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Abstract 

Absent a priori knowledge, unsupervised techniques identify meaningful clusters that can form the basis for               
subsequent analyses. This study explored the problem of inferring comorbidity-based profiles of complex diseases              
through unsupervised clustering methodologies. This study first considered the K-Modes algorithm, followed by, the              
self organizing map (SOM) technique to extract co-morbidity based clusters from a healthcare discharge dataset.               
After validation of general cluster composition for diabetes mellitus, co-morbidity based clusters were identified for               
pregnancy. The SOM technique was found to infer distinct clusterings of pregnancy ranging from normal birth to                 
preterm birth, and potentially interesting comorbidities that could be validated by published literature The              
promising results suggest that the SOM technique is a valuable unsupervised clustering method for discovering               
co-morbidity based clusters. 

 

Introduction 

The World Health Organization reports that approximately 830 women die daily from pregnancy complications20. In               
the United States, the CDC reports an annual death toll of 700 women16. The WHO and CDC report that many of                     
these complicating conditions are treatable; however, identifying the right time for a clinical intervention requires               
constant monitoring of the mother’s and the fetus’s condition. The utility of such monitoring systems remains                
challenged by the limited knowledge about the underlying causes of pregnancy complications. There is also a dearth                 
of data-driven predictive models to support the forecasting of potential complications a mother may have later in her                  
pregnancy. 

Traditionally, comorbidity analysis infers the effects of other diseases or conditions co-occurring with a primary               
condition by comparing patient diagnosis profiles. Recent studies utilized a network technique approach to obtain               
comorbidities, such as graph theory or social-network analysis12,22; however, these methodologies are often             
bottlenecked by extremely high dimensions. Unsupervised clustering algorithms can offer a general clustering             
method for analyzing such high dimensions. 
 
There has been research done in analyzing the effectiveness of K-Modes learning meaningful clusters in oncology19                
as well as Bayesian inference methods for psychiatric conditions given some prior domain knowledge21. Other               
unsupervised clustering methods have not been widely explored in finding meaningful comorbidities. This study              
explored the self-organizing map as an effective unsupervised clustering method for complex conditions such as               
pregnancy. 
 
The motivation for doing this analysis on pregnancy is because there has been minimal analysis of patient                 
co-morbidity profiles of pregnant women. This study explored whether unsupervised clustering methods such as the               
self-organizing map could be used to find distinct comorbidity profiles to distinguish between normal and               
complicated pregnancies. The hypothesis for this study was therefore that there is a different co-morbidity profile                
between normal and complicated pregnancies. 
 
This study examined two methodologies for unsupervised clustering: (1) K-Modes, and (2) A categorical variation               
of the self-organizing map. K-Modes is a categorical variation of the K-Means algorithm that was presented by Z.                  
Huang in 199811, and has been used previously for co-morbidity analysis. By using dissimilarity instead of distance,                 
K-Modes was shown to function similarly to K-Means on continuous data. Since its inception, this method has been                  
used in commercial software (e.g., Daylight Chemical Information Systems, Inc, http://www.daylight.com/). 
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The self-organizing map was proposed by Kohonen13 as an unsupervised neural network that projects high               
dimensional data onto a one or two dimensional space. It was shown that this projection maintains the topology of                   
the input data, and thus is very useful for inferring cluster structures. Since its inception, this method has been                   
widely applied in image processing4,7,23,24, speech recognition18, time-series prediction2,8, optimization17, and medical            
diagnosis5,14. The original algorithm, which was designed for continuous data, has not been shown to be effective                 
with categorical data. Similar to the modification used by K-Modes, a dissimilarity measure can be used instead of a                   
distance to learn from the datasets1,6,15. There has been other efforts to further generalize the self-organizing map9;                 
however, these methods often require prior domain knowledge to produce heuristics about the comparison.  
 
The aim of this paper was to use unsupervised clustering methodologies to evaluate their potential to identify                 
meaningful cluster structures from patient hospital discharge data, focusing on diabetes mellitus co-morbidities.             
Next, the techniques were used to develop clusters based on co-morbidities associated with pregnancy, with the goal                 
to see if there was a discernable difference between normal and complicated pregnancies. 
 
