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Abstract 

Developing high-throughput and high-performance phenotyping algorithms is critical to the secondary use of 
electronic health records for clinical research. Supervised machine learning-based methods have shown good 
performance, but often require large annotated datasets that are costly to build. Simulation studies have shown that 
active learning (AL) could reduce the number of annotated samples while improving the model performance when 
assuming that the time of labeling each sample is the same (i.e., cost-insensitive). In this study, we proposed a cost-
sensitive AL (CostAL) algorithm for clinical phenotyping, using the identification of breast cancer patients as a use 
case. CostAL implements a linear regression model to estimate the actual time required for annotating each 
individual sample. We recruited two annotators to manual review medical records of 766 potential breast cancer 
patients and recorded the actual time of annotating each sample. We then compared CostAL, AL, and passive 
learning (PL, aka random sampling) using this annotated dataset and generated learning curves for each method. 
Our experimental results showed that CostAL achieved the highest area under the curve (AUC) score among the 
three algorithms (PL, AL, and CostAL are 0.784, 0.8501, and 0.8673 for user 1 and 0.8006, 0.8806 and 0.9006 for 
user 2). To achieve an accuracy of 0.94, AL and CostAL could save 36% and 60% annotation time for user 1 and 
53% and 70% annotation time for user 2, when they were compared with PL, indicating the value of cost-sensitive 
AL approaches. 

Introduction 

In the past decade, data from electronic health records (EHR) systems has become a source for clinical and 
translational research1. The potential for mining this data to support evidence-based practice and population health 
initiatives is immense. However, one of the challenges of harvesting the information within the EHR is efficiently 
and accurately identifying patients with a specific phenotype (e.g., disease or drug exposure) from the heterogeneous 
clinical data, including coded data and clinical narratives. Manual review of patients’ medical records by domain 
experts, although accurate, is costly and time-consuming. Physical review is also not scalable given the large 
number of medical records involved2–4. Therefore, developing high-throughput and high-performance phenotyping 
algorithms is of great interest to the clinical and informatics communities1. 

Many efforts have devoted to EHR phenotyping tasks, including knowledge base development and rule-based 
phenotyping algorithms5. Recently, a number of studies applied supervised machine learning (ML) algorithms to 
high-throughput phenotyping tasks2,4,6–8. Wei et al.4 developed support vector machine (SVM) classifiers to identify 
type 2 diabetes using extracted concepts, achieving F-scores over 0.95. Carroll et al.2 also applied SVM classifiers to 
identify rheumatoid arthritis (RA) cases using billing codes, medication exposures, and extracted concepts, 
achieving a precision of 0.94 and a recall of 0.87. Some studies applied logistic regression to identify rheumatoid 
arthritis (RA)6, Crohn’s disease (CD) and ulcerative colitis (UC)7 patients using coded data and clinical narratives, 
achieving accuracy over 0.94. Kawaler el al.8 showed that Naïve Bayes, along with random forests and SVM, are the 
best learners for predicting post-hospitalization venous thromboembolism (VTE) risk from EHR records. However, 
to achieve such high performance, these supervised ML-based methods often require a large number of annotated 
samples.  There is a need to develop methods to achieve high-performance phenotyping classification models while 
minimizing annotation cost, as the time and expertise required to annotate samples may otherwise be prohibitive. 

Active learning (AL)9, which actively selects the most informative samples for annotation (compared with random 
sampling or passive learning - PL), is one way to minimize annotation cost while achieving high-accuracy machine 
learning models. In seminal work, Chen et al.10 and Dligach et al.11 successfully applied AL to phenotyping tasks. 
Chen et al.10 integrated an uncertainty-based AL algorithm with SVM-based phenotyping classifiers and showed that 
AL could reduce the number of annotated samples required to achieve an area under the curve (AUC) score of 0.95 

829



  

by up to 68%. Dligach et al.11 employed an uncertainty sampling AL method with Naïve Bayes-based phenotyping 
methods and demonstrated that AL could achieve a two-thirds reduction in the amount of manual labeling, as 
compared to its passive counterpart. Both of these studies showed that AL reduces the number of annotated samples 
in simulation studies, which is promising. However, this type of simulation assumes that the cost of labeling each 
sample is the same in terms of time, which does not hold in real-world annotation tasks.  

