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Abstract

Incorporating the knowledge encoded in the Unified Medical Language System (UMLS) in deep learning methods
requires learning knowledge embeddings from the knowledge graphs available in UMLS: the Metathesaurus and
the Semantic Network. In this paper we present a technique using Generative Adversarial Networks (GANs) for
learning UMLS embeddings and showcase their usage in a clinical prediction model. When the UMLS embeddings
are available, the predictions improve by up to 6.9% absolute F1 score.

Introduction

Deep learning techniques have shown great promise in representing patient data from Electronic Health Records
(EHRs), facilitating Big Data methods for clinical predictive modeling, as evidenced by Deep Patient1. More recently,
scalable and accurate deep learning methods2 were capable of predicting multiple medical events from multiple cen-
ters without site-specific data harmonization. Deep learning methods have the advantage that they can easily handle
large volumes of data extracted from EHRs, learning key features or patterns from the data, as well as their inter-
actions. The data input of deep learning techniques takes the form of low-dimensional vector representations, also
called embeddings, which need to be learned from the EHR data. For example, when considering only the medical
concepts from clinical narratives available in the EHR, methods for learning their embeddings were presented in Choi
et al. (2016)3 and compared with medical concept embeddings produced from medical journals or medical claims.
Alternatively, medical concept embeddings were obtained in Beam et al. (2018)4 by first mapping the concepts into
a common concept unique identifier space (CUI) using the thesaurus from the Unified Medical Language System
(UMLS)5, producing the cui2vec embeddings. As noted in Choi et al. (2016)3, learning these forms of embeddings
relies on the context in which the medical concepts are mentioned, reflecting the medical practice. However, in addi-
tion to their usage in various contexts throughout the EHRs, medical concepts are also organized and encoded in the
Unified Medical Language System (UMLS)5, comprising the Metathesaurus and the Semantic Network.

Each concept encoded in the UMLS Metathesaurus has specific attributes defining its meaning and is linked to the
corresponding concept names in various source vocabularies (e.g. ICD-10). Moreover, several types of relations con-
nect concepts, e.g. “Is-A”, “Is-Part” or “Is caused by”. Moreover, each concept from the Metathesaurus is assigned
one or more semantic types (or categories), which are linked with one another through semantic relationships. The
UMLS Semantic Network is a catalog of these semantic types (e.g. “anatomical structure” or “biological function”)
and semantic relationships between them (e.g. ”spatially related to” or ”functionally related to”). While there are
over 3 million concepts in the UMLS Metathesaurus, there are only 180 semantic types and 49 semantic relationships
in the UMLS Semantic Network. The UMLS Metathesaurus graph along with the UMLS Semantic Network graph
encode a wealth of medical knowledge, capturing ontological and biomedical expertise which could also be used by
deep learning methods, in addition to the concept embeddings derived from the EHRs. To enable the usage of the
knowledge encoded in UMLS in deep learning methods, we need to learn knowledge embeddings which represent (1)
the UMLS concepts; (2) the relations between UMLS concepts; (3) the nodes of the UMLS Network, representing the
semantic types assigned to concepts; and (4) the semantic relations shared between the nodes of the UMLS Semantic
Network (i.e. the semantic types).

There have been several models for learning knowledge graph embeddings proposed in the past years, which represent
the concepts and relations from a knowledge graph as vectors: RESCAL6, which produces knowledge embeddings
by using matrix factorization; TRANSE7 - producing translation-based knowledge embeddings; TRANSD8, which
extended TRANSE by dynamically projecting the concept embeddings into various spaces; DISTMULT9, which sim-
plifies RESCAL by using a diagonal matrix and more recently KBGAN10, which uses adversarial learning to produce
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knowledge embeddings. The structure of the UMLS knowledge encoding poses a challenge to the applicability of any
of these models of learning knowledge embedding, which assume a single knowledge graph, while UMLS encodes
two different and jointly connected graphs, namely (a) the UMLS Metathesaurus; and (b) the UMLS Semantic Net-
work. In this paper we present an extension of the KBGAN model capable of learning UMLS knowledge embeddings
representing concepts, relations between them, semantic types and semantic relations.

To showcase the impact of using UMLS knowledge embeddings, we have considered the task of building a predictive
model based on deep learning for discovering (1) the incidence of opioid use disorders (OUD) after onset of opioid
therapy and (2) chronic opioid therapy (COT) achievement and persistence. OUD is defined as a problematic pattern
of opioid use that causes significant impairments or distress. Addiction and dependence of opioids are components
of OUD. OUD is part of the current opioid use epidemic, which is among the most pressing public health issues in
the United States. Opioid related poisonings and deaths have increased at alarming rates since 2014. This epidemic
has urged a national call to action for healthcare systems to invest in surveillance, prevention, and treatment of OUD.
Moreover, long-term opioid therapy poses a much higher risk of OUD and other adverse outcomes. In 2014, US retail
pharmacies dispensed 245 million prescriptions for opioid pain relievers. Of these prescriptions 65% were for short
term therapy (< 3 weeks). However, 3-4% of the adult population (9.6-11.5 million patients) were prescribed longer
term (> 90 days) opioid therapy. Our predictive model for discovering the incidence of OUD after onset of opioid
therapy and COT achievement and persistence uses a deep learning architecture based on hierarchical attention. We
produced superior predictions when the model was informed by the UMLS knowledge embeddings generated with
the methodology presented in this paper. We have made both the learned UMLS knowledge embeddings and the
knowledge embedding learning methodology publicly available†.

