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Abstract

Radiology reports contain descriptions of radiological observations followed by diagnosis and follow up recommen-
dations, transcribed by radiologists while reading medical images. One of the most challenging tasks in a radiology
workflow is to extract, characterize and structure such content to be able to pair each observation with an appropriate
action. This requires classification of the findings based on the provided characterization. In most clinical setups, this
is done manually, which is tedious, time-consuming and prone to human error yet of great importance as various types
of findings in the reports require different follow-up decision supports and draw different levels of attention. In this
work, we present a framework for detection and classification of change characteristics of pulmonary nodular findings
in radiology reports. We combine a pre-trained word embedding model with a deep learning based sentence encoder.
To overcome the challenge of access to limited labeled data for training, we apply Siamese network with pairwise in-
puts, which enforces the similarities between findings under the same category. The proposed multitask neural network
classifier was evaluated and compared against state-of-the-art approaches and demonstrated promising performance.

1 Introduction

Radiology reports contain descriptions of imaging findings and the corresponding diagnosis transcribed by radiologists
while reading radiology images. Criticality and significance of the findings vary based on the characterization of
the observation in terms of size, shape, texture, etc. Considering pulmonary nodular findings, the significance is
characterized by first determining whether the observation is a new finding or not. In the case of a prior finding
follow-up, it is important to evaluate the interval change in terms of worsening, improving, or remaining unchanged.
Radiologists typically provide a brief description of such characterization while transcribing a nodular finding. For
example, “Ground-glass opacities are unchanged in the upper lobes”. Extraction and classification of the findings
help determine and communicate the appropriate next care action more accurately and consistently. This is typically
performed manually, which is tedious, time-consuming, and prone to human error. With the increase in the volume
of imaging studies and consequently increase in the number of radiology reports, automatic structuring of radiology
report content in the form of pairs of findings and the corresponding appropriate actions has gained significant interest
during the last couple of decades. In this work, we propose a machine learning-based framework to classify findings
in terms of characterization of nodular change. The task is defined as a sentence-level multi-class classification.

Sentence classification has previously been applied for different clinical applications including assessment detec-
tion1–3, automatic report summarization4, and incidental finding/follow-up recommendation extraction5–7. The state-
of-the-art clinical sentence classification approaches use Natural Language Processing (NLP) techniques for parsing
unstructured textual data. The computerized NLP techniques feature efficiency and scalability compared to the con-
ventional approaches and are capable of processing large-scale data and obtaining results in near real-time, while the
latter are time-consuming, labor-intensive, and require specific expertise.

Conventional sentence classification methods can be categorized into two groups8: rule-based/pattern matching2, 3, 6, 9, 10

and statistical machine learning-based approaches1, 10–12. A rule-based approach is performed as a string-matching
using a set of keywords pre-defined by experts or available through standard ontologies (such as SNOMED CT*).
Rule-based approaches have been widely used for clinical tasks such as recommendation detection for incidental find-
ings in radiology reports6, and acute bacterial Pneumonia detection and related concept extraction from chest X-ray
reports9. A major drawback of rule-based approaches is the dependency of the performance on the completeness of

*https://www.snomed.org/snomed-ct
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the pre-defined keywords/patterns. On the other hand, machine learning-based approaches learn lexical and clinical
features from a set of pre-labeled report contents to achieve the classification. Castro et al. proposed a machine
learning-based classifier for automatic Breast Imaging Reporting and Data System (BI-RADS) categorization, using
Bag-of-Words (BoW) and BI-RADS annotation occurrence as features to train Naive Bayes (NB) and Support Vector
Machine (SVM) classifiers1. Solti et al. constructed a list of keywords and count their presences similar to BoW, and
used maximum entropy for detection of acute Lung injury from radiology reports10. Lexical features such as term fre-
quency - inverse document frequency (tf-idf)11, 12 and n-grams13–15 have also been widely used as features for similar
classification tasks. More recently, deep learning techniques, including Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN), have been applied to general purpose word/sentence embedding16–18 and clas-
sification19–22 tasks such as sequence tagging and sentiment analysis, and demonstrated promising results compared
with the conventional NLP approaches discussed above. More recently, the success of deep learning techniques in
NLP-related tasks inspires the recent applications in the clinical domain such as clinical decision-making23, 24, Name
Entity Recognition (NER)25, 26.