A number of studies12–15 have shown that in order to reduce the overall burden of annotating a corpus, AL 
algorithms need to consider annotation cost (i.e., time) in the model. Settles et al.13 conducted an extensive empirical 
study of AL with annotation costs in four open domain tasks, including named entity recognition (NER), relation 
extraction, sentence classification and image retrieval. They concluded that AL without a cost model might perform 
no better than random sampling when evaluated for time saved rather than a reduction in the number of annotated 
examples, but that improved learning curves could be achieved if AL took the variable costs of annotation into 
account appropriately. Haertel et al.14 proposed a cost-sensitive heuristic Return On Investment (ROI) based active 
learner and showed a 73% reduction in hourly cost over random sampling on a part-of-speech (POS) tagging task. 
Tomanek and Hahn12 proposed three different methods to incorporate costs into AL and revealed that cost-sensitive 
AL could reduce up to 54% of annotation time compared to random sampling on an NER task. In the medical 
domain, Chen et al.16 also showed that simple uncertainty-based AL algorithms do not guarantee a reduction of 
annotation time for different users in a clinical NER task, and argued that if the querying algorithm took into 
account the real annotation time, the AL algorithms could perform better. 

Despite promising work on cost-sensitive AL algorithms for NLP tasks such as NER and POS tagging, no existing 
work has investigated the cost model for AL in the context of a clinical phenotyping task. This task is very different 
from above NLP tasks – annotators make decisions at patient-level rather than sentence-level. They have larger 
amounts of material to review and may choose to review only certain segments of it. Consequently, development of 
a cost model for this task requires understanding how experts review chart to determine phenotypes from EHRs 
when building the actual cost model. As a preliminary study, here we proposed to develop cost-sensitive AL 
algorithms for clinical phenotyping, using the identification of breast cancer patients as a use case.  

Methods 

Overview 

In this study, we used an existing dataset containing 766 potential breast cancer patients, each of them was labeled 
with its breast cancer status (yes vs. no) by a previous study17. The dataset was annotated again by two recruited 
annotators so that the actual annotation time of each sample was recorded and a cost model was trained on a subset 
of the newly-annotated data for each annotator. We then conducted simulation experiments following the pool-based 
active learning framework18 and compared three querying algorithms: passive learning (PL, aka random sampling), 
active learning without a cost model (AL), and active learning with our proposed cost model (CostAL) by 
generating learning curves (accuracy against time or number of samples) and reporting area under the curve scores. 

Dataset  

We used an existing dataset for which gold standard decisions regarding the presence or absence of breast cancer 
were previously determined17. This dataset was composed of clinical records for 766 female patients, of which 492 
patients (~64%) have had, or currently have breast cancer. Each patient’s clinical records contain the patient’s coded 
data (i.e., diagnostic codes, medication orders, procedure orders and lab tests) and clinical notes. For clinical 
phenotyping, several studies3,19–21 shown that coded data such as the International Classification of Disease (ICD) 
codes were not sufficient or accurate enough. Therefore, many studies2,10,11 also involved a set of Unified Medical 
Language System (UMLS)22 concept identifiers (CUIs) extracted from patients’ clinical notes using NLP tools. In 
this study, we used both the coded data and clinical notes of each patient’s clinical records for clinical phenotyping. 
We randomly separated these 766 samples into four parts for different purposes as shown in Table 1. More 
specifically, the first part (66 patients) was used to train the annotators to get familiar with the task and the 
annotation system (described in the next subsections). The second part (250 patients) was used for collecting the 
actual annotation time of each sample to train the cost model for each annotator. The third part (250 patients) was 
used for evaluating the cost model and also used as the pool for different querying algorithms. Note that, this part of 
data was seen as labeled data if it was used for evaluating the cost model and unlabeled data if it was used as the 
algorithm pool. The last part (200 patients) was used for evaluating the phenotyping algorithms with different 
querying strategies. The size and distribution of each part are shown in the table, which illustrates a similar 
distribution of positive and negative examples across the partitions. 
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Table 1: Statistics of the dataset used in this study. 

Part #Positive Samples 
(Percentage) 

#Negative Samples 
(Percentage) Total Purpose Annotation Phase 

1 43 (65.2%) 23 (34.8%) 66 Annotator Training  1st Phase 
2 158 (63.2%) 92 (36.8%) 250 Cost Model Training 

2nd Phase 3 169 (67.6%) 81 (32.4%) 250 Cost Model Evaluation 
Algorithm Pool 

4 122 (61%) 78 (39%) 200 Evaluation Set --- 
Total 492 (64.2%) 274 (35.8%) 766 --- --- 

 

 
Figure 1: Home screen of the annotation system showing a patient list. 