Data

In addition to the data available from UMLS, we have used a large clinical dataset that enabled us to use the UMLS
embeddings for predicting the incidence of OUD after onset of opioid therapy and COT achievement and persistence.
This clinical dataset was available from the University of Washington Medical Center and Harborview Medical center.
For this dataset, we considered adult patients (age ≥ 18 years), eligible in this study if they were prescribed with COT
for chronic non-cancer pain between 2011-2017 (7 years). We defined COT as 45+ days supply of opioid analgesics
in a calendar quarter (3 months) for at least one quarter within the 7-year time range. As such COT achievement
occurs when the conditions for COT are first noted while COT persistence is observed when a patient continues to
be prescribed a 45+ days supply of opioid analgesics in consecutive quarters. With the described inclusion/exclusion
criteria, we created a cohort of 6355 patients receiving COT with a total of 23,945 COT quarters (avg:3.77, min:1,
max:27). There were 3446 patients (54%) with 1 COT quarter, 1856 patients (29%) with 2-5 COT quarters, 420
patients (6.6%) with 6-10 COT quarters, and 680 patients (10.7%) with >10 COT quarters. A longitudinal dataset
was created for the selected patients. We collected both structured clinical data and unstructured patient notes created
during their treatments between 2008-2017 (10 years), but in this paper we used only structured data, namely we
used the ICD-10 codes, the medication ordered and the laboratory results, which we also mapped into UMLS. We
extended the data range to 10 years to capture a wider range of background clinical data. Our dataset contained
1,089,600 outpatient, 20,449 inpatient, and 25,232 emergency department visits. For structured data, we collected
basic demographics (age, gender, ethnicity), hospital administrative data (to capture the nature of each visit), laboratory
and test orders (for illicit drug abuse screen and opioid confirmation), medications (both administered and ordered),
billing diagnoses, physician diagnoses, and problem lists. The dataset contained around 14 million data elements and
each data element had a time-stamp to capture patient trajectories through time. In future work, we plan to use the
entire structured and unstructured data. The retrospective review of the described de-identified longitudinal dataset has
been approved by University of Washington Institutional Review Board as well as the University of Texas at Dallas
Institutional Review Board.

Methods

Learning UMLS Knowledge Embeddings: When learning knowledge embeddings for knowledge bases represented
as graphs, we have represented multi-relational data corresponding to concepts (i.e. nodes in the knowledge graph)

†https://github.com/r-mal/umls-embeddings
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and relations (i.e. edges in the knowledge graph) by modeling concepts as points in a continuous vector space,
Rd, called the embedding space, where d is a parameter indicating the dimensionality of the embedding space. In
our previous work11, we relied on the TransE7 method which represents relations between medical concepts also in
Rd. TransE, like all knowledge embedding models, learns an embedding, #»ci , for each concept ci encoded in the
knowledge graph and an embedding, #»r , for each relation type r. TransE considers that the relation embedding is a
translation vector between the two concept embeddings representing its arguments. This means that for any concept
ci, the concept most likely to be related to ci by the relation r should be the concept whose embedding is closest
to ( #»ci + #»r ) in the embedding space. By modeling the concepts as points in the embedded space and the relations
between them as translation vectors, it is possible to measure the plausibility of any potential relation between any pair
of medical concepts using the geometric structure of the embedding space: f(cs, r, cd) = || #»cs + #»r − #»cd||L1 where
|| · ||L1 is the L1 norm. The plausibility of a relation between a source medical concept and a destination medical
concept, represented as a triple, 〈cs, r, cd〉, is inversely proportional to the distance in the embedding space between
the point predicted by the TransE model ( #»cs + #»r ) and the point in the embedding space representing the destination
argument of the relation, i.e. ( #»cd). In addition to TransE, several other knowledge graph embedding models, which
represent concepts and relations as vectors or matrices in an embedding space, have shown promise in recent years.

Model Scoring Function
TRANSE || #»cs + #»r − #»cd||L1

TRANSD ||(I + #»rp × #  »csp
>)× #»cs + #»r

−(I + #»rp × #  »cdp
>)× #»cd||L1

DISTMULT
∑
i

#»cs
i · #»r i · #»cd

i

Table 1: Scoring functions used in models that learn
knowledge embeddings. I is the identity matrix.