In this work, we present a multi-step framework for detection and classification of change characteristics in pulmonary
nodular findings described in radiology reports using state-of-the-art deep learning. The proposed classification prob-
lem was motivated by a recent work by Hassanpour et al. who proposed an NLP-based pipeline to categorize the
change and significance of clinical findings from radiology reports3, utilizing a keyword-matching algorithm. Never-
theless, this work suffers from similar shortcomings of keyword-matching approaches. Different from the conventional
feature extraction steps, we combine a pre-trained word embedding model with a deep learning based sentence encoder
to convert the text into dense vectors in a lower dimension. The word embedding (skip-gram) model is able to learn
a distributed representation for each word and capture its semantics16, 27. The obtained word embeddings are then fed
into the sentence encoder to learn vector representations of the sentences that are used as features for the classification.
The biggest challenge to apply deep learning approaches in clinical domain is the data scale as it requires large-scale
labeled data to train deep learning models without overfitting. Therefore, we apply Siamese network, which is a dual
network used to predict the similarity between a pair of input samples28, 29, in addition to the sentence classification
network to enforce the similarities between findings under the same category. We jointly learn the two neural net-
works in a multitask scheme. The proposed multitask neural network classifier was evaluated and compared against
state-the-art approaches and demonstrated promising performance on pulmonary nodular finding classification.

The main contributions of this work can be summarized as following:

• A multitask deep learning framework is proposed for classification of change characterization in pulmonary
nodular findings described in radiology reports with a robust high-precision/recall. To the best of our knowledge,
this is the first work utilizing multitask deep learning to tackle such problem and achieve promising performance.

• We utilize Siamese network in a multitask scheme to overcome a typical challenge in deep learning solutions for
healthcare tasks: lack of sufficient labeled data for training. This is achieved by considering all possible pairs of
input sentences.

• A thorough investigation and comparison is conducted and reported on an extensive selections of features and
methods including conventional machine learning and state-of-the-art deep learning-based approaches, which
resulted in insights and suggestions for future work.

2 Material and Methods

Figure 1 demonstrates an overview of the proposed framework. In summary, radiology reports are preprocessed
to extract finding sentences. Next, sentences with an indication of pulmonary nodular findings are automatically
identified. Finally, pulmonary nodular finding sentences are classified in terms of characterization of change. Details
on each step are provided in the following sections.

2.1 Preprocessing

Free-text radiology reports are processed to split into sentences using SpaCy*. The sentences are further processed to
lower case, removing redundant spaces, correcting incidental sentence chunking caused by punctuations, and fixing

*https://spacy.io/
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Figure 1: An overview of the proposed pulmonary nodular finding classification framework.

special characters and encodings. In the end, we obtain the word tokens of the cleaned sentences using SpaCy. The
tokens are further normalized based on the entity type such as measurements and dates: e.g., “3.0 x 2.0 x 3.0 mm” is
normalized to “9 x 9 x 9 mm”, and time formats such as “01/01/2001” and “Jan 1st, 2001” are converted to “9-9-99”.

2.2 Pulmonary Nodular Finding Detection

Pulmonary nodular finding detection was achieved in two steps: First, a previously proposed anatomical phrase label-
ing approach was applied for pulmonary sentence classification30. Next, sentences with pulmonary nodular findings
were automatically identified using a logistic regression-based binary classifier. The input feature vector consists
of TFIDF features as well as binary features based on regular expression-based keyword matching. Here is a list
of keywords extracted from SNOMED CT ontology: nodule, focus, mass, consolidation, lesion, focal opacity, cyst,
ground-glass, tree-in-bud, abnormality, carcinoma, focal density, and tumor.

2.3 Pulmonary Nodular Finding Classification

The basic finding classification model (denoted as encoder classifier) is a deep neural network including the following
components: (1) word embedding which converts input words/tokens into dense vectors, (2) sentence encoder which
reads embedding vectors and outputs highly abstracted features of the findings, and (3) fully-connected layers for
further classification tasks based on the encoded feature. In addition, since we have a relatively small labeled dataset,
we apply a Siamese network in addition to the encoder classifier in order to utilize pairwise data. The network
configuration is shown in Figure 2.

