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Abstract 

Diabetic Kidney Disease (DKD) is a critical and morbid complication of diabetes and the leading cause of chronic 

kidney disease in the developed world. Electronic medical records (EMRs) hold promise for supporting clinical 

decision-making with its nationwide adoption as well as rich information characterizing patients’ health care 

experience. However, few retrospective studies have fully utilized the EMR data to model DKD risk. This study 

examines the effectiveness of an unbiased data driven approach in identifying potential DKD patients in 6 months 

prior to onset by utilizing EMR on a broader spectrum. Meanwhile, we evaluate how different levels of data 

granularity of Medications and Diagnoses observations would affect prediction performance and knowledge 

discovery. The experimental results suggest that different data granularity may not necessarily influence the 

prediction accuracy, but it would dramatically change the internal structure of the predictive models.      
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Introduction 

Diabetic kidney disease (DKD) is one of the most frequent and dangerous complications of Diabetes Mellitus (DM), 

affecting about 20% to 40% of patients with type 1 or type 2 DM. DKD is a major cause of morbidity and mortality 

in DM patients and single most common cause of end-stage renal disease (ESRD)1. Thus, it is extremely important to 

develop predictive models for the early identification of patients at risk for developing DKD and implement 

appropriate interventions.  

In order to build an accurate predictive model, choosing appropriate candidate predictors is critical. The widely 

adopted approaches for DKD risk stratification are mainly hypothesis-driven, which combine expert opinions with 

systematic literature review of prognostic factors that are already known to be associated with the target outcome2-5. 

However, based on findings from previous studies, clinical intuition may not be suitable for identifying candidate 

predictors, owing to the fact that this type of selection is subjective and can miss out the potential unknown predictors6. 

An unbiased data-driven approach is to utilize all available data to build the model and let the algorithm identify the 

top ranked predictors. Electronic Medical Record (EMR) has become a primary data resource for such approach. To 

facilitate the reuse of EMR data for research, the National Institutes of Health (NIH) funded the Informatics for 

Integrating Biology and the Bedside (i2b2) National Center for Biomedical Computing to provide an open-source 

clinical data informatics framework7. Since i2b2’s first release in 2007, over 240 scholarly articles have been published 

using data derived from i2b2-based repositories. 

However, the built-in hierarchical representation of clinical knowledge in the i2b2-based repositories has been under-

exploited. Granularity at which clinical features are represented can make a big difference in predictive modeling and 

knowledge discovery. For example, “250” is the general ICD9 code assigned for “Diabetes Mellitus”, which can be 

specified as “250.1” for “Diabetes with ketoacidosis” and further specified as “250.10” for “Diabetes with ketoacidosis, 

type II or unspecified type, not stated as uncontrolled”, depicting an increasing richness of diagnostic detail. In addition, 

the specificity can be extended from a different perspective by differentiating the types or sources of diagnosis, for 

example, primary or non-primary diagnosis. Another example, “Furosemide” is a generic drug name for a type of 

“Loop Diuretics”, which can be generally grouped as “Diuretics” and further as “Cardiovascular Medications”, while 

“Furosemide” can also be sub-classified into different form, strength and dosage, as well as associated with clinical 

activities, i.e. inpatient or outpatient orders. In practice, an arbitrary decision is usually made on which level of 
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abstraction should be used for predictive model development, or simply mapping to one of many external ontologies 

with minimal manual work without much discussion9,10. 

The contribution of this study is two-fold. First, we attempted to leverage the full breadth of the i2b2-structured clinical 

data in the purpose of improving overall DKD prediction accuracy and discovering potentially new discriminating 

factors over a more comprehensive diabetic population. Second, we investigated how well the knowledge, in relation 

to DKD prediction, got retained with respect to representations at different granularity. More specifically, when we 

kept the features at their leaf levels, we were able to view each feature with their finest granularity (e.g., dosage 

information for medications or diagnosis with very specific details). However, we might misrepresent a “complete” 

feature by a bunch of independent “partial” features and risk diffusing the real predictive power of that “complete” 

feature. This discussion tied into the contrast between feature selection and feature extraction methods11, as the former 

is designed to eliminate redundant features while the latter is to combine correlated features. Instead of resorting to 

more complex feature extraction techniques, we took advantage of the hierarchical ontology for “Medications” and 

“Diagnoses” data built in i2b2, which provided a convenient feature extraction solution by rolling up the features to 

higher level along the ontological trees.  