We list in Table 1 two additional models that we have
used when learning UMLS embeddings. TransD8 learns
two embedding vectors for each concept in a knowledge
graph: [ #»c , #»cp] as well as two embeddings for each rela-
tion in the graph: [ #»r , #»rp], where the first vector represents
the “knowledge meaning” of the concept or relation while
the second vector is a projection vector (with subscript p),
used to construct a dynamic mapping matrix for each con-
cept/relation pair. If the knowledge meaning of a concept
or relation refers to the reason why the concept or relation
was encoded in the knowledge graph, the projection of concepts in the space of the relations is used to capture the in-
teraction between concepts participating in relations and relations holding various concepts as arguments. Essentially,
TransD constructs a dynamic mapping matrix for each entity-relation pair by considering the diversity of entities and
relations simultaneously. As each source concept cs is translated into a pair [ #»cs,

#  »csp] and each destination concept is
translated into a pair [ #»cd,

#  »cdp], while the relation between them is translated into [ #»r , #»rp], the plausibility of the relation
is measured by the scoring function listed in Table 1. DistMult9, another knowledge embedding model, is a simplifica-
tion of the traditional bilinear form of matrix decomposition using only a diagonal matrix that has been shown to excel
for probabilistic models. Its scoring function, listed in Table 1, is equivalent to the dot product between the vector
representations of the source concept, the relation and the destination concept. Any of these scoring functions can
be used for (a) assigning a plausibility score to each triple 〈c1, r, c2〉, encoding a relation between a pair of concepts
from the UMLS Metatheraurus; as well as (b) assigning another plausibility score to each triple 〈t1, sr, t2〉 encoding
semantic relationships (sr) between semantic types (t1, t2) encoded in the UMLS Semantic Network. However, from
the learning standpoint, training the embeddings models requires positive examples encoded in the knowledge graph
(in our case UMLS), and negative examples obtained by removing either the correct source or destination concept (or
semantic type) and replacing it with a concept (or semantic type) randomly sampled from a uniform distribution. As
noted in Cai and Wang (2018)10, this approach of generating negative examples is not ideal, because the sampled con-
cept (or semantic type) may be completely unrelated to the source UMLS concept (or source UMLS semantic type),
resulting in a learning framework using too many obviously false examples. To address this challenge, we have ex-
tended the KBGAN10 adversarial learning framework, which is currently one of the state-of-the-art learning methods
for knowledge embeddings.

Generative Adversarial Networks (GANs) are at the core of our framework for learning knowledge embeddings for
UMLS. GANs typically use a generator and a discriminator, as introduced in Goodfellow et al. (2014)12. Metaphor-
ically, the generator can be thought of as acting like a team of counterfeiters, trying to produce fake currency and
use it without detection. The discriminator can be thought of as acting like the police, trying to detect the counter-
feit currency. Competition in this game enabled by the GAN drives both teams to improve their methods until the
counterfeiters are indistinguishable from the genuine articles. In the KBGAN10 framework, the discriminator learns to
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Figure 1: Adversarial Learning Framework for Producing Knowledge Embeddings for UMLS.

score the plausibility of a given relation triple and the generator tries to fool the discriminator by generating plausible,
yet incorrect, triples. In order to accomplish this goal, the generator calculates a probability distribution over a set of
negative examples of relation triples and then samples one triple from the distribution as its output. However, a single
generator is not sufficient for creating UMLS embeddings, because the UMLS graph contains two types of relations,
namely (1) relations between UMLS concepts and (2) semantic relations between UMLS semantic types. Therefore,
we extended the KBGAN by using two different generators: an UMLS Metathesaurus generator G1 and an UMLS
Semantic Network generator G2, as illustrated in Figure 1. Given any relation between two concepts encoded in the
UMLS Metathesaurus, G1 calculates the probability distribution over a set of candidate negative examples of the rela-
tion, samples it and produces a negative example. Given the ground truth relation tripleR1 = IsA(Opioid Abuse, Drug
Abuse) from the Metathesaurus G1 will produce the negative example RN1 = IsA(Opioid Abuse, UMLS concepti), as
illustrated in Figure 1, where UMLS concepti is any UMLS concept which is not in an IsA relation with Opioid Abuse.
Similarly, given a ground truth semantic relation triple R2 = Affects(Mental or Behavioral Dysfunction, Behavior),
G2 generates the negative example, RN2 = Affects(UMLS Semantic Typej , Behavior) where UMLS Semantic Typej
is not in an Affects relation with UMLS semantic type Behavior. Both negative examples generated by G1 and G2

are sent to the Discriminator D along with the two ground truth relation triples: R1 and R2, respectively. D uses the
function fD1 to compute the scores forR1 andRN1 while it uses the function fD2 to compute the scores forR2 andRN2 .
Both for fD1 and fD2 we experimented with two alternatives: (1) the scoring function of TransE, and (2) the scoring
function of TransD, listed in Table 1.