2.3.1 Word Embedding and the Pre-trained Model

We apply the skip-gram model for word embedding. The skip-gram works in an unsupervised fashion, and is proposed
to learn semantic representations of the words16. The underlying assumption of skip-gram is that the semantics of the
current word is distributed through the whole sequence or within a window of nearby words. For example, we have an
input word sequence T = {w1, w2, ..., wN} of N words where wt indicates the current word at step t, and let c denote
the window size, the objective function of skip-gram model is to maximize the likelihood of the occurrences of words
within the window range given the current word, as shown in Equation 1:

1

N

N∑
t=1

∑
−c≤q≤c,q 6=0

log p (wt+q|wt) (1)

where the conditional probability is calculated from soft-max. A word wt in the sequence T is mapped into a word
vector wt ∈ IRn×1, and used to construct the vector sequence T ∈ IRN×n to represent the input sequence where
T = [w1,w2, ...,wt]

ᵀ. The number of rows is fixed to be the maximum length among all the input sequences, and
zero-padding is performed for shorter sequences. The details on pre-training the skip-gram model is discussed in
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Figure 2: The proposed deep neural network for pulmonary nodular finding classification in a multitask scheme.

Section 2.4.

2.3.2 Sentence Encoder

Three one-layer architectures were considered for the sentence encoder: uni- and bi-directional Long Short Term
Memory (LSTM)31 and one-dimensional CNN23, 32. The learned features are fed into two layers of fully-connected
layers where we use a soft-max function as the activation function in the last layer. Given N samples and C classes in
total, let g(·) denote the encoder function including the first fully-connected layer, ŷi and yi denote the prediction and
ground truth of sample xi, the prediction loss Lpred is thus defined in Equation 2.

ŷi = softmax(Wg(xi) + b)

Lpred =
1

N
(−

N∑
i=1

C∑
c=1

yci log ŷ
c
i )

(2)

2.3.3 Siamese Network

Deep learning techniques typically require large-scaled labeled data. Nevertheless, it is always a significant challenge
to create large-scale labeled data. We utilize Siamese network in addition to the classification task in a multitask
scheme in order to overcome the shortcoming of limited training data. Siamese network was initially proposed to
tackle the one-shot and few-shot learning problem28, 29. The inputs to the Siamese network are pairwise samples from
different classes and the outputs are the probabilities of the input sample pairs belonging to the same class. The
intuitions of applying the Siamese network is two folds: (1) by creating pairwise inputs we are able to upsample
the data scale from O(N) to up to O(m · N),m ∈ [1, N/2] which is also controllable, and (2) the objective of the
Siamese network is to enforce the within-class similarity while maximizing the inter-class dissimilarities. In our case,
the Siamese network is constructed by the same sentence encoder as we introduced in the previous section. After we
obtained the features for the two input samples xi and xj , a joint distance layer dist (xi, xj) = |g (xi)− g (xj)| is
used to compute the absolute distance per dimension between the two layers. Then, by adding a fully-connected layer
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and sigmoid activation σ(·), we obtain the final prediction ŷi,j and the similarity loss Lsim following binary cross
entropy in Equation 3. Output labels for the Siamese network are created based on the following rule: output label is
set to “1” if the input sample pair belong to the same class, and “0” otherwise.

ŷi,j = σ (Wdist (xi, xj) + b)

Lsim =
1

N ′

∑
i,jv[1,N ]

[(1− yi,j) log (1− ŷi,j) + yi,j log ŷi,j ] + λ ‖W‖2
(3)

2.3.4 Multitask Learning

In order to achieve an end-to-end training where we can perform both the sentence classification and similarity pre-
diction at the same time, we construct a joint neural network in a multitask fashion as shown in Figure 2. The two
components of the multitask neural network share the same sentence encoder with the same weights. Therefore, during
the training process, the encoder learns to encode the findings under the same class close to each other as well as to
push the findings from different classes away from each other. The total loss function of the multitask neural network
is calculated as a weighted average of the classification loss and the similarity loss as defined in Equation 4, where α
is a scaler. We run validation after training for 10 batches each time and adjust the scaler α based on the loss values
obtained on the validation set.