Methods 

Diabetes Definition 

We adopted the SUPREME-DM definition of diabetes in this study rather than simply relying on diagnosis codes. 

Diabetes was defined based on a) use of glucose-lowering medications (insulin or oral hypoglycemic medications); 

or b) level of hemoglobin A1C of 6.5% or greater, random glucose of 200 mg/dL or greater, or fasting glucose of 126 

mg/dL on at least two different dates within two years; or c) any two type 1 and type 2 DM diagnoses been given on 

two different days within 2 years; or d) any two distinct types of events among a),b),or c); e) excluding any gestational 

diabetes (temporary glucose raise during pregnancy)12 . 

DKD Definition 

Diabetic Kidney Disease (DKD) was defined as diabetes with the presence of microalbuminuria (or even proteinuria), 

impaired glomerular filtration rate (GFR), or both13,14. More specifically, microalbuminuria was defined as ratio of 

urine albumin to creatinine (ACR) being 30 mg/g or greater (similarly, proteinuria was defined as ratio of urine protein 

to creatinine being 30 mg/g or greater) 13,14. Impaired GFR was defined as the estimated GFR (eGFR), an age, gender, 

race adjusted serum creatinine concentration, being less than 60 mL/min/1.73m2. Since impaired GFR is also a 

manifestation of acute kidney injury (AKI), which may not necessarily indicate an immediate transition to chronic 

kidney disease, any low eGFR encounter that was concurrent with an AKI session was excluded, where AKI session 

was identified by diagnosis codes ICD9:584 or ICD10:N17. 

Study Cohort 

A retrospective cohort of 35,779 DM patients, who had at least one valid eGFR or ACR record, was eligible for this 

study. We excluded all the patients who had any kidney disease manifestation (e.g. chronic kidney disease diagnosis, 

low eGFR, or microalbuminuria) prior to DM onset. The case group included all DKD patients with their DKD onset 

time defined as the first time of their abnormal eGFR or ACR. The control group was defined as DM patients whose 

eGFRs had been all above or equal to 60 mL/min/1.73m2 and had never had microalbuminuria, with the endpoint 

defined as the last time of their normal eGFR or ACR.  In the final cohort, we collected 20,718 patients and 7,834 

(38.6%) were DKD patients.  

HERON Data 

At the University of Kansas Medical Center (KUMC), we have established an i2b2-based Healthcare Enterprise 

Repository for Ontological Narration (HERON) that integrated data from disparate information systems with available 

data types including patient demographics, medication, laboratory results, diagnoses data, etc. and continuously 

evolved to better serve the needs of researchers15. Clinical observations, or facts, in HERON can be roughly classified 

into 11 data types based on the source system (Table 1), which are well linked at patient and encounter level16. Each 

data type is a mix of categorical and numerical data elements. For data types such as laboratory tests and vital signs, 

the values are more crucial in reflecting a patient’s status rather than the mere presence of the facts. As a result, we 

created an indicator variable equal to 1 for the presence of a categorical feature and 0 otherwise, while kept the original 

values for all the numerical features. As aforementioned, HERON provides an additional attribute indicating either 

the type/source of a fact (e.g. primary diagnosis (@Primary) or non-primary diagnosis (@Non-Primary)) or different 
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aspects of the same fact (e.g. in-, or out- patient medications prescribed (@InPatient, @OutPatient), or prescribed 

dosage (@Dose|mg)) which was used to further decompose a bulk feature into granular but more meaningful pieces.  

For each patient, we extracted their most recent values for all the available features from the 11 types of data at least 

6 months prior to their DKD onset time or endpoint. Initially, a total of 96,605 distinct features were available for our 

study cohort with more than half of them coming from Medications and Diagnoses. Note that serum creatinine and 

albumin were removed from the candidate feature list even though they had been shown to be predictive in other 

prospective studies17, because they were collinearly related to the two labs (eGFR and ACR) which we used to define 

DKD. 