 

 
Figure 2: The annotation system showing part of a patient’s clinical records. 
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Annotation 

Since most of the active learning research for phenotyping10,11 did not consider the real annotation cost (i.e., 
annotation time or labeling time), there was no available dataset that recorded the annotation cost of each example 
Therefore, we recruited two annotators with medical background to annotate the above dataset and recorded the time 
spent annotating each sample. The TURF software23 was used to record annotators’ keystrokes and mouse clicks. 
Within the annotation system and TURF software, we recorded the time of each annotator spend reviewing each 
patient’s clinical records to make their decision. 

Annotation Interface 

We developed a web-based annotation system for the annotators to manually review the clinical records of each 
patient. Figure 1 shows a screenshot of the home screen, which provided a patient list including patients’ age, 
gender, and other statistical information. By clicking on any line, the annotator entered the patient’s clinical records. 
Figure 2 shows a screenshot of the annotation system showing part of the patient’s clinical records. The interface 
had limited interactivity allowing the annotator to expand/contract details regarding the major components of the 
records. Each segment of the records (i.e. Diagnostic codes, Medications, Procedures, Labs, and Notes) was marked 
to indicate the number of available records. A filter/search function was available for each segment within the 
records. Thus, annotators had the capacity to explore the records to identify those aspects of it most pertinent to the 
classification task.  

Annotation Decision and Confidence 

Annotators were tasked with making a binary decision as to whether or not each patient on their list (1) currently has 
breast cancer or has had a history of breast cancer or (2) the patient does not have evidence of breast cancer at any 
point current or past. Additionally, for each decision, they were asked to indicate their confidence level in their 
determination. We defined the confidence levels from 1 to 5, which denotes “very low confidence”, “low 
confidence”, “average confidence”, “high confidence” and “very high confidence”, respectively.  

Annotation Phase 

Two phases were taken to carry out the annotation process as shown in Table 1. In the first phase, 66 samples were 
used to train the annotators to get familiar with the task and the annotation system. During this phase, each annotator 
was provided with annotation guidelines and feedback on their annotations of the 66 samples. Annotators and 
researchers discussed their decisions between the two annotators, and the annotators were provided with protocols to 
support adherence to the guidelines. In the second phase, 500 samples were divided across 10 sessions (50 samples 
one session) to allow for regular periods of rest. In total, we obtained the real annotation cost (i.e., annotation time or 
labeling time) of 500 samples. 

ML-based Phenotyping Method  

We treated phenotyping as a classification task - to predict whether a patient has a medical condition given the 
patient’s clinical records. In this study, we used a logistic regression model provided by LIBLINEAR24 to build a 
classifier to predict the probability of a patient having a specific medical condition. In the logistic regression model, 

we compute the probability with 𝑝 𝑦 𝑥 = %&∙()*

+,%&∙()*
, where 𝑥 is a vector of features extracted from the patient’s 

clinical records, 𝑦 is a binary variable representing whether or not a patient 𝑥 has a specific medical condition, 𝑤 is 
a vector of weights associated with the features, and 𝑐  is a constant. For each patient 𝑥 , we extracted all the 
diagnostic codes (ICD codes), medications, procedure orders (CPT billing codes), lab tests, and UMLS CUIs 
extracted from clinical notes, resulting in 12,225 features in total. 

AL and Cost-sensitive AL for ML-based phenotyping 

AL9 applies a querying algorithm to actively select the most informative samples for annotation. For example, 
uncertainty sampling selects the lowest confidence samples based on the current model18,25. This type of active 
learning algorithm assumes that the cost (i.e., annotation time) is identical for different samples (i.e., cost-insensitive) 
and that reducing the number of annotated examples leads to reduced annotation cost. Although the assumption is 
partially true, in practice AL algorithms that operate without considering annotation cost do not guarantee reduced 
annotation time13,16. Cost-sensitive active learning (CostAL) algorithms 12,13 consider differences in annotation cost 
between different samples, by building models to estimate the cost for each sample. In this study, we employed a 
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pool-based AL framework18, which is shown in Figure 3. The querying algorithm in line 6 is the key component and 
is implemented using the following three different strategies: 

• PL: We used random sampling as the querying algorithm. 

• AL: We employed the uncertainty sampling algorithm18,25 as the querying algorithm, which is to query the 
sample whose predicted label from the classifier is the least confident (aka the most informative): 𝑥* =
argmax

5
	𝑖𝑛𝑓𝑜(𝑥), where 𝑖𝑛𝑓𝑜 𝑥 = 1-𝑝(𝑦|𝑥) is the information content of an unlabeled example 𝑥 and 𝑦 =

argmax
@

𝑝(𝑦|𝑥) is the prediction with the highest posterior probability given the current classifier. 