Lsim = αLpred + (1− α)Lsim (4)

Table 1: Definition of pulmonary nodular finding type based on characterization of change and sample size.

Class Type Sample Size Definition
(no. of sentences)

New/Indeterminate 421 Nodular finding was not present in a prior study and/or cannot be assessed as any of the
other types

Worsening 87 Nodular finding has progressed
Unchanged 340 Nodular finding has not changed
Improving 90 Nodular finding has been partially or completely resolved

2.4 Clinical Data

Radiology reports from two different clinical sites, the University of Washington (UW) and the University of Chicago
(UC) were used in this study. Radiology reports were collected with Institutional Review Board (IRB) approvals.
All reports were de-identified by offsetting dates with randomly generated numbers. All other HIPAA patient health
information including name, date of birth and address were removed. The following section describes the break down
of the data:

Word embedding: 1,566,921 reports from the UW dataset as well as 334,486 unique terms extracted from SNOMED
CT ontology (version 20150731) were used for training the word embedding model. After applying preprocessing,
the training corpus contained 418,761,995 tokens with a vocabulary size of 270,015. Details are given in30.

Pulmonary nodular finding corpus: 2,000 radiology reports were randomly selected from the UC dataset and man-
ually labeled for pulmonary nodular finding types: New/Indeterminate, Worsening, Unchanged, and Improving. Such
choice of categorization is adopted from a previous work3 with a couple of differences: New and Indeterminate are
combined as one class and Worsening is considered as a separate class. Definitions of the classes and the correspond-
ing data distributions are provided in Table 1. The suggested class choice differences is based on recommendations
by radiologists from the collaborating sites to adapt to their current care workflow. From the selected 2,000 reports,
438 radiology reports contain sentences of pulmonary nodular findings (918 sentences in total) are detected by the
pulmonary nodular finding detection phase as discussed in Section 2.2. We further split the pulmonary nodular finding
sentences to 80% and 20% as the training/validation and testing sets.
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3 Results

Since our task is a multi-class classification and the classes are imbalanced, we apply the weighted average of the
precision, recall, and F1-score by the number of instances of each class33 to calculate the overall performances for
evaluating and comparing the classification approaches. In this case, the F1-score can be not in the range of the
precision and recall because it is a weighted average over the classes instead of a weighted average over the precision
and recall per class.

The proposed classifier is compared against a number of conventional and state-of-the-art approaches. In order to
conduct a fair comparison between our proposed approach and other methods, we incorporate the commonly used
hand-crafted features including BoW, tf-idf, n-grams (including bi-grams and tri-grams), and all possible combina-
tions, with various classifiers including NB, SVM, Logistic Regression (LR), and Random Forest (RF). All combi-
nations of the aforementioned features were considered for both training and testing. In order to obtain the optimal
performance for each feature set and classifier combination, we carefully run grid search within the training set on the
hyper-parameters and choose the best performing settings. The options of L1 and L2 regularization are also included
in the grid search to deal with the high dimensionality of the inputs. L1 regularization enforces the sparsity in the
coefficients and tends to perform better on high dimensional tasks, while L2 regularization is more commonly used
to prevent overfitting34. Additionally, we compare the proposed multitask finding classification model with Siamese
network and joint loss with the state-of-the-art deep learning models based on different sentence encoders but without
the Siamese network: Bi-directional LSTM (denoted as BiLSTM)35, uni-directional LSTM (denoted as LSTM)31, 36,
one-dimensional CNN29, 32, and the Deep Averaging Network (DAN), which is a deep neural network consist of two
fully-connected layers on top of the averaged word2vec features obtained from all the words in the input sequence37.
The proposed multitask neural networks with different encoders are denoted as Multitask CNN, Multitask LSTM,
and Multitask BiLSTM. All deep learning models are trained on batches with 64 samples. We also implemented the
rule-based approach proposed by Hassanpour et al.3 to solve a similar finding classification problem. Nevertheless,
we were unable to replicate the results on our test set using the provided keyword set3. The is due to the fact that: 1)
creating a comprehensive list of keywords is always a challenge; and 2) determining the class label solely based on
keywords may not be sufficient as in some scenarios, the hint to determine the appropriate class label is in the context
of the sentence1. Consider the following example: “The other nodule previously noted on the prior study cannot be
identified on the current examination”. By considering the context, one can simply conclude that the appropriate class
label for the nodule is Improving. However, there is no specific keyword that highlights the class label.