Table 1 – Root Data Types in HERON 

Data Type Descriptions 
No. of 

Features1 

Patients 

Frequency 

(%) 

ALERTS 

Includes drug interaction, dose warnings, drug 

interactions, medication administration warnings, and best 

practice alerts 

3804 
15733 

(75.9%) 

DEMOGRAPHICS 

Basic demographics such as age, gender, race, and etc., as 

well as their reachability, and some geographical 

information  

123 
20718 

(100.0%) 

DIAGNOSES 

Mostly organized using ICD9 and ICD10 hierarchies but 

also includes Intelligent Medical Objects interface terms 

that are mapped to ICD9 and ICD10 codes 

47711 
19712 

(95.1%) 

HISTORY Contains family, social (i.e. smoking), and surgical history 806 
16458 

(79.4%) 

LABORATORY 

TESTS 

Results of a variety of laboratory tests, including 

cardiology labs. Note that the actual lab values are used in 

modeling, if available 

5335 
15753 

(76.0%) 

MEDICATIONS 
Includes dispensing, administration, prescriptions, as well 

as home medication reconciliation at KUH. 
28315 

11525 

(55.6%) 

PROCEDURES 
Includes CPT professional services and inpatient ICD9 

billing procedure codes 
2548 

18842 

(90.9%) 

ORDERS 
Includes physician orders for non-medications such as 

culture and imaging orders 
3223 

19070 

(92.0%) 

REPORTS 
Includes structured elements from physician notes, such as 

progress notes and operative notes 
3090 

15567 

(75.1%) 

VIZIENT 

(formerly UHC) Includes both billing classifications such 

as Diagnostic Related Groups (DRG), comorbidities, 

discharge placement, LOS, and national quality metrics.  

1538 
3897 

(18.8%) 

VISIT DETAILS 
Includes visit types, vital signs collected at the visit, 

discharge disposition and clinical services providing care.   
1127 

20687 

(99.8%) 
1 This is not all distinct concepts from the entire HERON system, but only the total number of distinct features that had ever been 

recorded for at least one patient in the study cohort.  

Data Representation 

High dimensionality is a key challenge in this data set, which, in particular, stemmed from the two data types: 

Medications and Diagnoses (Table 1). The HERON hierarchical ontology provides a plausible solution for seeking 

possible lower-dimensional representation of Medications and Diagnoses data such that sufficient information on the 

original data of these two types can still be preserved. Medication concepts are carefully mapped from names in our 

Epic EMR system to Semantic Clinical Drug Form (SCDF) or Semantic Clinical Brand Form (SCBF) and grouped 

under Veterans Administration (VA) class defined by National Drug File Reference Terminology (NDF-RT). 

Diagnosis codes can be grouped by levels of specificity implied by the number of digits in ICD codes and be further 

grouped by broader disease groups. Table 2 and Table 3 demonstrate two examples of different representations of 

Medications and Diagnoses data, respectively. 
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Table 2 – Example of hierarchical ontology for a medication concept in HERON 

Representation Type Representation Value 

RX_RAW Canagliflozin 100 MG PO Tab@Dose|mg = 300 MG 

RX_CONCEPT Canagliflozin 100 MG PO Tab 

RX_CLASS_LEV (SCDF or SCBF) Canagliflozin Oral Tablet 

RX_CLASS_LEV3 (VA_LEV3) [HS502] Oral Hypoglycemic Agents, Oral 

RX_CLASS_LEV2 (VA_LEV2) [HS500] Blood Glucose Regulation Agents  

RX_CLASS_LEV1 (VA_LEV1) [HS000] Hormones/Synthetics/Modifiers  

 

Table 3 – Example of hierarchical ontology for a diagnosis concept in HERON 

Representation Type Representation Value 

DX_RAW 250.13@Primary 

DX_CONEPT 250.13 Diabetes with Ketoacidosis, Type I, Uncontrolled 

DX_CLASS_LEV4 250.1 Diabetes with Ketoacidosis 

DX_CLASS_LEV3 250 Diabetes Mellitus 

DX_CLASS_LEV2 249-259.99 Diseases of Other Endocrine Glands  

DX_CLASS_LEV1 240-279.99 Endocrine, Nutritional and Metabolic Diseases, and Immunity Disorders  

Experimental Methodology 

Considering the multi-way correlation, or multi-collinearity, which has always been an issue in EMR-based learning, 

we adopted a decision-tree-based ensemble method, Gradient Boosting Machine (GBM), as the base learner for 

building predictive models throughout the experiment. GBM is a family of powerful machine-learning techniques that 

have shown considerable successes in a wide range of practical applications. GBM has been known for its prediction 

accuracy, performance consistency, and ability to learn non-linear relations or correlations in many practical 

applications18-22. It is an ensemble learning technique, which combines a large number of weak and simple learners to 

obtain a stronger ensemble prediction. We chose GBM as our base learner not only for its robustness against high-

dimensionality and collinearity, but also because it embeds a feature selection scheme within the process of model 

development23. In addition, the adopted GBM algorithm used a default strategy to handle missing values: instead of 

requiring extra imputation, the algorithm always accounted for a missing value split at each tree node within the 

ensemble24.  