Intuitively, the discriminatorD should assign low scores produced by the functions fD1 and fD2 to high-quality negative
samples generated by G1, and G2 respectively. Moreover, the discriminator D should assign even lower fD1 and fD2
scores to the ground truth triples than to the high-quality negative samples. Suppose that G1 produces a distribution
of negative triples pG1

(c1
′, r, c2

′|c1, r, c2) for a positive example 〈c1, r, c2〉 encoded in the UMLS Metathesaurus and
generates 〈c1′, r, c2′〉 by sampling from this distribution. Similarly, suppose thatG2 produces a distribution of negative
triples pG2

(t1
′, sr, t2

′|t1, sr, t2) for a positive example 〈t1, sr, t2〉 encoded in the UMLS Semantic Network. Let fD1
and fD2 be the two scoring functions of D. Then the objective of the discriminator is to minimize the marginal loss
between the ground truth (or positive) triples and the negative example triples generated by G1 and G2. To jointly
minimize the marginal loss of D, we extend the marginal loss function of KBGAN10 to have two terms: (i) the
Metathesaurus loss function, LM and (ii) the Semantic Network loss function LS . We defined LM as:

LM =
∑

〈c1,r,c2〉∈M

||fD1 (c1, r, c2)− fD1 (c1
′, r, c2

′) + γ1|| (1)

where M represents all valid triples from the Metathesaurus, while fD1 (c1, r, c2) measures the plausibility of the
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triple 〈c1, r, c2〉 and γ1 is a margin hyper-parameter. We defined LS as:

LS =
∑

〈t1,sr,t2〉∈S

||fD2 (t1, sr, t2)− fG2 (t1
′, sr, t2

′) + γ2||+
∑
i

[
#»
ti −

1

|δ(ti)|
×
∑

c∈δ(ti)

c

]
(2)

where S represents all valid triples from the UMLS Semantic Network, while fD2 (t1, sr, t2) measures the plausibility
of the triple 〈t1, sr, t2〉 from the UMLS Semantic Network expressing the semantic relation sr between the semantic
types t1 and t2 in the UMLS Semantic Network and γ2 is a margin hyper-parameter. The embedding of the UMLS
semantic type ti is denoted by #»

ti and δ(ti) represents the set of UMLS concepts having the semantic type ti. In
this way, the centroid of the embeddings of UMLS concepts having the UMLS semantic type ti is represented as
1/δ(ti)×

∑
c∈δ(ti) c. This allows us to measure in LS not only the margin between the semantic relation produced by

G2 to the ground truth semantic relation encoded in the UMLS Semantic Network, but also the cumulative distance
between the embeddings of each semantic type ti and the centroid of the embeddings corresponding to the UMLS
concepts sharing the semantic type ti. Hence, LS measures the loss of (a) not correctly recognizing a plausible
semantic relation from the UMLS Semantic Network, but also (b) the loss of not recognizing plausible semantic types
in the UMLS Semantic Network, given as reference all the UMLS semantic concepts that share same semantic type.
This ensures that we learn embeddings of semantic relations from UMLS by taking into account the semantic types
and the concepts that are encoded in UMLS.

In the adversarial framework presented in Figure 1, the objective of generator G1 is to maximize the following expec-
tation:

RG1
=

∑
〈c1,r,c2〉∈M

E[−fD1 (c1
′, r, c2

′)] (c1
′, r, c2

′) ∼ pG1
(c1
′, r, c2

′|c1, r, c2) (3)

Similarly, the objective of generator G2 is to maximize the following expectation:

RG2 =
∑

〈t1,sr,t2〉∈S

E[−fD2 (t1
′, sr, t2

′)] (t1
′, sr, t2

′) ∼ pG2(t1
′, sr, t2

′|t1, sr, t2) (4)

Both G1 and G2 involve a sampling step, to find the gradient of RG1
and RG2

we used a special case of the Policy
Gradient Theorem13, which arises from reinforcement learning (RL). To optimize both RG1 and RG2 , we maximized
the reward returned by the discriminator to each generator in response to selecting negative examples for the relations
encoded in UMLS, providing an excellent framework for learning the UMLS embeddings that benefits from good
negative examples in addition to the abundance of positive examples. Finally, both generators G1 and G2 need to have
scoring functions, defined as fG1

(c1, r, c2) and fG2
(t1, sr, t2). Several scoring function can be used, selecting from

those that have been implemented in several knowledge graph embeddings, listed in Table 1. In our implementation, we
have used for both generators the same scoring function as the one used in DISTMULT. Then given a set of candidate
negative examples for the UMLS Metathesaurus: NegM(c1, r, c2) = {〈c1′, r, c2〉|c1′ ∈ C} ∪ {〈c1, r, c2′〉|c2′ ∈ C}
(where C represents all the concepts encoded in the UMLS Metathesaurus), the probability distribution pG1

is:

pG1
(c1
′, r, c2

′|c1, r, c2) =
exp(fG1

(c1
′, r, c2

′))∑
〈c∗1 ,r,c∗2〉∈NegM

exp(fG1
(c∗1, r, c

∗
2))