Table 2 summarizes the performance of different approaches in terms of precision, recall, and F1-score. From Table 2,
we can observe that the proposed Siamese network-based multitask CNN yields the best precision, recall, and F1-score

Table 2: Results on pulmonary nodular finding classification. The best performing results are shown as bold. NB:
Naive Bayes; SVM: Support Vector Machine; LR: Logistic Regression; RF: Random Forest; DAN: Deep Averaging
Network; CNN: Convolutional Neural Network; LSTM: Long Short Term Memory; BiLSTM: Bi-directional LSTM.

Models Evaluation
Precision Recall F1-score

NB + tf-idf 75.50% 75.54% 75.21%
SVM + All Features 88.65% 86.96% 86.65%
LR + All Featuers 88.24% 87.50% 87.47%

RF + tf-idf 82.86% 80.43% 81.10%
DAN 82.97% 81.52% 81.87%
CNN 88.93% 86.96% 86.34%

LSTM 88.37% 88.04% 87.97%
BiLSTM 87.24% 86.96% 86.72%

Our proposed Multitask CNN 90.65% 89.67% 89.69%
Our proposed Multitask LSTM 89.35% 88.59% 88.36%

Our proposed Multitask BiLSTM 90.64% 89.67% 89.44%
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Table 3: Per-class Precision/Recall/F1-score using the proposed CNN-based Multitask Neural Network.

Class Names Precision Recall F1-score
New/Indeterminate 86.08% 97.14% 91.28%
Worsening 70.59% 92.31% 80.00%
Unchanged 98.61% 87.65% 92.81%
Improving 87.50% 70.00% 77.78%

outperforming the other state-of-the-art deep learning approaches by about 2%. Table 3 summarizes the performance
of the proposed multitask neural network with the CNN encoder on each class separately. As can be observed from
the table, the worst precision and recall belong to Worsening and Improving classes. We also present the confusion
matrix among different classes in Figure 3. As can be observed from Figure 3, class New/Indeterminate is confused
the most with other classes, specifically, the most confusion being with class Improving.

Figure 3: The confusion matrix of the proposed multitask neural network with CNN-based sentence encoder.

4 Discussion

Automatic identification and extraction of actionable information from unstructured radiology report content is a
challenging task due to the significant variation in radiologists’ language in transcribing such information. Consider
the following examples: “Previously described nodular opacity in the left upper lobe less conspicuous on current
examination.”; “Marked interval decrease in size of the nodular opacity within the left upper lobe”; “left upper lobe
nodular opacity has resolved since the prior examination.” All these sentences refer to an improving nodular finding
yet in quite different languages.

While achieving a high recall is desired for guaranteeing the detection of all actionable sentences within the report,
reaching a high precision is quite important for finding type classification to avoid confusions and mistakes in the
workflow and care management. The proposed classifier yields relatively high precisions and recalls for three out of
four class. Additionally, class confusion is quite an important factor in the evaluation of a classifier. However, not
all confusions will have the same impact on the overall performance which is special in the healthcare domain. In
other words, confusions between certain classes may result in higher costs in downstream applications. For example,
for the current use case, confusing worsening with improving or unchanged classes could have a dramatic impact on
the decision on the appropriate care action and as a result, pose a significant risk on patient’s health. Considering the
confusion matrix provided in Figure 3, the most confusion is between new/indeterminate and other classes. This is an
expected error considering a current limitation of the proposed framework. Consider the following example: “Small,
noncalcified nodules are seen in the right upper lobe on image 18/102. These are unchanged in the interim.” The
first sentence was labeled as new/indeterminate by the algorithm; however, by considering the following sentence,
the appropriate label seems to be unchanged. This is due to the fact that the proposed framework does not take any

291



extra context beyond the target sentence into account for the classification. The most worrisome confusion is between
worsening and other three classes, as a patient falling under unchanged or improving classes may not require any
follow-up action, whereas a patient under worsening class most definitely requires short-term or immediate attention.
Fortunately, the proposed framework demonstrated no such confusion as can be seen in Figure 3.