We used the area under the receiver operating character curve (AUC), sensitivity and specificity as the consensus 

metrics for comparing predictive performance. To evaluate the importance of a feature or “gain”, the averaged 

importance was taken across all boosted trees, while each tree-specific importance was calculated as the cumulative 

improvement of AUC attributed to splitting by that feature weighted by the number of observations the node is 

responsible for, which was then normalized to a percentage. The higher the “gain” was, the more relative contribution 

the feature had made in separating DKD patients from non-DKD ones. “Rank” was based on the “gain” in a descending 

order. Cumulative “gain” of features from the same type was used to measure the importance of that data type.  

To control for overfitting, we randomly partitioned the study cohort into training and testing sets as 70/30, where 

GBM model was built on the training set and AUC calculated on the testing set for comparison. As a GBM model 

performance is highly related to hyper-parameters such as learning rate, number of trees, and depth of trees, we tuned 

the hyper-parameters within the training set using 10-fold cross validation.  

Results 

Baseline Model 

Starting from all eligible clinical observations available for the training cohort and using their raw values (RX_RAW, 

DX_RAW), the baseline GBM model was first built based on 96,605 distinct features. The baseline model achieved 

an AUC of 0.8594 with a 95% confidence interval of (0.8488, 0.8681), with contributions from each data type listed 

in Table 4. “Number of Features” counts the number of distinct features selected by the baseline model of each data 
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type, while “Best rank” (best rank of features of the same type) and “Median rank” (median rank of features of the 

same type), as well as “Gain” implied how each data type contributed to the model. Overall, the model selected 2,524 

features from the 11 root data types, which received positive “Gain”, or had been evoked by at least one of the decision 

trees. It is worth noting that Medications and Diagnoses, being the most high-dimensional feature spaces, were both 

contributing less than 10% with their features typically ranked lower than the other data types in terms of the “Median 

rank”, which were 1712.5 and 1632 respectively. This finding motivated us to further investigate if the loss of 

predictive power from Medications and Diagnoses features was a result of “curse of cardinality”. 

Table 4 – Contribution distribution among data types using raw input (ordered in decreasing order by “gain”) 

Data Type 
Number of 

Features 
Gain Best rank Median rank 

LABORATORY TESTS 314 28.73% 7 670 

VISIT DETAILS 212 22.27% 1 884 

DEMOGRAPHICS 47 13.61% 2 292 

ALERTS 114 10.10% 3 1188.5 

DIAGNOSES (DX) 576 7.15% 39 1712.5 

PROCORDERS 249 6.36% 8 1227 

REPORTS 353 4.36% 180 1291 

MEDICATIONS (RX) 200 2.18% 152 1632 

PROCEDURES 151 2.11% 179 1351 

HISTORY 77 1.98% 41 946 

UHC 63 1.14% 92 1344 

Data Representation 

A typical depth of ontology for a particular medication concept or a diagnosis concept is five, as demonstrated in 

Tables 2 and 3. By adding up “modifiers”, there was an exhaustive list of 36 (= 6×6) possible combinations of different 

representations for Medications or Diagnoses data. Overall out-of-sample AUC and the significance of its 

improvement25 over the baseline model, as well as the optimal sensitivity (Sens) and specificity (Spec) are reported in 

Table 5.   

Table 5 – AUC comparisons for different Medication and Diagnoses data representations  

