning39, which is a learning strategy first divides the data space into
different local regions and then build a predictor for each region. In our design, same number of case and control
nearest neighbors are retrieved for each sample and thus the class imbalance problem no longer exists.

• Comparing the performances of different predictors, we observe that GBDT obtains better performance.

Comparison of Different Feature Groups Using the GBDT

Five different groups of features were used to conduct AKI prediction. In this section we investigate the prediction
performance of GDBT with different type of features with 24 hours of data collection window. The results are shown in
Table 2. From the table we can observe that the laboratory features can achieve better performance than other feature
groups. The comorbidity and medication feature groups demonstrated similar performance, and the demographic
feature group contributed the least to AKI risk prediction. This is likely because ICU stay-level data rather than
patient-level cohort were used for prediction. For example, if a patient had several hospital ICU stays and he/she
might satisfy AKI criteria in one ICU stay and not in another. For this case, the demographic-only classifier would
produce worse results, because it was difficult to distinguish this patient who belong to AKI and non-AKI class by just
demographic features. Lab covariates provide specificity to each individual patient that can further classify their risk
beyond traditional demographic and past medical history information.

Table 2: The performance of different group features based on 24 hours data.

Demog Med Comm Chart Lab
Auc 0.68 ±0.007 0.693±0.007 0.683±0.008 0.694±0.006 0.703±0.006

Recall 0.57±0.014 0.65±0.015 0.621±0.013 0.651±0.012 0.678±0.014
Precision 0.243±0.011 0.271±0.012 0.265±0.01 0.312±0.012 0.356±0.011
F-score 0.341±0.012 0.383±0.013 0.371±0.011 0.422±0.013 0.467±0.012

The Important Features Selected from all Feature Groups

There are 147 features in total used for AKI prediction. The importance of each factor in AKI prediction was further
explored in experiment. The GBDT model was used to obtain the important score of each feature. Table 3 showed
the most important features based on their importance scores and correlations with label, which were obtained by
using the spearman correlation coefficient. The positive and negative signs indicated positive and negative correlation,
respectively. From the table, we can find that CREATININE, CHLORIDE, and urine are more important, because
they have strong correlation with AKI label. These results could corroborate well with some previous reports. For
example, the decrease in urine output and the magnitude of increase in serum creatinine level can be used to determine
the severity of AKI40. We also found that the minimum of eGFR value was informative, because eGFR is a number
obtained by testing creatinine in blood, which can tell how well your kidneys are working. Besides, Chloride levels
are associated with the severity of AKI41. And Ishikawa et al.42 found the percentage of patients with intraoperative
hypoxemia (SpO2 < 90%) was significantly different between the AKI groups and none-AKI groups.
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Table 3: The top 10 features selected from all feature groups based on importance score. The value nearby name of
feature is spearman correlation coefficient with label.

24h 48h 72h
1 CREATININE slope 0.0724 eGFR min -0.0431 eGFR min 0.004
2 MeanBP slope -0.0192 RespRate slope -0.0132 SpO2 slope 0.0769
3 avg urine -0.0457 BICARBONATE slope -0.0501 DiasBP max 0.0694
4 eGFR min -0.1129 MeanBP slope 0.0224 avg urine 0.1628
5 RespRate avg 0.0161 Glucose slope 0.0148 MeanBP slope 0.0451
6 Glucose slope -0.0329 SpO2 slope 0.054 CHLORIDE count 0.1585
7 CREATININE last 0.1423 CALCIUM slope -0.0051 Temp slope -0.0137
8 CHLORIDE count 0.1241 PLATELET slope 0.0183 PTT last 0.0793
9 HeartRate slope 0.0399 CREATININE slope -0.0046 Glucose slope 0.0337
10 HeartRate avg 0.0263 age 0.0605 RespRate slope -0.0294

96h 120h 144h
1 avg urine 0.2205 SpO2 slope 0.0995 avg urine 0.2448
2 Glucose slope 0.0436 Glucose slope 0.0473 HeartRate slope 0.0302
3 Temp slope -0.0239 avg urine 0.0243 Glucose slope 0.0451
4 HeartRate slope 0.0285 Temp slope -0.0239 Temp max 0.1655
5 CHLORIDE count 0.1817 DiasBP max 0.1194 SpO2 slope 0.1
6 HeartRate max 0.1401 HeartRate max 0.1146 RespRate slope -0.027
7 eGFR min 0.0404 Temp max 0.1578 DiasBP max 0.1244
8 SpO2 slope 0.0919 MeanBP slope 0.0408 HeartRate max 0.1445
9 RespRate slope -0.1315 HeartRate slope 0.0306 Glucose max 0.1112
10 DiasBP max 0.098 Temp min -0.0781 DiasBP slope 0.0292

The Comparisons of Different Size of Time Slot during Sampling Temporal Variable

We investigated the effect of time slots size during extracting feature for temporal variables on prediction. During fea-
ture engineering, each temporal variable was compressed into a statistical vector calculated on observations recorded
during overall observational window. The observational window could be split into several sub-windows, the time
slots size was set to 2h, 4h, 6h, 8h, 12h and 24h in experiments. Within each time-slot, statistics for a temporal vari-
able were got. Then we can concatenate these fine-grained statistics from all time slots together as a feature vector for
a temporal variable.

Figure 3: The performance of different time slots during sampling variable values.

The performance of different size of time slots were shown in Figure 3. This experiment were done based on 24 hours
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data using GBDT classification model and individualization predictive modeling. From these result, we could find that
when the size of time slot was set to 8h, better results could been obtained. There were the worst results when the time
slot was set to 2h, which might be because there were more missing values during sampling the variable values with
high frequency, and simple imputation for missing values might distort the original distribution. And setting time slot
to the observational window may lose time-dependency within a temporal variable.

Conclusion and Discussion

Predicting AKI accurately is helpful for clinicians to take properly measures for patients. The imbalance of case and
control can produce worse results for the AKI prediction. This study investigated the impact of data imbalance on the
performance of AKI prediction. Two strategies (case-control matching and individualized predictive modeling) were
proposed to address class imbalance problem. These two strategies could construct balanced cohort by finding similar
background cases and controls, which reduced the interference of noise data and captured important information for
the prediction of AKI. In addition, we investigated most of class-balancing strategies. Some popular machine learning
models (e.g., logistic regression, RF, and GBDT) were integrated with these class-balancing strategies for the AKI
prediction. GBDT showed better performance than other methods for the AKI prediction in this study.

Prior models of risk prediction of AKI in critically ill patients typically use static clinical parameters43, 44. The utiliza-
tion of real-time data as performed in this manuscript provides an opportunity to predict AKI with features specific
to each individual patient. Dynamic real-time data may allow for clinical monitoring of AKI risk beyond solely static
prediction upon ICU arrival. The use of dynamic clinical monitoring algorithms for AKI prediction may allow for
incorporation into the electronic medical record11. The ability to identify patients at high risk of AKI using real-time
data may allow for initiation of earlier intervention to prevent or reduce the deterioration of kidney function45. Further
optimization of dynamic clinical risk prediction models can be further improved with the incorporation of novel blood,
urine, imaging, and genomic biomarkers to allow for individualized precise detection of AKI risk.
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