(5)

Similarly, given a set of candidate negative examples for the UMLS Semantic NetworkNegS(t1, sr, t2) = {〈t1′, sr, t2〉|
t1
′ ∈ T } ∪ { 〈t1, sr, t2′〉|t2′ ∈ T } (where T represents all the semantic types encoded in the UMLS Semantic Net-

work), then the probability distribution pG2 is modeled as:

pG2
(t1
′, sr, t2

′|t1, sr, t2) =
exp(fG2(t1

′, sr, t2
′))∑

〈t∗1 ,sr,t∗2〉∈NegS
exp(fG2

(t∗1, sr, t
∗
2))

(6)

In this adversarial training setting, the generators G1 and G2 and the discriminator D are alternatively trained towards
their respective objectives, informing the two forms of embeddings for the UMLS: knowledge embeddings for the
UMLS Metathesaurus and knowledge embeddings for the UMLS Semantic Network.
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Figure 2: Architecture of a Hierarchical Attention-Based Prediction Model incorporating the UMLS embeddings.

Using the UMLS Knowledge Embeddings in Clinical Prediction Models: In previous work14 we developed a
model for predicting (1) the incidence of Opioid Use Disorders (OUD) after onset of opioid therapy and (2) Chronic
Opioid Therapy (COT) achievement and persistence, which benefits from a deep learning method using a hierarchical
attention mechanism. The predictive model was trained and tested on the clinical database from the University of
Washington Medical Center and Harborview Medical center, described in the Data Section. Because we used a deep
learning method for the predictions, as illustrated in Figure 2, we needed to generate embeddings to represent ICD-10
codes, medications ordered and laboratory results. To produce these embeddings, we considered that if a patient had
records spanning N quarters, each having at most M different diagnostic codes assigned during the quarter, we could
denote each diagnostic code as dit, to represent the t-th ICD-10 code in the i-th quarter, with i ∈ [1, N ]. To encode each
diagnostic code dit as a low-dimensional vector cit (also called ICD-10 code embedding) we compute: cit = Q× dit,
with t ∈ [1,M ], in which Q represents the embedding matrix obtained from WORD2VEC15. As shown in Figure 2,
each ICD-10 code embedding was concatenated with an UMLS knowledge embedding, such that the knowledge from
clinical practice (ICD-10 code WORD2VEC embeddings) can be combined with complementary knowledge, available
from the UMLS ontology. The concatenation of UMLS knowledge embeddings was informed by the mapping of the
ICD-10 vocabulary into UMLS concepts proved by the UMLS. We were then able to encode this combined knowledge
representation pertaining to diagnoses and their ICD-10 codes as well as UMLS concepts representing them using a
Recurrent Neural Network (RNN), implemented with bi-directional gated-recurrent units (GRUs). More specifically,
for each concatenated embedding ccit , we computed two vectors: (1)

−→
hit =

−−−→
GRU(ccit) ) for t ∈ [1,M ]; and (2)

←−
hit =

←−−−
GRU(ccit), for t ∈ [M, 1]; generating the encoding xit = [

−→
hit,
←−
hit]. Similarly, we computed the encodings of

medications ordered oit and of laboratory results lit using the same type of RNNs as we did for ICD-10 codes. These
encodings were also concatenated with corresponding UMLS embeddings. The medications and laboratory results
are mapped to UMLS concepts using MetaMap Lite16. For the concatenated encodings of medications ordered oit
with UMLS embeddings, denoted ooit, embeddings for medications were produced using again bi-directional GRUs
as: yit = [−→qit,←−qit], where −→qit =

−−−→
GRU(ooit) and

←−
hit =

←−−−
GRU(ooit). When concatenating the encodings of laboratory

results lit with UMLS embeddings, denoted llit, the bi-directional GRUs generated embeddings for laboratory results:
zit = [

−→
kit,
←−
kit], where

−→
kit =

−−−→
GRU(llit) and

←−
kit =

←−−−
GRU(llit). In addition, since not all ICD-10 codes, medications

or laboratory results contribute equally to the clinical picture of the patient, we introduce an attention mechanism, that
enables the predictive model to pay more attention to the more informative ICD-10 codes, medications and laboratory
test results. Attention mechanisms are a new trend in deep learning, loosely based on visual attention mechanisms
in humans, that have been successfully used in caption generation17 and medical predictions18, 19. In our predictive
model, illustrated in Figure 2, we used a form of hierarchical attention mechanism, inspired by the work of Yang et al.
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(2016)20. The first layer of attention learned how each of the combinations of ICD-10 codes and corresponding UMLS
embeddings, ordered medications and corresponding UMLS embeddings and laboratory test results and corresponding
UMLS embeddings contribute to the predictions and how to pay more attention to the more impactful ones. In the
case of ICD-10 code embedding, attention is learned through the following equations: uit = tanh(Wc × xit + bc);
αcit = exp (uit × ccit)/

∑
t exp (uit × ccit); ICDencod

10 =
∑
t α

c
it × xit. As illustrated in Figure 2, similar attention

mechanisms are implemented in the first attention layer for the medication and for the laboratory results encodings,
with the attention parameters αoit and αlit respectively.