Methods 
 
The methodologies described here were used to analyze data from the healthcare cost and utilization project                
(HCUP), national inpatient sample (NIS) datasets from 2008 to 2012. Both algorithms were implemented in Julia                
v0.6.4. The clusterings were done based on Clinical Classifications Software (CCS) codes that were assigned to                
every patient mapped from their respective ICD-9-CM codes. Each patient had 1 to 25 unique CCS codes assigned                  
to them. In total, there were 252 unique CCS codes present in the dataset. Given, n CCS codes and m patients, the                      
input, , was constructed as a binary matrix like the following:0, } D ∈ { 1 m×n  
 

 
 

where 1 if has and 0 otherwise for As a data dij =   P i   CCSj      , i 1, , .., }, j 1, , .., }.dij ∈ D  ∈ { 2 . m  ∈ { 2 . n     
pre-processing step, the diabetes-related CCS codes (49 and 50) were first identified and then any patients that did                  
not contain at least one of these codes were discarded. CCS codes that were not present in any of the patients (i.e.,                      
the whole column in D was 0) were also removed. Ultimately, each patient was represented as a binary string where                    
each index of the string represented a specific CCS code. If the value was 1, then that patient was diagnosed with                     
that condition and 0 otherwise. We did a similar process for the 18 pregnancy-related CCS codes (177, 180-196).  
 
For every year, the two types of unsupervised clustering algorithms were used in attempt to identify co-morbidity                 
profiles. The first method was a categorical variation of the K-Means algorithm, K-Modes10,11, and the second                
method was a categorical variation of a Self-Organizing Map (Kohonen Map)6,13,15. The Hamming distance was               
implemented in the algorithms as the dissimilarity measure. Now, let be an indicator function that equals          {x x }1 1 =  2       
1 when and 0 otherwise. Given n CCS codes and two samples and  xx1 =  2            p , , .., p }P (1) = { 1

(1)  p2
(1) .  n

(1)  
 the Hamming distance is calculated as:p , , .., p },P (2) = { 1

(2)  p2
(2) .  n

(2)  
 

Hamming Distance = {p }∑
n

j=1
1 j

(1) = pj
(2)  

 
The K-Modes algorithm is a modification to the K-Means algorithm where instead of defining the K centroids as the                   
means of clusters, the mode is used. Let be the set of centroids where        c , c , .., }C = { (1)  (2) . c(k)       

and Now let denote the ith patient whose closest, 1 ,c(k) ∈ {0, 1} n  ≤ k ≤ K  C | .| = K   p , p , .., p }P (i)
c(k) = { (i)

1,c(k)  (i)
2,c(k) .  (i)

n,c(k)       
centroid is Then, the centroid is defined as.c(k)   
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for . Finally, in order to increase the efficiency of the learning, the clusters were initialized using the 1 ≤ j ≤ n                  
feature density based initialization described in Cao et al.3. The overall algorithmic procedure is as follows 
 

1. Initialize K centroids using the density based approach mentioned above 
2. For every sample, find the centroid that has the shortest hamming distance. Note that each sample is now                  

associated with a centroid as part of its cluster 
3. Update the centroid using the mode definition defined above 
4. Repeat steps 2 and 3 until error converges and no longer decreases 

 
The “elbow method” was used to determine the optimal number of clusters, K. This method plots the overall error of                    
the result to their respective K. The K that displays the most drastic drop in error is considered to be the best choice.                       
For HCUP NIS, it was determined that six was the optimal number clusters for the five years analyzed, as shown in                     
Figure 1. 

 
Figure 1: The plot of the average errors across years 2008-2012 for the various number of clusters. The star 
denotes the elbow. Note that the errors were calculated as the sum of all the Hamming distances between the 
cluster centroid and the cluster samples. 

 
The Self-Organizing map or the Kohonen Map algorithm employs competitive learning and a neural net to conduct                 
unsupervised learning. For the implementation, the neural architecture was similar to the one shown in Figure 2, but                  
with an 8x8 lattice rather than a 4x4 as shown below. 
 