• CostAL: We queried the sample by balancing informativeness against annotation cost, to maximize the 
informativeness/cost ratio, or return on investment (ROI)13,14: 𝑥* = argmax

5
	𝑖𝑛𝑓𝑜 𝑥 /𝑐𝑜𝑠𝑡(𝑥) where 𝑖𝑛𝑓𝑜(𝑥) 

is the information content of an unlabeled example 𝑥, and 𝑐𝑜𝑠𝑡(𝑥) is the annotation cost when acquiring a label 
for the unlabeled example 𝑥. We developed a linear regression model, which was trained using the collected 
dataset with real annotation time (i.e., the 2nd part of the dataset as shown in Table 1), to predict the annotation 
cost on the unlabeled samples (i.e., the 3rd part of the dataset as shown in Table 1) as 𝑐𝑜𝑠𝑡 𝑥 = 𝑤' ∙ 𝑥' + 𝑐', 
where 𝑥' is a vector of features extracted from the patient’s clinical records, 𝑤' is a vector of weights associated 
with the features, and 𝑐' is a constant. We extracted 6 features to represent each patient 𝑥, including features 
about the complexity of patient’s records: the number of (1) diagnostic codes (ICD codes), (2) medication 
orders, (3) procedure orders, (4) lab tests, and (5) clinical notes; and (6) whether a record contains obvious 
evidence about breast cancer (i.e., a set of ICD codes concerning breast cancer identified by the two annotators). 

 
Figure 3: A pool-based active learning algorithm. 

Evaluation 

We measured the accuracy of each annotator in both the two annotation phases. Higher accuracy indicates the high 
quality of the annotation. We reported both Root Mean Square Error (RMSE) and coefficient of determination (𝑅G) 
of the linear regression-based cost model26 on the training data. RMSE is used to measure the difference between 
values predicted by a model (i.e., the predicted time by the learned cost model) and the values actually observed 
(i.e., the real annotation time). 𝑅G is a statistical measure of how well the regression model approximates the data. 
An 𝑅G of 1 indicates that the regression model perfectly fits the data. Since phenotyping is treated as a classification 
task, we used accuracy to evaluate the performance of different phenotyping algorithms. We generated learning 
curves by plotting the accuracy of a classifier on the test data (i.e., the 4th part of the dataset as shown in Table 1) as 
a function of the number of the annotated samples or the time spent on the annotated samples. The area under the 
learning curve (AUC) score was used as the primary measure to compare different learning curves of PL, AL, and 
CostAL. More specifically, we repeated PL with random sampling 10 times and plot the averaged learning curve 
with variation, and we also computed its averaged AUC score with variation. 
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Results 

Annotation Accuracy 

In the first phase of annotation, which was to train the annotators with 66 samples to get familiar with the task and 
the annotation system, the accuracy was 98% (65/66) for user 1 and 100% (66/66) for user 2. In the second phase of 
annotation, which was to collect real annotation cost of 500 samples, the accuracy was 99% (496/500) for both user 
1 and 2. The high annotation accuracies indicated that the two annotators were well trained and fit for the task. 

Statistics of the Annotation Confidence 

Table 2 shows the statistics of the annotation confidence across the 500 samples for each annotator. From the table, 
we can find that (1) most of the samples can be decided with very high confidence, and (2) most of the samples with 
confidence level less than 5 fall into the negative samples. 

Table 2: Statistics of the annotation confidence across the 500 samples for each annotator. 

 Confidence Level #Positive Samples #Negative Samples Total 

User 1 

1 0 0 0 
2 0 1 1 
3 0 5 5 
4 1 27 28 
5 326 140 466 

User 2 

1 0 0 0 
2 0 2 2 
3 0 2 2 
4 0 6 6 
5 327 163 490 

 

 
Figure 4: Distribution of the annotation time across the 500 samples for each annotator. 

Statistics of the Annotation Time 

Figure 4 shows the distribution of the annotation time across the 500 samples for each annotator. The mean and 
standard deviation were 26.90 and 51.46 for user 1 and 18.30 and 23.06 for user 2, respectively. User 1 had much 
higher variance than user 2, which showed the difference between the two annotators. The variance of annotation 
time for each annotator among different samples shows that it is necessary to consider the real annotation cost of 
each sample in order to truly reduce the time for annotating a corpus when applying active learning algorithms to 
phenotyping. 