A second layer of attention was also implemented, since we wanted the prediction model to also learn which form of
clinical information combined with UMLS knowledge was the most impactful in deciding for the following quarter the
COT achievement/persistence and the OUD incidence. Therefore, we learned an encoding for each quarter from the
clinical picture and therapy of the patients available from ICD-10 codes, medications ordered and laboratory results
of all hospital visits in a given quarter. The attention mechanism of the second layer uses parameters: αai1 (for ICD-10
codes encodings), αai2 (for medications ordered encodings) and αai3 (for laboratory result encodings). The results of
the second layer of the hierarchical attention mechanism feed into a GRU which feeds into a fully prediction layer,
as illustrated in Figure 2, allowing one binary classifier to decide whether COT will be achieved or persist in the next
quarter, whereas a second binary classifier decides whether the incidence of OUDs will be observed.

Results

Both an intrinsic and an extrinsic evaluation of the UMLS knowledge embeddings was performed. The intrinsic
evaluation measured the quality of the UMLS knowledge embeddings produced by the methodology presented in
this paper against other models. The extrinsic evaluation measured the impact UMLS knowledge embeddings have
on the results of a clinical prediction model. The quality of the UMLS knowledge embeddings was evaluated in
terms of plausibility and completeness. The plausibility estimation was cast as a link prediction problem that can be
seen as relation triple classification (RTC). For this purpose, we defined two plausibility functions informed by the
scoring functions used in the Discriminator: the first operating on the UMLS Metathesaurus, defined as P1 = −fD1
and the second operating on the UMLS Semantic Network, defined as P2 = −fD2 . Therefore, we measured how
well P1 can be used to predict a correct relation 〈c1, r, c2〉 encoded in the UMLS Metathesaurus, e.g. answering the
questions “Is OPIOID ABUSE a kind of DRUG ABUSE?”, or how well P2 can be used to predict a semantic relation
〈t1, sr, t2〉 encoded in the UMLS Semantic Network, e.g. answering the question “Can MENTAL OR BEHAVIORAL
DYSFUNCTION affect BEHAVIOR?”. For this purpose, we used a validation set of 100,000 UMLS Metathesaurus
triples to determine a threshold value, T1 of the plausibility function P1 above which all triples will be classified as
true (i.e. P1(cs, r, cd) ≥ T1) and below which all triples will be classified as false. Similarly, we relied on a validation
set of 600 Semantic Network triples and the plausibility function P2 to determine a threshold value T2 above which all
semantic relations are true. To evaluate the results of RTC, we relied on a set ΦM of 100,000 triples from the UMLS
Metahesaurus held out from training and create a corrupted, false, version of each triple by randomly replacing either
the source or destination concept. We then classified each of these 200,000 triples from the entire test set ΦTM as true
if their plausibility value P1 ≥ T1 and false otherwise. Similarly, we used a ΦSN of 600 semantic relations extracted
from the UMLS Semantic Network held out from training and we created an additional 600 semantic relations obtained
by corrupting each triple by randomly replacing either the source or destination concept, obtaining a test set ΦTSN of
1200 semantic relations. Whenever the classification of these semantic relations had a plausibility P2 ≥ T2 the
semantic relations was deemed correct. The results of the RTC were evaluated in terms of Precision, denoted as RTC-
P, and Recall, denoted as RTC-R. The plausibility of the model for learning knowledge embeddings was quantified by
RTC-P, whereas the completeness was quantified by RTC-R.

RTC-P for the UMLS Metathesaurus was defined by the number of correctly classified positive triples normalized by
the size of the test set ΦTM (200,000). When measuring RTC-P on the UMLS Semantic Network, we normalized the
number of correctly predicted semantic relations by the size of the test set ΦTSN (1200). The evaluation of RTC-R
on the UMLS Metathesaurus measured the number of true relations that were predicted by the model out of all the
true relations from the test set, i.e. ΦM (100,000). Similarly, RTC-R evaluated on the UMLS Semantic Network
counted the number of true semantic relations predicted out of all the true semantic relations from the test set, i.e.
ΦSN (600). We experimented with several methods for learning knowledge embeddings, and list their results in
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UMLS Metathesaurus UMLS Semantic Network