 
AUC /  

Sens / Spec  

DX      

RAW 

DX        

CONCEPT 

DX 

CLASS_LEV4 

DX 

CLASS_LEV3 

DX 

CLASS_LEV2 

DX 

CLASS_LEV1 

RX           

RAW 

0.8594 /  

0.7635 / 0.7797 

0.8590 / 

0.7471 / 0.7922  

0.8607 / 

0.7472 / 0.7946 

0.8597 /  

0.7538 / 0.7802 

0.8592 /  

0.7581 / 0.7798 

0.8573 /  

0.7829 / 0.7678 

RX  

CONCEPT 

0.8589 / 

0.7537 / 0.7857 

0.8601 / 

0.7655 / 0.7741 

0.8599 / 

0.7488 / 0.7924 

0.8595 / 

0.7629 / 0.7777 

0.8592 / 

0.7617 / 0.7751 

0.8578 / 

0.7575 / 0.7498 

RX 

CLASS_LEV4 

0.8582 / 

0.7641 / 0.7747 

0.8624** / 

0.7646 / 0.7786 

0.8617* / 

0.7730 / 0.7694 

0.8610 /  

0.7771 / 0.7640 

0.8598 / 

0.7701 / 0.7676 

0.8573 / 

0.7871 / 0.7600 

RX 

CLASS_LEV3 

0.8599 / 

0.7646 / 0.7724 

0.8616* / 

0.7642 / 0.7754 

0.8590 / 

0.7604 / 0.7800 

0.8605 

0.7479 / 0.7895 

0.8604 / 

0.7577 / 0.7725 

0.8584 / 

0.7751 / 0.7747 

RX 

CLASS_LEV2 

0.8588 / 

0.7502 / 0.7877 

0.8608 / 

0.7637 / 0.7812 

0.8595 / 

0.7634 / 0.7759  

0.8614 /  

0.7555 / 0.7853 

0.8605 / 

0.7626 / 0.7745 

0.8573 / 

0.7246 / 0.7732  

RX 

CLASS_LEV1 

0.8578 

0.7705 / 0.7668 

0.8589 / 

0.7582 / 0.7792 

0.8588 / 

0.7605 / 0.7766 

0.8589 / 

0.7732 / 0.7656 

0.8591 / 

0.7635 / 0.7695 

0.8568 / 

0.7455 / 0.7542 

*, ** suggest significant AUC increase over baseline model (DX RAW and RX RAW), where * indicates weak significance with 

p-value between 0.01 and 0.05 and ** indicates strong significance with p-value less than 0.01.  

The raw values (DX_RAW, RX_RAW) were used in building the baseline model, which was used as the reference 

for evaluating if any AUC change was significant. Besides a strong significant increase of AUC to 0.8624 (p-value < 
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0.01) identified at (DX_CONCEPT, RX_CLASS_LEV4). The prediction performance was not affected by changes 

of data granularity, nor affected with certain visible pattern. 

Figure 1 and Figure 2 both depicted how data representation variation changed the internal structure of the ensemble 

model, or feature importance ranking. In Figure 1, it shows that even though RX_RAW always contributed to AUC 

improvement relatively the most, it only pushed the medication features to better rankings when we rolled the concepts 

up to MED_CLASS_LEV4, MED_CLASS_LEV3 or MED_CLASS_LEV2, but not necessarily higher. It is worth 

noting that Figure 1 also suggested that such trend persisted across different Diagnosis granularities.   

 

Figure 1 – AUC Gain from Medication (with best rank, i.e. # features ranked among top 100, marked) 

 

To take a closer look at the important medication features, we picked out the examples by fixing Medications at 

RX_CLASS_LEV3 since the most numbers of medication features made to the top 100 importance list at this level. 

Two types of Diuretics, Loop Diuretics and Potassium Sparing/Combinations Diuretics, Insulin and Calcium Channel 

Blockers were identified as part of top drivers of DKD risk, which could be potential medication signals being ignored 

when we broke them down into granular terms. For better illustration, we highlighted an example of medication feature 

in Figure 2. When the “Furosemide Oral Tablet”, a generic drug name of Loop Diuretics got subdivided into finer 

pieces as “Furosemide Tablets 40mg 1000/bottle”, or when the class “Diuretics” got grouped to more coarse-grained 

granularity as “Cardiovascular Medications”, the “rank” would suddenly drop either way.  

Data granularity affected Diagnoses features in a bit more notable way as shown in Figure 3. On one hand, it 

consistently presented a negatively monotonic relationship between importance of Diagnoses features and diagnosis 

granularity. It indicated that even though there existed some dominantly predictive diagnosis groups, having them 

decomposed into finer features that carry more specific information could collectively strengthen the impact of 

Diagnoses.  
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Figure 2 – Examples of important Medications and Diagnoses features with various levels of granularity     

 

Figure 3 – AUC Gain from Diagnoses (with best rank, i.e. # features ranked among top 100, marked) 

 

On the other hand, the top rankings of Diagnoses features stayed relatively stable around above 50 and the number of 

top 100 ranked features remained around 7 when data being grouped above level DX_CONCEPT and below 
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DX_CLASS_LEV1. As displayed in Figure 2, the predictability of DM2 diagnoses was preserved across different 

levels of granularity, for which the ranks did not change considerably until reaching the level of DX_CONCEPT. 