Building a classifier that could reliably distinguish between different classes requires a significant amount of training
labeled data to capture as much of the variation in the data as possible. Nevertheless, creating such size of labeled
data is costly and requires a significant amount of effort, and time. To overcome such challenges, we incorporated
Siamese network in a multitask and end-to-end scheme to tackle the limitation of data scale, which often occurs in
deep learning applications. Such incorporation benefits the overall performance by constructing pairwise samples in
a large-scale and enforce the differences between findings from different categories. The proposed multitask neural
network framework can be potentially applied to other similar classification tasks in the clinical domain, where labeled
data is usually limited in scales and very expensive to obtain.

5 Conclusions

In this work, we present a deep learning approach to tackle the pulmonary nodular finding classification in terms
of characterization of change. To overcome the challenge of access to limited labeled data, we take advantage of
the Siamese network in a multitask scheme. The proposed architecture takes pairwise samples as inputs to increase
the number of training samples. Furthermore, the Siamese network is able to capture the similarities and subtle
differences for samples under the same and different classes. We compared the proposed framework against a number
of conventional machine learning approaches as well as a few state-of-the-art deep learning methods and demonstrated
that the proposed approach outperforms the other methods.
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Rémy Morello, and Anita Burgun. Natural language processing of radiology reports for the detection of throm-
boembolic diseases and clinically relevant incidental findings. BMC Bioinformatics, 15:266, 2014.

8. Tianrun Cai, Andreas A Giannopoulos, Sheng Yu, Tatiana Kelil, Beth Ripley, Kanako K Kumamaru, Frank J
Rybicki, and Dimitrios Mitsouras. Natural language processing technologies in radiology research and clinical
applications. Radiographics, 36(1):176–191, 2016.

9. Marcelo Fiszman, Wendy Webber Chapman, Dominik Aronsky, R. Scott Evans, and Peter J. Haug. Research
paper: Automatic detection of acute bacterial pneumonia from chest x-ray reports. JAMIA, 7(6):593–604, 2000.

292



10. Imre Solti, Colin R Cooke, Fei Xia, and Mark M Wurfel. Automated classification of radiology reports for acute
lung injury: comparison of keyword and machine learning based natural language processing approaches. In
Bioinformatics and Biomedicine Workshop, 2009. BIBMW 2009. IEEE International Conference on, pages 314–
319. IEEE, 2009.

11. Brian E. Chapman, Sean Lee, Hyunseok Peter Kang, and Wendy Webber Chapman. Document-level classification
of CT pulmonary angiography reports based on an extension of the context algorithm. Journal of Biomedical
Informatics, 44(5):728–737, 2011.

12. Hari Trivedi, Joseph Mesterhazy, Benjamin Laguna, Thienkhai Vu, and Jae Ho Sohn. Automatic determination
of the need for intravenous contrast in musculoskeletal MRI examinations using IBM watson’s natural language
processing algorithm. J. Digital Imaging, 31(2):245–251, 2018.

13. Imre Solti, C Cooke, Fei Xia, and M Wurfel. Peeling away the black box label: clinical validation of a maxent ma-
chine learning character n-gram feature set for acute lung injury. AMIA Summit on Translational Bioinformatics,
2010.

14. Meliha Yetisgen-Yildiz, Brad J Glavan, Fei Xia, Lucy Vanderwende, and Mark M Wurfel. Identifying patients
with pneumonia from free-text intensive care unit reports. In Proceedings of Learning from Unstructured Clinical
Text Workshop of the International Conference on Machine Learning, 2011.

15. Eamon Johnson, W Christopher Baughman, and Gultekin Ozsoyoglu. Mixing domain rules with machine learning
for radiology text classification. In Proceedings of the ACM SIGKDD Workshop on Health Informatics (HI-KDD
2014), 2014.

16. Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119, 2013.

17. Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Skip-thought vectors. In Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 3294–
3302, 2015.

18. Edouard Grave, Tomas Mikolov, Armand Joulin, and Piotr Bojanowski. Bag of tricks for efficient text classi-
fication. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers, pages 427–431, 2017.

19. Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1746–1751, 2014.

20. Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber, and Hal Daumé III. Deep unordered composition ri-
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