 
 

Figure 2: (left) An example of a Self-Organizing 
Map architecture where the 2 dimensional inputs are 
mapped to a connected 4x4 lattice of nodes. Note 
that the study used an 8x8 lattice. (right) An 
example of the neighborhood function. Let the black 
node be , the area around it is the Gaussianvb  
Neighborhood Function, and let the nodes contained 
within it be . Note that as  gets closer to thev v  
edges of the neighborhood, the value of would beθ  
smaller as defined by the Gaussian decay. 
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Now let be the weight vector, be the learning penalty, and be the neighborhood function at iteration s  W (v)     αs      θs,v        
for node v. Moreover, let be the sample t and be the maximum number of iterations that the algorithm does.     D(t)      λ           
Given these variables, for each iteration, the update function is calculated as: 
 

     
 

The algorithmic procedure is as follows: 
1. Initialize the grid of lattices with random samples as the initial weights for the nodes, W 0

(v)  
2. For every sample, find the node that has the shortest hamming distance (the best matching unit/node,D(t)  

and update the weights by the update function) vb  
3. Repeat above steps for the maximum number of iterations λ  

 
Now, as defined by Kohonen et al.13 

 
 

where and are the initial learning rate and initial neighborhood radius respectively and is the type ofα0  θ0            f     
neighborhood function to be employed. For the implementation, a Gaussian Decay neighborhood function was used: 
 

 

where, is the best matching node for The effect of the neighborhood function is that we update the weight of v vb       .Dt               
less the further v is from the best matching node, . Figure 2 illustrates the neighborhood function for one iteration.vb  
 
Similarly to Lebbah et al.15, = 1 and = 1. As the number of iterations approach the maximum, both the     α0     θ0              
learning rate as well as the neighborhood function decrease in value, requiring updates to be done in smaller                  
increments. The update was modified to use the Hamming distance as described in Chen et al.6 and Lebbah et al.15.                    
A threshold, was defined to accommodate the learning rate and the neighborhood function consisting of a real  ,τ                 
number output. If a given feature has an update value less than , the weights would be changed to 0 and 1            τ           
otherwise. For the implementation used in this study, More formally, given ,        .5.τ = 0     w , w , .., w }W s

(v) = { (v)
1,s  (v)

2,s .  (v)
n,s  

threshold , and patient at iteration tτ D(t)  
 

 
 
The analyses for each year was done on 50 epochs once the error of the clusters converged. 
 
After the clustering, a PubMed query was constructed in order to verify all possible pairwise co-morbidities that 
existed within a cluster. The queries were made using the BioServices.EUtils library in Julia. This query was 
executed on every non-empty node in the self-organizing map lattice and was done for every year of our analysis. 
For example, given the pair 177 (Spontaneous Abortion) and 180 (Ectopic Pregnancy), the following  query was to 
be made: “Spontaneous Abortion” AND “Ectopic Pregnancy” AND “Pregnancy”[mh]. The resultant count of 
returned articles was then recorded for each pair. 
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Results 
 
There were no significant results from the K-Modes algorithm. For both conditions, the algorithm outputted               
uninteresting centroid modes that were mostly, if not all, zeros, mirroring the sparsity of the input data. When                  
analyzing the data points contained within each centroid, it was often the case that one centroid contained almost the                   
entire dataset with the other five centroids holding one to two samples each. This result repeated across all five                   
years. The latest version of the source code associated from this project is at: https://github.com/bcbi/ncSOM 
 
For Diabetes, Figure 3 shows the node activations of the self-organizing map at the end of the iterations. There were                    
one to two major clusters observed. 
 

 
                              (a) 2008                                                          (b) 2010                                                        (c) 2012 
 

Figure 3: Visualization of the final lattice. Note that the size of the nodes corresponds to the proportion of samples clustered 
in that node. Adjacent node activations can be inferred as one cluster. 

 
Given these clusters, the pairwise comorbidities suggested by the algorithm were visualized in two different ways as                 
shown in the chord diagram in Figure 4 and the radar plot in Figure 5. 