When DM diagnosis of 250.0 broke down into 250.02 and 250.00, the feature importance ranking got stratified further 

into a much higher ranking for one (250.02, DM2 stated as uncontrolled) and a lower for the other (250.00, DM2 not 

stated as uncontrolled).  

Discussion 

It is worth noting that the HERON medication hierarchy is derived by a method of knowledge mapping across multiple 

resources such as Epic and RxNorm tables, which, to some extent, can be perceived as a feature extraction process 

guided by an expert. According to our experimental results, it seemed that how Medication features helped describe 

the DKD phenomena could be quite sensitive to how those features were represented or abstracted. Grouping the 

medication concepts into broader classes would potentially enhance their signals for predicting DKD. For example, 

two types of Diuretics (loop-acting and potassium-sparing diuretics), which had been discovered to be associated with 

adverse renal outcomes26, got recognized by our model better (Figure 3) when they were grouped at higher level in 

spite of losing some drug details. 

In contrast, the feature importance of Diagnoses appeared to be more robust against data representation than 

Medications. It could be accredited to Diagnoses features being stably predictive by their nature or was caused by 

practices that physicians or billers usually follow when they recorded the diagnosis codes. Take diabetes diagnosis as 

an example, among a total of 10,712 patients in HERON who had ever been assigned a diagnosis code within the 

group of “249-259.99”, 98% of them were “250”, among which 85% were further defaulted to “250.0” or even 

“250.00”. As a result, for DKD prediction, it may help purify the signals from Diagnoses by separating the carefully 

recorded diagnoses from the others with more granular information.   

While not the focus of this paper, the baseline model picked out some interesting features that may further our 

discussion on data granularity. For example, the most important feature that came from “Visit Details” was the 

“Superscript Encounter” indicator, which was recorded as 1 if a medication-related activity (e.g. fill or refill) occurred 

at pharmacy for an outpatient and 0 otherwise. Our baseline model suggested a protective effect of “Superscript 

Encounter”, that is, having at least 1 “Surescript Encounter” would decrease the risk of getting DKD, which was in 

line with the notion that “Surescript Encounter” carried some information about whether an outpatient was compliant 

with his/her prescriptions or not. It would make better practical sense or even achieve better prediction performance 

if we could associate such compliance indicator with a particular drug or drug class.  

Limitations 

The data granularity discussion was only done on Medications and Diagnoses in this study, which could be extended 

for examining other categorical facts, in particular those with higher prediction impact such as Alerts or Procedures, 

where such justifiable hierarchical ontology could be available in EMR. For example, the procedure of “Endoscopy 

Procedures on the Heart and Pericardium (CPT:1006197)” is a type of “Surgical Procedures on the Heart and 

Pericardium (CPT:1006057)”, which is under the umbrella of “Surgical Procedures on the Cardiovascular system 

(CPT:1006056)”. 

When it comes to numerical observations like drug dosages, strength and amount, we adopted a simple approach of 

dropping the actual values but using the mere exposure of that drug, which could be handled with better complexity 

resembling the “morphine milligram equivalent (MME)” system27. However, it may not be generalizable to other 

numerical observations.  

We only followed i2b2 ontology to uncover the influence of different levels of data granularity on predicting DKD. It 

is also possible to compare with other data abstraction methods like Clinical Classification Software (CCS) for 

collapsing diagnoses28, Generic Product Identifier (GPI) for classifying drugs from their primary therapeutic use down 

to the unique interchangeable product regardless of manufacturer or package size29, or even algorithm-based feature 

extraction techniques such as latent factor analysis30. In addition, it is also worthwhile to extend this data granularity 

work to other machine learning algorithms to check consistency.  

Conclusion 

Our experiments have shown great promises on improving DKD risk predictions by fully exploiting the diversity of 

the i2b2-based EMR database. We have also identified the utility of the hierarchical structure, built within i2b2, as a 

valuable but under-utilized resource for representing expert knowledge and facilitating interpretable data abstraction. 

Moreover, we have shown how the model specification, which was directly reflected by feature importance ranking, 
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can be significantly affected by data abstraction at different levels of granularity and further impact what knowledge 

could be learned from EMR data. Our findings have potential implications for a number of studies based on EMR data 

by raising the attention on the role of data representation in knowledge discovery. 
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