To better understand what kind of samples were more time-consuming or effort-intensive for annotation, we further 
made statistics to the samples that took much more time than the average. For user 1, there were totally 128 samples 
that took much more time than 26.90 seconds. Among them, 23 samples were positive and 105 samples were 
negative. For user 2, there were totally 143 samples that took much more time than 18.30 seconds. Among them, 55 
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samples were positive and 88 samples were negative. These statistics showed that negative samples were more time-
consuming for annotation. 

Accuracy of the Cost Model 

The RMSE of the learned linear regression-based cost models from two annotators are 16.97 and 20.04 respectively. 
The 𝑅G scores are 0.3204 and 0.1389 respectively. The lower RMSE and higher 𝑅G of the first user indicates that the 
proposed cost model (i.e., selected features) fits much better on data for user 1 than that for user 2. 

  
    (a) user 1      (b) user 2 

  
    (c) user 1      (d) user 2 

Figure 5: Learning curves (in terms of accuracy vs. number of annotated samples or time of annotated samples) and 
AUC scores (shown in the legend of each subfigure) for different query algorithms. CostAL: Cost-sensitive Active 
Learning; AL: Active Learning without cost model; PL: Passive Learning. (a)(b) Learning curves between accuracy 
and the number of annotated training samples for user 1 and 2 respectively. (c)(d) Learning curves between 
accuracy and the annotation time spent on the annotated training samples for user 1 and 2 respectively. (a)(c) 
CostAL using the cost model trained with user 1’s annotation time. (b)(d) CostAL using the cost model trained with 
user 2’s annotation time. 

Effectiveness of the Cost Model for Active Learning 

Figure 5 illustrates the learning curves and AUC scores of different query algorithms. More specifically, the yellow 
curve is the averaged learning curve for PL by repeating random sampling 10 times, and the light-yellow area shows 
the variation of each point in the averaged learning curve. Similarly, the AUC score for PL is the averaged AUC 
score by repeating random sampling 10 times, and the symbol ± indicates the variation. Figure 5 (a) and (b) show 
the learning curves between accuracy and the number of annotated training samples for user 1 and 2 respectively. 
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For AL and PL, the learning curves are the same for two users because they did not consider actual time. According 
to the learning curves, PL achieved an accuracy of 0.94 by training on 245 annotated samples, while AL needed 109 
annotated samples to achieve the same performance, indicating a 56% reduction. The corresponding AUC scores of 
AL and PL were 0.8858 and 0.7984 ± 0.0363 respectively. When CostAL was used, user 1 needed 81 annotated 
samples and user 2 needed 87 annotated samples to achieve an accuracy of 0.94, indicating a 67% reduction and a 
64% reduction, respectively. The AUC scores were 0.877 and 0.8889 for user 1 and 2. 

Figure 5 (c) and (d) show the learning curves between accuracy and the annotation time spent on the annotated 
training samples. For user 1 (Figure 5 (c)), to achieve an accuracy of 0.94, PL required 3,466 seconds of annotation. 
However, AL and CostAL required 2,223 and 1,393 seconds of annotation respectively, indicating a 36% and a 60% 
reduction of time compared to that of PL. Furthermore, CostAL shows a 37% reduction of time compared to AL. 
The AUC scores of PL, AL, and CostAL were 0.784 ± 0.0298, 0.8501, and 0.8673 respectively. Figure 5 (d) shows 
results from user 2. To achieve an accuracy of 0.94, PL required 3,858 seconds. However, AL and CostAL required 
1,826 and 1,153 seconds of annotation respectively, indicating a 53% and 70% reduction of time compared to that of 
PL. Moreover, CostAL shows a 37% reduction of time compared to AL. The AUC scores of PL, AL, and CostAL 
were 0.8006 ± 0.0335, 0.8806 and 0.9006, respectively. 

When cost is evaluated using the number of annotated samples (Figure 5 (a) and (b)), AUC scores of CostAL were 
not better than AL. However, when actual annotation time was used in evaluation (Figure 5 (c) and (d)), AUC scores 
of CostAL outperformed AL by at least 2%. The utility of cost-sensitive AL algorithms is clearly demonstrated 
when real annotation times are used in the evaluation. Overall, AL performed better than PL, reducing the number of 
annotated samples by up to 56% and the time by up to 53%. CostAL outperformed PL by reducing the number of 
annotated samples by up to 67% and the time by up to 70%. Furthermore, CostAL performs better than AL by 
reducing the number of annotated samples by up to 26% and the time by up to 37%. 