Model RTC-P RTC-R PPA H@10 MRR RTC-P RTC-R PPA H@10 MRR

TRANSE 0.7712 0.6479 0.9340 0.2161 0.1400 – – – – –
TRANSD 0.9080 0.8895 0.9734 0.2780 0.1674 – – – – –
TRANSE SN 0.8649 0.8019 0.9746 0.2240 0.1425 0.5105 0.7790 0.9150 0.7125 0.4882
TRANSD SN 0.9188 0.8915 0.9729 0.2775 0.1670 0.6840 0.8771 0.9017 0.7300 0.4680
GAN (TRANSE SN+DISTMULT) 0.8959 0.8424 0.9833 0.2727 0.1650 0.6109 0.7898 0.9367 0.7883 0.5373
GAN (TRANSD SN+DISTMULT) 0.9311 0.9130 0.9803 0.3164 0.1886 0.8419 0.8546 0.9200 0.7867 0.5236

Table 2: Plausibility and completeness of the UMLS knowledge embeddings. SN indicates the incorporation of the
Semantic Networkin the embeddings, which otherwise were learned only from the Metathesaurus.

Table 2. It can be noted that the plausibility and completeness obtained by the GAN-based model, presented in this
paper, consistently obtained the best results. We evaluated the performance of six knowledge embedding models
using (a) the scoring functions (TRANSE and TRANSD), (b) incorporating information from the UMLS Semantic
Network, and (c) the generative (GAN) adversarial learning framework. The TRANSE and TRANSD models were
trained using only the Metathesaurus loss function, LM shown in equation 1. The TRANSE SN and TRANSD SN
models incorporated the Semantic Network by using both LM and the Semantic Network loss function, LS shown in
equation 2. The GAN (TRANSE SN+DISTMULT) and GAN (TRANSD SN+DISTMULT) are trained with the full
adversarial framework described in the Methods section, using the TRANSE and TRANSD scoring functions in their
discriminators, respectively. Both GAN models use the DistMult scoring function for both their Metathesaurus (G1)
and Semantic Network (G2) generators. Each model was trained for 13 epochs using 9,169,311 Metathesaurus triples
between 1,726,364 concepts spanning 388 relation types. The results for the Metathesaurus evaluations were obtained
using the entire Semantic Network (6217 triples between 180 semantic types spanning 49 relation types), however to
evaluate the Semantic Network knowledge embeddings, we reserved a test set of 600 triples, training on 5,617. We
selected the dimension of the embedding spaceN = 50 from [25, 50, 100, 200] and the margin parameters γ1, γ2 = 0.1
from [0.1, 1.0, 5.0] using grid search on a validation set of 10% of the training relation triples. All models are optimized
using Adam21 with default parameters. TRANSE and TRANSD models are learned with the usual constraint that the
L2-norm of each embedding is ≤ 1 and the DISTMULT models use L2 regularization. Table 2 shows that the GAN-
based models outperform the non-adversarially learned models in each evaluation for the Metathesaurus and Semantic
Network, demonstrating their effectiveness.

Table 2 also list three additional evaluations metrics for quantifying the plausibility of knowledge embeddings learned
from UMLS: (1) Pairwise Plausibility Accuracy (PPA); (2) Hits at 10 (H10) and (3) Mean Reciprocal Rank (MRR).
Given a test triple φM ∈ ΦM (or φSN ∈ ΦSN ) and its corrupted version, z, created by randomly replacing either the
source or destination argument with a random UMLS concept (or random UMLS semantic type), PPA measures the
percentage of triples having the plausibility higher than plausibility of their corrupted triple. PPA demonstrates how
well the knowledge embedding model can differentiate between a correct, φ, and an incorrect triple, z, even if the
model had never encountered φ. In addition, the scoring functions fD1 and fD2 can be used to rank the triplets from the
test sets ΦTM and ΦTSN . For each triple φ in either test set, we created a set of candidate triples obtained by replacing
the source argument and replacing it with every concept (or semantic type) from UMLS which was not seen in any
training, development or test set (or selected before). This set of candidate triples is combined with φ to produce the
set, ΦR. The scoring function fD1 (or fD2 respectively) was used to rank the triples from ΦR. We repeat this process
for the destination argument, resulting in two rankings for each test triple. The rankings obtained in this way could
be evaluated by metrics used in Information Retrieval: Hits at 10 (H@10) and Mean Reciprocal Rank (MRR). H@10
measures the percentage of test-set rankings where the specific test triple φ occurs in the top 10 highest ranked triples.
MRR measures how high the correct triple, φ, is ranked. MRR = 1

2|Φ|
∑2|Φ|
i=1

1
ranki

where ranki refers to the rank
of the triple φ in the ith ranking and there are 2|Φ| total rankings (2 for each test triple φ ∈ Φ), with Φ being either
ΦM or ΦSN . The results listed in Table 2 indicate that the TRANSD models outperform the TRANSE models on the
Metathesaurus evaluations (by 16% on H@10 and 14.3% on MRR), however TRANSE outperforms TRANSD on the
Semantic Network evaluations, albeit by a lesser margin (1.8% on H@10 and 2.5% on MRR).