 
 
 
 
 
 

Figure 4: A chord diagram visualizing all of the pairwise,          
comorbidity correlations for diabetes in the 2008 dataset. the         
diabetes codes are colored differently and bold. Tracing the         
chords of each comorbidity of interest defines the comorbidities         
that exist in each cluster. Note the separation of clusters          
between CCS code 50 and 49 as there is no chord connecting            
them. 
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Figure 5: A radar plot demonstrating the       
comorbidities of condition 49 (Diabetes     
mellitus without complications) is associated     
with forming a cluster. Note the absence of        
overlap between the codes 49 and 50 within the         
cluster.  
 
 
 
 
 
 
 
 
 
 
 
 
 

PubMed Entrez queries were used to see the number of papers that mentioned both of these CCS codes with                   
Diabetes. From the query, it was found that all discovered comorbidities were reported in at least 3200 papers with                   
3204 papers mentioning all of the inferred comorbidities. 
 
For pregnancy, Figure 6 shows the node activations of the self-organizing map at the end of the iterations. There                   
were four to six major clusters observed.  
 

 
                              (a) 2008                                                          (b) 2009                                                        (c) 2011 

Figure 6: Visualization of the final lattice. Note that the size of the nodes corresponds to the proportion of samples clustered 
in that node. 
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Given these clusters, Figure 7 and Figure 8 visualizes the pairwise comorbidities. The PubMed Entrez query 
identified between 900 and 1500 papers for the reported comorbidities. 
 

Figure 7: A chord diagram visualizing all of the pairwise,          
comorbidity correlations for pregnancy in the 2008 dataset.        
Similar to the diabetes figure, the 18 pregnancy codes are          
uniquely coded and have bolded CCS labels. Moreover,        
starting from the top, the proportion of patients having this          
condition is decreasing counter-clockwise. Note that there are        
definitely multiple pregnancy codes that cluster together as        
well as normal pregnancy being the most common. There are          
no clusters that contain both normal pregnancy and a major          
complication such as pre-term birth. 
 

 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
Figure 8: A radar plot demonstrating the       
comorbidities condition 196 (normal    
pregnancy without complications) is    
associated with forming a cluster. Note that       
this was the condition reported most common       
by the chord diagram. As shown in the chord         
diagram, there are no serious complications      
such as pre-term birth. 
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Discussion 
 
When Diabetes was used as a benchmark condition for the methodologies, it was found that K-Modes was not a                   
strong enough learner to determine meaningful co-morbidity cluster structures from patient diagnoses profiles. The              
self-organizing map, however, yielded promising results. The study found that all of the comorbidities inferred by                
the algorithm were supported by at least 3200 papers in PubMed. Moreover, the comorbidities learned on the                 
pregnancy dataset was supported by at least 900 papers.  
 
When visualizing the activation topology of our lattice like in Figure 3, two prominent cluster structures that each                  
align to either CCS 49 or 50 can be observed. Note that 49 is Diabetes Mellitus without complications and 50 is                     
Diabetes Mellitus with complications; displaying a learned distinction between the two states. Therefore, the              
benchmark analysis inferred the two prominent cluster structures of Diabetes. Similarly for Pregnancy, Figure 6               
shows four to six prominent cluster structures. The largest cluster for all of the years was associated with CCS code                    
196 or "Other pregnancy and delivery including normal". This is an expected result. The topology of the lattices                  
suggests that there is a clear cluster with a diagnoses profile that is associated with normal pregnancy. Moreover, for                   
2008 and 2011, other clusters that are close to the largest activation suggests that the comorbidities of pregnancy                  
with complications share many features with that of a normal pregnancy. Note that for both conditions, there were                  
smaller clusters far from the main activations that were associated with clusters that occurred in a small proportion                  
of the population, suggesting the presence of other potential phenotypes of pregnancy. These inferences are further                
supported by the chord diagrams in Figures 4 and 7. Notice that for the chord diagrams, distinct comorbidities                  
between normal and abnormal states can be observed. Furthermore, an even closer decomposition of the               
comorbidities for each condition can be analyzed through the radar plots. This can be portrayed in the radar plot for                    
CCS code 184 or "Early or threatened labor" and its comparison to the plot shown in Figure 8 of “Normal                    
Pregnancy”. 
 