Discussion 

In this study, we investigated the impact of cost-sensitive AL algorithms for clinical phenotyping, using the 
identification of breast cancer patients as a use case. CostAL effectively reduced the annotation time that was 
needed to achieve a high-accuracy model, with reductions of up to 70% as compared with passive learning, which 
would constitute a substantive saving in clinician resources required to produce an annotated reference set. To the 
best of our knowledge, this is the first study to apply and evaluate CostAL for ML-based clinical phenotyping.  

Since there was no available dataset that recorded the annotation cost of each example for clinical phenotyping, we 
recruited two annotators with a medical background to re-annotate an existing breast cancer dataset and recorded the 
time spent annotating each sample. The high accuracy and confidence of the annotation shown that (1) the two 
annotators were well trained and fit for the task, and the annotation quality was sufficient for our task, and (2) the 
identification of breast cancer cohort was an easy phenotyping task. Although, we achieved successful results on 
CostAL for ML-based clinical phenotyping, how much we can generalize findings in this study to phenotyping tasks 
of other diseases are not assessed yet. Moreover, the sample size of the breast cancer dataset used here is relatively 
small. In the future, we will expand and evaluate CostAL for other disease cohorts, and use many more samples. 

The statistics of the annotation time shown that negative samples were more time-consuming for annotation. In this 
work, we used both the coded data and clinical notes of each patient for clinical phenotyping, as suggested by 
previous work2,3,10,11,19–21. If the diagnosis of breast cancer is clearly mentioned in the diagnosis section of the 
records, it is not hard to determine that the patient currently has breast cancer or has had a history of breast cancer. 
However, if the diagnosis is not clearly mentioned in the diagnosis section, it doesn’t mean that the patient does not 
have breast cancer. The annotator still has to read through the other sections of the patient chart to firmly say that the 
patient does not has breast cancer. Sometimes, the patient chart contains many clinical notes and it takes more time 
to read through all the notes. 

For CostAL, an accurate cost model is important. In this work, we used linear regression with some heuristic 
features to build the cost model, which is very preliminary. Although the CostAL-based phenotyping was successful 
in the simulation study, the 𝑅G scores of the cost model suggest room for improvement. In practice, annotation 
scenarios may be more complicated than the simulation environment. For example, modeling the effects of fatigue 
over time would require more sophisticated models considering additional features. In addition, we noticed 
differences between the two users, e.g., annotation speed, which obviously affects annotation time. Currently, our 
cost models are user-specific, which requires training for each user. It would be advantageous to develop 
generalizable models that can be user independent, as this would eliminate the need for user-specific training. 
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From the four subfigures in Figure 5, we noticed that AL and CostAL did not perform well at the early stage when 
the number of training samples was small. AL was even worse than CostAL at the beginning (i.e., less than 15 
training examples or 250 seconds. One possible explanation is that the classification models were not well-trained 
due to the small training sample size and high feature dimensionality, thus resulting in poor sample selection by the 
uncertainty sampling algorithms. This could be addressed by better initial sample selection strategies and we will 
address this issue in the future work. From the subfigures, we also found that AL and CostAL reached an accuracy 
of 0.94 very quickly and then kept a stable performance, while PL achieved an accuracy of 0.94 very slow. AL and 
CostAL could save up to 53% and 70% annotation time compared with PL, indicating the value of cost-sensitive AL 
approaches. Note that, the accuracy of 0.94 in our experiments was the best accuracy the classifiers could achieved 
on the evaluation set (i.e., the 4th part of the dataset as shown in Table 1) when the classifiers were trained using 
some or all of the data in the algorithm pool (i.e., the 3rd part of the dataset as shown in Table 1). 

At this time, we employed the uncertainty-based querying algorithm for AL and CostAL only. We will further 
investigate other querying algorithms such as query-by-committee27, density-based sampling28, etc. To fully 
demonstrate the use of CostAL in real-world annotation tasks, we are also planning to develop a CostAL-enabled 
annotation system and conduct a user study to compare CostAL, AL, and PL in real-time annotation tasks.  

Conclusion 

In this study, we applied cost-sensitive active learning for clinical phenotyping, using the identification of breast 
cancer patients as a use case. Preliminary results showed that CostAL effectively reduced the annotation time 
compared to its cost-insensitive and passive counterparts. 
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