The impact of the UMLS knowledge embeddings on clinical prediction of the incidence of Opioid Use Disorders

550



(OUD) after onset of opioid therapy and Chronic Opioid Therapy (COT) achievement and persistance was evaluated
using a deep learning method using a Hierarchical Attention network (HAN). We trained two models, HANUMLS ,

OUD COT

HANUMLS HAN HANUMLS HAN

F1 Score 0.843 0.774 0.778 0.776
Sensitivity 0.749 0.629 0.850 0.773
Specificity 0.963 0.981 0.717 0.792
DOR 77.86 72.99 14.30 12.99
AUROC 0.856 0.784 0.783 0.778

Table 3: The impact of UMLS knowledge embeddings
on the prediction of incidence of Opioid Use Disor-
der (OUD) and the achievement/persistence of Chronic
Opioid Therapy (COT). HANUMLS incorporates UMLS
knowledge embeddings whereas HAN does not.

configured as described in the Methods section, and HAN,
a baseline model that does not make use of the UMLS
knowledge embeddings. HANUMLS uses the UMLS em-
beddings while HAN skips the concatenation step, using
only the embeddings learned using word2vec. Both mod-
els are evaluated using F1 score, sensitivity, specificity,
Diagnostic Odds Ratio (DOR) and Area Under the Re-
ceiver Operating Characteristic curve (AUROC). The re-
sults, presented in Table 3, show that incorporating onto-
logical knowledge in the form of UMLS knowledge em-
beddings improved performance when predicting Opioid
Use Disorder while maintaining performance on Chronic
Opioid Therapy achievement/persistence without major
changes to the model.

Discussion

This work demonstrates that adversarial learning of UMLS knowledge embeddings is an effective strategy for learn-
ing useful embeddings representing medical concepts, relations between them, semantic types and semantic relations.
The learned knowledge embeddings exhibit interesting properties. For example, the 5 nearest neighbors of the UMLS
concept ‘Malignant neoplasm of the lung’ (C0242379) are all different kinds of malignant neoplasm, including neo-
plasms of the skin (C0007114), brain (C0006118), pancreas (C0017689), bone (C0279530), and trachea (C0153489),
each having the semantic type Neoplastic Process (T191). Likewise, the 10 nearest neighbors of the medical concept
‘Heroin Dependence’ are all Mental or Behavioral Dysfunctions (T048) indicating different drug abuse/dependency
problems and the 10 nearest neighbors of ‘Quantitative Morphine Measurement’ (C0202428) are all Laboratory Pro-
cedures (T059) testing for some kind of opioid. The model does, however, struggle with concepts that have low
connectivity in the knowledge graph (e.g. the 10 nearest neighbors of the concept ‘Stearic monoethanolamide’, which
only appeared in 3 relation triples, are largely unrelated due to the low degree of that concept in the Metathesaurus
graph). Moreover, we are currently unable to derive knowledge embeddings for concepts which do not participate
in any relations. In future work, we plan to investigate methods capable of producing better representations for such
isolated concepts.

The results also show that the UMLS knowledge embeddings improve the prediction of incidence of Opioid Use
Disorder after onset of opioid therapy and Chronic Opioid Therapy achievement and persistence, out-of-the-box, by
simply concatenating the UMLS knowledge embeddings with the traditional, WORD2VEC-style embeddings typically
used in deep learning systems. We analyzed the attention weights assigned to each medical concept and to each class
of concepts (i.e. ICD-10 codes, medications, and lab results) in the test set for both the HANUMLS and HAN models
to determine the impact of the knowledge embeddings on the model. Interestingly, including the UMLS knowledge
embeddings in the HANUMLS model caused the model to pay more attention to diagnoses (attention weight of 0.617
vs 0.4942) and less attention to medications (0.2706 vs 0.4762) on average indicating that the inclusion of the UMLS
knowledge embeddings made the diagnoses more informative for prediction than the medications. Moreover, the
diagnosis with the highest average attention weight in the HANUMLS model is ‘Chronic pain syndrome’ (C1298685)
with an average attention weight of 0.5750 while in the HAN model, the diagnosis with the highest weight of 0.8092
was ‘Predominant Disturbance of Emotions’. In future work, we plan to investigate the impact of the knowledge
embeddings on other predictive modeling tasks and investigate more sophisticated ways of including the embeddings
in deep learning models.

Conclusion

In this paper we have presented a method for producing UMLS embeddings based on a generative adversarial network
(GAN). These embeddings, which we make publicly available, can be used in a multitude of deep learning meth-
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ods to benefit from the knowledge encoded in UMLS. We showcase how we have used the embeddings to improve
performance in a clinical prediction model.
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