 
 
 
 
 
 
 
 
 

 
  
 
 
Figure 9: A radar plot demonstrating the       
comorbidities for early or threatened birth.  
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For both of the methods, the Euclidean distance was replaced with the Hamming distance to account for the                  
categorical nature of the data. The Hamming Distance was used as the dissimilarity measure instead of other metrics                  
such as the Jaccard distance or the Sorensen-Dice distance. This decision was based on the metrics chosen by the                   
papers that also implemented these algorithms for categorical datasets. Possible future experiments may include              
exploring other dissimilarity options.  
 
For K-Modes, a density based initialization method suggested by Huang10,11 was preferred over a random               
initialization. The reason behind this choice was based off the observation that well initialized centroids often led to                  
the K-Modes algorithm learning better cluster structures3. This was important for us due to the sparsity of medical                  
profiles. Out of the 280 CCS codes, the data limits a patient to have at most 25 of these conditions; thus resulting in                       
a sparse data matrix. Given these profiles, the algorithm had difficulty converging in a reasonable amount of time                  
with a random sampling of K-centroids. In a compute environment of 20 core CPUs (2.2GHz, with 3.4GHz Max                  
Turbo Frequency) and 62 GB of RAM, the algorithm took on average 10 hours of training time per CPU. Further                    
performance gains could be made with GPU-hardware accelerations. 
 
For the self-organizing map, the data was projected onto a two dimensional, 8x8 grid. This decision was motivated                  
by Appiah et al.1 It was observed that the error did not decrease significantly for lattices greater than 8x8 when                    
applied to MNIST datasets. This seemed reasonable since for MNIST, one would expect at most ten clusters, and                  
from the initial look at the data, the elbow method identified around six clusters. Thus, it was decided that this lattice                     
architecture will be maintained. Along with the lattice size, there were three other hyperparameters: the initial                
learning rate , the initial neighborhood parameter , and the update threshold . The decision to set the initial  α0      θ0      τ        
learning rate to 1 was both motivated by the exploration done in Appiah et al. as well as an intuition about the                      
learning rate. Given no prior knowledge of the cluster structures, a greater learning rate was chosen so that the                   
weight updates were not initially penalized for a poor initialization. Similar to the learning rate, was set to be one               θ0       
so that the Gaussian neighborhood would encompass most if not all of the lattice in the earlier iterations. This                   
decision seemed to be the general practice among self-organizing map applications and was suggested by               
Kohonen13. Finally, was set to be 0.5 as done in multiple implementations6,15.τ  
 
Notice how, in Figure 9, there does not exist a co-occurrence between 184 and 196. It is clear that this diagnoses                     
profile is distinct from that of normal pregnancy. The primary emphasis of this study was to explore the potential of                    
unsupervised clustering techniques to generate potential co-morbidity profiles of interest. It was discovered that              
K-Modes was not able to render any clusterings, while the self organizing map technique identified potential                
clusterings of interest. This methodology is scalable to other high dimensional datasets encoded in terminologies               
other than ICD-9-CM, including ICD-10-CM. These clusters were validated based on a cursory evaluation using               
co-occurring morbidities in published literature which was used as proxy for validating the clusterings. Before               
suggesting clinical significance or utility of these groupings, future work must include validation by domain experts. 

 

Conclusion 

This study shows how the self-organizing map is a powerful unsupervised clustering method for hospital diagnoses                
datasets. The experiments confirm that the self-organizing map successfully learns meaningful cluster structures that              
other widely used methods such as K-Modes cannot. The ultimate purpose of this analysis is for this method to                   
become part of the pipeline for discovering the various patient diagnoses profiles that are associated with the                 
condition. Extensions to this research may include a more robust look at the effects of the hyperparameters on the                   
analysis. Naturally, the results of this algorithm should be further validated by domain experts to determine                
biological or clinical utility. 
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